Package ‘zebu’

October 6, 2020

Type Package
Title Local Association Measures
Version 0.1.3.0
Date 2020-10-03
Author Olivier M. F. Martin [aut, cre],
 Michel Ducher [aut]
Maintainer Olivier M. F. Martin <oliviermfmartin@tutanota.com>
Description Implements the estimation of local (and global) association measures: Ducher's Z, point-wise mutual information, normalized pointwise mutual information and chi-squared residuals. The significance of local (and global) association is accessed using p-values estimated by permutations. Finally, using local association subgroup analysis, it identifies if the association between variables is dependent on the value of another variable.
URL https://github.com/oliviermfmartin/zebu
BugReports https://github.com/oliviermfmartin/zebu/issues
Depends R (>= 2.10)
License GPL-3
LazyData true
Imports ggplot2, foreach, iterators, reshape2, plyr, utils
Suggests knitr, rmarkdown, markdown, devtools, usethis
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-06 00:40:02 UTC

R topics documented:

estimate_prob .. 2
format.lassie .. 3
Description

Maximum-likelihood estimation of marginal and multivariate observed and expected independence probabilities. Marginal probability refers to probability of each factor per individual column. Multivariate probability refer to cross-classifying factors for all columns.

Usage

```r
estimate_prob(x)
```

Arguments

- `x` : data.frame or matrix.

Value

List containing the following values:

- `margins`: a list of marginal probabilities. Names correspond to colnames(x).
- `observed`: observed multivariate probability array.
- `expected`: expected multivariate probability array

Examples

```r
# This is what happens behind the curtains in the 'lassie' function
# Here we compute the association between the 'Girth' and 'Height' variables
# of the 'trees' dataset

# 'select' and 'continuous' take column numbers or names
select <- c('Girth', 'Height') # select subset of trees
continuous <- c(1, 2) # both 'Girth' and 'Height' are continuous
```
equal-width discretization with 3 bins
breaks <- 3

Preprocess data: subset, discretize and remove missing data
pre <- preprocess(trees, select, continuous, breaks)

Estimates marginal and multivariate probabilities from preprocessed data.frame
prob <- estimate_prob(pre$pp)

Computes local and global association using Ducher’s Z
lam <- local_association(prob, measure = 'z')

format.lassie

Format a lassie object

Description

Formats a lassie object for printing to console (see print.lassie) and for writing to a file (see write.lassie). Melts probability or local association measure arrays into a data.frame.

Usage

S3 method for class 'lassie'
format(x, what_x, range, what_range, what_sort, decreasing, na.rm, ...)

Arguments

x lassie S3 object.
what_x vector specifying values to be returned:
 • 'local': local association measure values (default).
 • 'obs': observed probabilities.
 • 'exp': expected probabilities.
 • 'local_p': p-value of local association (after running permtest).
range range of values to be retained (vector of two numeric values).
what_range character specifying what value range refers to (same options as what_x). By default, takes the first value in what_x.
what_sort character specifying according to which values should x be sorted (same options as what_x). By default, takes the first value in what_x.
decreasing logical value specifying sort order.
na.rm logical value indicating whether NA values should be stripped.
...

See Also

lassie
lassie

Local Association Measures

Description

Estimates local (and global) association measures: Ducher’s Z and pointwise mutual information, normalized pointwise mutual information and chi-squared residuals.

Usage

lassie(x, select, continuous, breaks, measure = "z", default_breaks = 4)

Arguments

x
data.frame or matrix.

select
optional vector of column numbers or column names specifying a subset of data to be used. By default, uses all columns.

continuous
optional vector of column numbers or column names specifying continuous variables that should be discretized. By default, assumes that every variable is categorical.

breaks
numeric vector or list passed on to cut to discretize continuous variables. When a numeric vector is specified, break points are applied to all continuous variables. In order to specify variable-specific breaks, lists are used. List names identify variables and list values identify breaks. List names are column names (not numbers). If a continuous variable has no specified breaks, then default_breaks will be applied.

measure
name of measure to be used:

• 'z': Ducher’s 'z'.
• 'pmi': Pointwise mutual information (in bits).
• 'npmi': Normalized pointwise mutual information.
• 'chisq': Chi-squared residuals.

default_breaks
default break points for discretizations. Same syntax as in cut.

Value

An instance of S3 class lassie with the following objects:

• data: raw and preprocessed data.frames (see preprocess).
• prob probability arrays (see estimate_prob).
• global global association (see local_association).
• local local association arrays (see local_association).
• lassie_params parameters used in lassie.
See Also

Results can be visualized using `plot.lassie` and `print.lassie` methods. `plot.lassie` is only available in the bivariate case and returns a tile plot representing the probability or local association measure matrix. `print.lassie` shows an array or a data.frame.

Results can be saved using `write.lassie`.

The `permtest` function accesses the significance of local and global association values using p-values estimated by permutations.

The `subgroups` function identifies if the association between variables is dependent on the value of another variable.

Examples

In this example, we will use the 'mtcars' dataset

Selecting a subset of mtcars.
Takes column names or numbers.
If nothing was specified, all variables would have been used.
select <- c('mpg', 'cyl') # or select <- c(1, 2)

Specifying 'mpg' as a continuous variables using column numbers
Takes column names or numbers.
If nothing was specified, all variables would have been used.
continuous <- 'mpg' # or continuous <- 1

How should breaks be specified?
Specifying equal-width discretization with 5 bins for all continuous variables ('mpg')
breaks <- 5

Specifying user-defined breakpoints for all continuous variables.
breaks <- list(mpg = c(10, 15, 25, 30))

Calling lassie
Not specifying breaks means that the value in default_breaks (4) will be used.
las <- lassie(mtcars, select = c(1, 2), continuous = 1)

Print local association to console as an array
print(las)

Print local association and probabilities
Here only rows having a positive local association are printed
The data.frame is also sorted by observed probability
print(las, type = 'df', range = c(0, 1), what_sort = 'obs')

Plot results as heatmap
```r
plot(las)

# Plot observed probabilities using different colors
plot(las, what_x = 'obs', low = 'white', mid = 'grey', high = 'black', text_colour = 'red')
```

lassie_get
Return the value of 'lassie' object

Description

Subroutine for *lassie* methods. Tries to retrieve a value from a *lassie* object and gives an error if value does not exist.

Usage

```r
lassie_get(x, what_x)
```

Arguments

- **x**
 lassie S3 object.

- **what_x**
 vector specifying values to be returned:

 - 'local': local association measure values (default).
 - 'obs': observed probabilities.
 - 'exp': expected probabilities.
 - 'local_p': p-value of local association (after running *permtest*).

Value

Corresponding array contained in *lassie* object.

Examples

```r
las <- lassie(trees)
las_array <- lassie_get(las, 'local')
```
local_association

Local Association Measures

Description
Subroutines called by lassie to compute local and global association measures from a list of probabilities.

Usage

```r
local_association(x, measure, nr)
duchers_z(x)
pmi(x, normalize = FALSE)
npmi(x)
chisq(x, nr)
```

Arguments

- `x`: list of probabilities as outputted by `estimate_prob`.
- `measure`: name of measure to be used:
 - `z`: Ducher’s ‘z’.
 - `pmi`: Pointwise mutual information (in bits).
 - `npmi`: Normalized pointwise mutual information.
 - `chisq`: Chi-squared residuals.
- `nr`: number of rows/samples. Only used to estimate chi-squared residuals.
- `normalize`: Normalizes pointwise mutual information when calling `pmi`.

Details

- `local_association(x, measure = 'z')` is equivalent to `duchers_z(x)`.
- `local_association(x, measure = 'pmi')` is equivalent to `pmi(x)`.
- `local_association(x, measure = 'npmi')` is equivalent to `npmi(x)` and `pmi(x, normalize = TRUE)`.

Value

List containing the following values:

- `local`: local association array (may contain NA, NaN and Inf values).
- `global`: global association numeric value.
See Also

lassie

Examples

This is what happens behind the curtains in the 'lassie' function
Here we compute the association between the 'Girth' and 'Height' variables
of the 'trees' dataset

'select' and 'continuous' take column numbers or names
select <- c('Girth', 'Height') # select subset of trees
continuous <- c(1, 2) # both 'Girth' and 'Height' are continuous

equal-width discretization with 3 bins
breaks <- 3

Preprocess data: subset, discretize and remove missing data
pre <- preprocess(trees, select, continuous, breaks)

Estimates marginal and multivariate probabilities from preprocessed data.frame
prob <- estimate_prob(pre$pp)

Computes local and global association using Ducher’s Z
lam <- local_association(prob, measure = 'z')

permtest

permtest(x, group = as.list(colnames(x$data$pp)), nb = 1000L, p_adjust = "BH", progress_bar = FALSE)

Description

Permutation test: statistical significance of local and global association measures

Usage

permtest(x, group = as.list(colnames(x$data$pp)), nb = 1000L, p_adjust = "BH", progress_bar = FALSE)

Arguments

x

lassie S3 object.

group

list of column names specifying which columns should be permuted together. This is useful for the multivariate case, for example, when there is many dependent variables and one independent variable. By default, permutes all columns separately.
plot.lassie

nb number of resampling iterations.

p_adjust multiple testing correction method. (see p.adjust.methods for a list of methods).

progress_bar logical specifying if progress bar should be displayed.

Value

permtest returns an S3 object of class lassie and permtest. Adds the following to the lassie object x:

• global_p: global association p-value.
• local_p: array of local association p-values.
• global_perm: numeric global association values obtained with permutations.
• local_perm: matrix local association values obtained with permutations. Column number correspond to positions in local association array after converting to numeric (e.g. local_perm[,1] corresponds to local[1]).
• perm_params: parameters used when calling permtest (nb and p_adjust).

See Also

lassie

Examples

Calling lassie on cars dataset
las <- lassie(cars)

Permutation test using default settings
permtest(las, nb = 30) # keep resampling low for example

plot.lassie
Plot a lassie object

Description

Plots a lassie object as a tile plot using the ggplot2 package. Only available for bivariate association.
Usage

```r
## S3 method for class 'lassie'
plot(
  x,
  what_x = "local",
  digits = 3,
  low = "blue",
  mid = "white",
  high = "red",
  na = "purple",
  text_colour = "black",
  text_size,
  limits,
  midpoint,
  ...
)
```

Arguments

- **x**
 lassie S3 object.
- **what_x**
 vector specifying values to be returned:
 - 'local': local association measure values (default).
 - 'obs': observed probabilities.
 - 'exp': expected probabilities.
 - 'local_p': p-value of local association (after running `permtest`).
- **digits**
 integer indicating the number of decimal places.
- **low**
 colour for low end of the gradient.
- **mid**
 colour for midpoint of the gradient.
- **high**
 colour for high end of the gradient.
- **na**
 colour for NA values.
- **text_colour**
 colour of text inside cells.
- **text_size**
 integer indicating text size inside cells.
- **limits**
 limits of gradient.
- **midpoint**
 midpoint of gradient.
- **...**
 other arguments passed on to methods. Not currently used.

See Also

- `lassie`
Description

Subroutine called by `lassie`. Discretizes, subsets and remove missing data from a data.frame.

Usage

```r
preprocess(x, select, continuous, breaks, default_breaks = 4)
```

Arguments

- `x`: data.frame or matrix.
- `select`: optional vector of column numbers or column names specifying a subset of data to be used. By default, uses all columns.
- `continuous`: optional vector of column numbers or column names specifying continuous variables that should be discretized. By default, assumes that every variable is categorical.
- `breaks`: numeric vector or list passed on to `cut` to discretize continuous variables. When a numeric vector is specified, break points are applied to all continuous variables. In order to specify variable-specific breaks, lists are used. List names identify variables and list values identify breaks. List names are column names (not numbers). If a continuous variable has no specified breaks, then `default_breaks` will be applied.
- `default_breaks`: default break points for discretizations. Same syntax as in `cut`.

Value

List containing the following values:

- `raw`: raw subsetted data.frame
- `pp`: discretized, subsetted and complete data.frame
- `select`
- `continuous`
- `breaks`
- `default_breaks`

Examples

```r
# This is what happens behind the curtains in the 'lassie' function
# Here we compute the association between the 'Girth' and 'Height' variables
# of the 'trees' dataset

# 'select' and 'continuous' take column numbers or names
```
select <- c('Girth', 'Height') # select subset of trees
continuous <- c(1, 2) # both 'Girth' and 'Height' are continuous

equal-width discretization with 3 bins
breaks <- 3

Preprocess data: subset, discretize and remove missing data
pre <- preprocess(trees, select, continuous, breaks)

Estimates marginal and multivariate probabilities from preprocessed data.frame
prob <- estimate_prob(pre$pp)

Computes local and global association using Ducher's Z
lam <- local_association(prob, measure = 'z')

print.lassie <print.lassie>

Print a lassie object

Description
Print a lassie object as an array or a data.frame.

Usage
S3 method for class 'lassie'
print(x, type, what_x, range, what_range, what_sort, decreasing, na.rm, ...)

Arguments

x lassie S3 object.
type print style: 'array' for array or 'df' for data.frame.
what_x vector specifying values to be returned:
 • 'local': local association measure values (default).
 • 'obs': observed probabilities.
 • 'exp': expected probabilities.
 • 'local_p': p-value of local association (after running permtest).
range range of values to be retained (vector of two numeric values).
what_range character specifying what value range refers to (same options as what_x). By
default, takes the first value in what_x.
what_sort character specifying according to which values should x be sorted (same options
as what_x). By default, takes the first value in what_x.
decreasing logical value specifying sort order.
na.rm logical value indicating whether NA values should be stripped.
... other arguments passed on to methods. Not currently used.

See Also
lassie, permtest
subgroups

Local Association Subgroup Analysis

Description

Identifies if the local association between variables (named associated variables) is dependent on the value of another variable (named interacting variable). Associated variables are specified by las. Interacting variable(s) values are specified by x.

Usage

```r
subgroups(
  las,  
  x,  
  select,  
  continuous,  
  breaks,  
  default_breaks = 4,  
  thresholds = c(-0.05, 0.05),  
  significance,  
  alpha = 0.01  
)
```

Arguments

- `las`
 `lassie` S3 object. Corresponds to associated variables.

- `x`
 data.frame or matrix. Corresponds to interacting variable(s) specified by select.

- `select`
 optional vector of column numbers or column names specifying a subset of data to be used. By default, uses all colnames in x except those in las object.

- `continuous`
 optional vector of column numbers or column names specifying continuous variables that should be discretized. By default, assumes that every variable is categorical.

- `breaks`
 numeric vector or list passed on to `cut` to discretize continuous variables. When a numeric vector is specified, break points are applied to all continuous variables. In order to specify variable-specific breaks, lists are used. List names identify variables and list values identify breaks. List names are column names (not numbers). If a continuous variable has no specified breaks, then default_breaks will be applied.

- `default_breaks`
 default break points for discretizations. Same syntax as in `cut`.

- `thresholds`
 vector specifying respectively the negative and the positive association threshold. Local association values between these thresholds are considered independent. Values not contained in this range are classified as independent.

- `significance`
 optional logical value specifying if only non-significant local association values should be considered as independent. Only available if las is also a `permtest` object.
subgroups

alpha alpha error level. Local association with p-values above this value are considered as independent. Only available if las is also a permtest object.

Details

Associated variables events are recoded into a subgroup variable according to local association values (and eventually significance) into 'positive', 'negative' and 'independent'. This is specified by the thresholds, significance and alpha arguments. The local (and global) association between the new subgroup variable and the interacting variable is then estimated using lassie.

Value

An instance of S3 class lassie.

See Also

Significance can be accessed using a permutation test: permtest.

Examples

In this example, we will use the zebu 'trial' dataset.
See vignette example for more detailed explanation

'trial' corresponds to a simulated clinical trial where patient recovery
is dependent on drug intake ('drug') and resistance status ('resistance').
Patient recovery is monitored by a biomarker (continuous variable from 0 to 1)
Patients with post-treatment biomarker ('postbiom') above 0.7 is have recovered.

Load 'trial' dataset
data(trial)

Compute the association between drug intake and patient recovery
las <- lassie(trial,
 select = c("drug", "postbiom"),
 continuous = c("postbiom"),
 breaks = c(0, 0.7, 1))

Permutation test
Access significance of global and local association
las <- permtest(las)

Global association between drug intake and recovery but not for all patients
Being in the drug group is locally independent of having not recovered
print(las)

Local association subgroup analysis
sub <- subgroups(las, trial, select = "resistance", alpha = 0.01)

Variable 'resistance' explains differences between sensitive and resistance patients
print(sub)
trial

Description

Simulated clinical trial where patient recovery is dependent on drug intake and resistance status.

Usage

`trial`

Format

A data frame with 100 rows and 3 variables:

- **drug**: binary variable (placebo, drug), did patient receive drug
- **resistance**: binary variable (sensitive, resistant), is patient resistance to drug
- **prebiom**: continuous variable between 0 and 1, biomarker that represents health status of patient before treatment; healthy patients have values around 0.6
- **postbiom**: continuous variable between 0 and 1, biomarker that represents health status of patient after treatment; healthy patients have values above 0.6

write.lassie

Write a lassie object

Description

Writes `lassie` object to a file in a table structured format.

Usage

```r
code
```
Arguments

x lassie S3 object.

file character string naming a file.

sep the field separator string. Values within each row of x are separated by this string.

dec the string to use for decimal points in numeric or complex columns: must be a single character.

col.names either a logical value indicating whether the column names of x are to be written along with x, or a character vector of column names to be written. See the section on 'CSV files' for the meaning of col.names = NA.

row.names either a logical value indicating whether the row names of x are to be written along with x, or a character vector of row names to be written.

quote a logical value (TRUE or FALSE) or a numeric vector. If TRUE, any character or factor columns will be surrounded by double quotes. If a numeric vector, its elements are taken as the indices of columns to quote. In both cases, row and column names are quoted if they are written. If FALSE, nothing is quoted.

... other arguments passed on to write.table.

See Also

lassie, permtest

Description

The zebu package implements the estimation of local (and global) association measures: Ducher’s Z, pointwise mutual information and normalized pointwise mutual information. The significance of local (and global) association is accessed using p-values estimated by permutations. Finally, using local association subgroup analysis, it identifies if the association between variables is dependent on the value of another variable.

Functions

lassie estimates local (and global) association measures: Ducher’s Z, pointwise mutual information and normalized pointwise mutual information.

permtest accesses the significance of local (and global) association values using p-values estimated by permutations.

subgroups identifies if the association between variables is dependent on the value of another variable.
Index

* datasets
 trial, 15
 chisq (local_association), 7
 class, 4, 9, 14
 cut, 4, 11, 13
 duchers_z (local_association), 7
 estimate_prob, 2, 4, 7
 format.lassie, 3
 lassie, 3, 4, 6–16
 lassie_get, 6
 local_association, 4, 7
 npmi (local_association), 7
 p.adjust.methods, 9
 permtest, 3, 5, 6, 8, 9, 10, 12–14, 16
 plot.lassie, 5, 9
 pmi (local_association), 7
 preprocess, 4, 11
 print.lassie, 3, 5, 12
 subgroups, 5, 13, 16
 trial, 15
 write.lassie, 3, 5, 15
 zebu, 16