Package ‘xpose’

February 1, 2024

Type Package
Title Diagnostics for Pharmacometric Models
Version 0.4.18
Description Diagnostics for non-linear mixed-effects (population)
'xpose' facilitates data import, creation of numerical run summary
and provide 'ggplot2'-based graphics for data exploration and model
diagnostics.

Depends R (>= 3.5.0), ggplot2 (>= 3.1.0)
Imports dplyr (>= 0.8.0), ggforce (>= 0.2.0), grDevices, purrr (>=
0.3.0), readr (>= 2.1.0), rlang (>= 0.3.0), stringr (>= 1.4.0),
tibble (>= 2.1.0), tidyr (>= 0.8.0), utils, stats, vpc (>=
1.1.0)

Suggests here, gridExtra, markdown, knitr, testthat, plotly, webshot,
mvtnorm
License LGPL-3
URL https://uupharmacometrics.github.io/xpose/,
https://github.com/UUPharmacometrics/xpose/

BugReports https://github.com/UUPharmacometrics/xpose/issues/
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 7.3.1
NeedsCompilation no

Author Benjamin Guiastrennec [aut, cre, cph],
Andrew C. Hooker [aut, cph],
Sebastian Ueckert [aut, cph],
Mike K. Smith [ctb],
Mats O. Karlsson [aut, cph]

Maintainer Benjamin Guiastrennec <guiastrennec@gmail.com>
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>amt_vs_idv .. 3</td>
</tr>
<tr>
<td>data_opt ... 5</td>
</tr>
<tr>
<td>distrib_plot 6</td>
</tr>
<tr>
<td>dv_vs_pred 9</td>
</tr>
<tr>
<td>get_code .. 12</td>
</tr>
<tr>
<td>get_data .. 12</td>
</tr>
<tr>
<td>get_file .. 13</td>
</tr>
<tr>
<td>get_prm ... 14</td>
</tr>
<tr>
<td>get_special 16</td>
</tr>
<tr>
<td>get_summary 16</td>
</tr>
<tr>
<td>gg_themes ... 17</td>
</tr>
<tr>
<td>ind_plots ... 18</td>
</tr>
<tr>
<td>irep .. 20</td>
</tr>
<tr>
<td>list_nm_tables 21</td>
</tr>
<tr>
<td>list_vars ... 21</td>
</tr>
<tr>
<td>list_xpdb ... 22</td>
</tr>
<tr>
<td>manual_nm_import 23</td>
</tr>
<tr>
<td>minimization_plots 24</td>
</tr>
<tr>
<td>modify_xpdb 26</td>
</tr>
<tr>
<td>pred_vs_idv 27</td>
</tr>
<tr>
<td>print.xpose_data 31</td>
</tr>
<tr>
<td>print.xpose_plot 31</td>
</tr>
<tr>
<td>prm_table ... 32</td>
</tr>
<tr>
<td>qq_plot ... 33</td>
</tr>
<tr>
<td>read_nm_files 36</td>
</tr>
<tr>
<td>read_nm_model 37</td>
</tr>
<tr>
<td>read_nm_tables 39</td>
</tr>
<tr>
<td>res_vs_idv .. 41</td>
</tr>
<tr>
<td>res_vs_pred 43</td>
</tr>
<tr>
<td>set_vars .. 46</td>
</tr>
<tr>
<td>subset_xpdb 47</td>
</tr>
<tr>
<td>summarise_xpdb 48</td>
</tr>
<tr>
<td>summary.xpose_data 49</td>
</tr>
<tr>
<td>template_titles 50</td>
</tr>
<tr>
<td>update_themes 52</td>
</tr>
<tr>
<td>vpc ... 52</td>
</tr>
<tr>
<td>vpc_data ... 55</td>
</tr>
<tr>
<td>vpc_opt ... 56</td>
</tr>
<tr>
<td>xpdb_ex_pk .. 58</td>
</tr>
<tr>
<td>xplot_distrib 58</td>
</tr>
<tr>
<td>xplot_qq .. 60</td>
</tr>
<tr>
<td>xplot_scatter 63</td>
</tr>
</tbody>
</table>
amt_vs_idv

Description

Plot of the change in compartment amounts over the independent variable

Usage

```
amt_vs_idv(
  xpdb,
  mapping = NULL,
  group = "ID",
  drop_fixed = TRUE,
  type = "l",
  title = "Compartments amount vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  facets,
  .problem,
  quiet,
  ...
)
```

Arguments

- **xpdb**: An xpose database object.
- **mapping**: List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- **group**: Grouping variable to be used for lines.
- **drop_fixed**: Should columns that only have a single unique value (i.e. fixed) be dropped.
- **type**: String setting the type of plot to be used. Can be points ’p’, line ’l’, smooth ’s’ and text ’t’ or any combination of the four.
- **title**: Plot title. Use NULL to remove.
- **subtitle**: Plot subtitle. Use NULL to remove.
- **caption**: Page caption. Use NULL to remove.
- **tag**: Plot identification tag. Use NULL to remove.
- **log**: String assigning logarithmic scale to axes, can be either ”, ’x’, y’ or ’xy’.
facets Either a character string to use `facet_wrap_paginate` or a formula to use `facet_grid_paginate`.

.problem The problem number to be used. By default returns the last estimation problem.

.quiet Logical, if FALSE messages are printed to the console.

... Any additional aesthetics to be passed on `xplot_scatter`.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to `geom_point`
- line: options to `geom_line`
- guide: options to `geom_abline`
- smooth: options to `geom_smooth`
- text: options to `geom_text`
- xscale: options to `scale_x_continuous` or `scale_x_log10`
- yscale: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or `facet_grid_paginate` when facets is a formula (e.g. facets = SEX~MED1). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`.

When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX', 'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under `template_titles`.
data_opt

See Also

xplot_scatter

Examples

amt_vs_idv(xpdb_ex_pk, nrow = 2, ncol = 1)

data_opt Create options for data import

Description

Provide a list of options to the general plotting functions such as xplot_scatter in order to create appropriate data input for ggplot2.

Usage

data_opt(
 .problem = NULL,
 .subprob = NULL,
 .method = NULL,
 .source = "data",
 simtab = FALSE,
 filter = NULL,
 tidy = FALSE,
 index_col = NULL,
 value_col = NULL,
 post_processing = NULL
)

Arguments

.probem The problem to be used, by default returns the last one.
.subprob The subproblem to be used, by default returns the last one.
.method The estimation method to be used, by default returns the last one.
.source Define the location of the data in the xpdb. Should be either 'data' to use the output tables or the name of an output file attached to the xpdb.
.simtab Only used when 'data' is defined as the source and .problem is default. Should the data be coming from an estimation or a simulation table.
.filter A function used to filter the data e.g. filter = function(x) x[x$TIME > 20,] where x is the data.
tidy Logical, whether the data should be transformed to tidy data.
.index_col Only used when 'tidy' is defined a TRUE and value_col is NULL. Column names to use as index when tidying the data.
distrib_plot

value_col

Only used when 'tidy' is defined a TRUE and index_col is NULL. Column names to be stacked when tidying the data.

post_processing

A function used to modify the data after it has been tidied up e.g. post_processing = function(x) dplyr::mutate(.data = x, variable = as.factor(.variable)) where x is the tidy data.

See Also

xplot_distrib xplot_qq xplot_scatter

Examples

data_opt(.problem = 1, .source = 'data', simtab = TRUE)

distrib_plot Distribution plots of ETA and parameters

Description

Histograms and density plots of the ETA and parameter values.

Usage

prm_distrib(
xpdb,
mapping = NULL,
drop_fixed = TRUE,
type = "hr",
title = "Parameter distribution | @run",
subtitle = "Based on @nind individuals",
caption = "@dir",
tag = NULL,
log = NULL,
guide = FALSE,
facets,
.proBLEM,
quiet,
...
)

eta_distrib(
xpdb,
mapping = NULL,
drop_fixed = TRUE,
type = "hr",

Arguments

xpdb: An xpose database object.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is
layer_option where layer is one of the names defined in the list below and option is any option
supported by this layer e.g. histogram_fill = 'blue', rug_sides = 'b', etc.

- histogram: options to geom_histogram
- density: options to geom_density
- rug: options to geom_rug
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the
functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1).
All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate
functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins
= TRUE, labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets =
'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk,
xp_theme = list(facets = 'SEX'))). In the latter example all plots generate from this xpdb will
automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. eta_distrib().
When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX',
'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument
in xp_theme variable is automatically added whenever needed.
Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables starting with a `@` (e.g. `@ofv`) which will be replaced by their actual value when rendering the plot. For example `@run, @nobs observations in @nind subjects` would become `run001, 1022 observations in 74 subjects`. The available key variables are listed under `template_titles`.

See Also

`xplot_distrib`

Examples

```r
# Histogram of parameters
prm_distrib(xpdb_ex_pk, type = 'h')

# Density plot of etas with a rug
eta_distrib(xpdb_ex_pk, type = 'dr')

# Histogram of different residuals
res_distrib(xpdb_ex_pk, type = 'hr', res = c('IWRES', 'CWRES'))

# Density plot of continuous covariates
cov_distrib(xpdb_ex_pk, type = 'd')
```

dv_vs_pred

Observations plotted against model predictions

Description

Plot of observations (DV) vs population predictions (PRED), individual predictions (IPRED) or conditional population predictions (CPRED).

Usage

```r
dv_vs_ipred(
  xpdb,
  mapping = NULL,
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
)```
dv_vs_pred(
  xpdb,
  mapping = NULL,
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet,
  ...
)

Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either ', 'x', y' or 'xy'.
guide Enable guide display (e.g. unity line).
facets Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.


- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

**Faceting**

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1). All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. eta_distrib(). When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX', 'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.

**Template titles**

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.

**See Also**

xplot_scatter

**Examples**

dv_vs_pred(xpdb_ex_pk)
dv_vs_ipred(xpdb_ex_pk)
get_code

Access model code

Description
Access model code from an xpdb object.

Usage
get_code(xpdb, .problem = NULL)

Arguments
xpdb An xpose_data object from which the model code will be extracted.
.problem The problem to be used, in addition, problem 0 is attributed to general output (e.g. NM-TRAN warnings in NONMEM). By default returns the entire code.

Value
A tibble of the parsed model.

See Also
xpose_data, read_nm_model

Examples
parsed_model <- get_code(xpdb_ex_pk)
parsed_model

get_data

Access model output table data

Description
Access model output table data from an xpdb object.

Usage
get_data(xpdb, table = NULL, .problem = NULL, quiet)
get_file

Access model output file data

Description

Access model output file data from an xpdb object.

Usage

get_file(
  xpdb,
  file = NULL,
  ext = NULL,
  .problem = NULL,
  .subprob = NULL,

Arguments

xpdb An xpose_data object from which the model output file data will be extracted.
table Name of the output table to be extracted from the xpdb e.g. 'sdtab001'. Alternative to the '.problem' argument.
.problem Accesses all tables from the specified problem. Alternative to the 'table' argument.
quiet Logical, if FALSE messages are printed to the console.

Value

By default returns data from the last estimation problem. If only simulation problems are present then the data from last simulation will be returned instead. Object returned as tibble for single tables/problems or a named list for multiple tables/problems.

See Also

list_data, xpose_data, read_nm_tables

Examples

# By table name
sdtab <- get_data(xpdb_ex_pk, 'sdtab001')
sdtab

# By problem
tables <- get_data(xpdb_ex_pk, .problem = 1)
tables

# Tip to list available tables in the xpdb
print(xpdb_ex_pk)
get prm

Arguments
xpdb An xpose_data object from which the model output file data will be extracted.
file Full name of the file to be extracted from the xpdb e.g. 'run001.phi'. Alternative to the 'ext' argument.
ext Extension of the file to be extracted from the xpdb e.g. 'phi'. Alternative to the 'file' argument.
.problem The problem to be used, by default returns the last one for each file.
.subprob The subproblem to be used, by default returns the last one for each file.
.method The estimation method to be used (e.g. 'foce', 'imp', 'saem'), by default returns the last one for each file.
.quiet Logical, if FALSE messages are printed to the console.

Value
A tibble for single file or a named list for multiple files.

See Also
list_files, xpose_data, read_nm_files

Examples
# Single file (returns a tibble)
ext_file <- get_file(xpdb_ex_pk, file = 'run001.ext')
ext_file

# Multiple files (returns a list)
files <- get_file(xpdb_ex_pk, file = c('run001.ext', 'run001.phi'))
files

# Tip to list available files in the xpdb
print(xpdb_ex_pk)

get prm Access model parameters

Description
Access model parameter estimates from an xpdb object.
**get_prm**

**Usage**

```r
get_prm(
 xpdb,
 .problem = NULL,
 .subprob = NULL,
 .method = NULL,
 digits = 4,
 transform = TRUE,
 show_all = FALSE,
 quiet
)
```

**Arguments**

- **xpdb**
  An `xpose_data` object from which the model output file data will be extracted.

- **.problem**
  The problem to be used, by default returns the last one for each file.

- **.subprob**
  The subproblem to be used, by default returns the last one for each file.

- **.method**
  The estimation method to be used, by default returns the last one for each file.

- **digits**
  The number of significant digits to be displayed.

- **transform**
  Should diagonal OMEGA and SIGMA elements be transformed to standard deviation and off diagonal elements be transformed to correlations.

- **show_all**
  Logical, whether the 0 fixed off-diagonal elements should be removed from the output.

- **quiet**
  Logical, if FALSE messages are printed to the console.

**Value**

A tibble for single problem/subprob or a named list for multiple problem/subprob.

**See Also**

`prm_table`

**Examples**

```r
Store the parameter table
prm <- get_prm(xpdb_ex_pk, .problem = 1)

Display parameters to the console
prm_table(xpdb_ex_pk, .problem = 1)
```
get_special

Description
Access special model data from an xpdb object.

Usage
get_special(xpdb, .problem = NULL, quiet)

Arguments
- xpdb: An xpose_data object from which the special data will be extracted.
- .problem: The problem to be used, by default returns the last one.
- quiet: Logical, if FALSE messages are printed to the console.

Value
A list.

See Also
list_special, xpose_data

Examples
special <- get_summary(xpdb_ex_pk)
special

get_summary

Description
Access model summary data from an xpdb object.

Usage
get_summary(xpdb, .problem = NULL, .subprob = NULL, only_last = FALSE)
Arguments

- **xpdb**
  An xpose_data object from which the summary data will be extracted.
- **.problem**
  The .problem to be used, by default returns the last one for each label.
- **.subprob**
  The subproblem to be used, by default returns the last one for each label.
- **only_last**
  Logical, if TRUE only the last record for each label is returned in case of multiple problem and/or subproblem. If FALSE all values are returned.

Value

A tibble of model summary.

See Also

- xpose_data, template_titles, summary.xpose_data

Examples

```r
run_summary <- get_summary(xpdb_ex_pk)
run_summary
```

---

**gg_themes**

An additional set of themes for ggplot2

Description

An additional set of complete ggplot2 themes intended to make ggplot2 more readable when used in presentation or publications. These themes also bring the `legend_position` option without having to call the ggplot2 `theme()` function to modify a complete theme.

- **theme_bw2**: Black and white theme inspired by a theme from Gunnar Yngman.
- **theme_readable**: Light grey theme, with dimmed background and grid lines intended to bring the focus on the data.

Usage

```r
theme_bw2(base_size = 11, base_family = "", legend_position = "right")
theme_readable(base_size = 11, base_family = "", legend_position = "right")
```

Arguments

- **base_size**
  Base font size.
- **base_family**
  Base font family.
- **legend_position**
  The position of legends defined as 'none', 'left', 'right', 'bottom', 'top', or a two-element numeric vector.
Examples

# With the gg_theme theme_readable() (default)
dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')

# With the gg_theme theme_bw2()
xpdb_ex_pk %>%
  update_themes(gg_theme = theme_bw2()) %>%
dv_vs_ipred(facets = 'SEX')

ind_plots

Observations, individual predictions and population predictions plotted against the independent variable for every individual

Description

Observations (DV), individual predictions (IPRED) and population predictions (PRED) plotted against the independent variable for every individual

Usage

ind_plots(
  xpdb,
  mapping = NULL,
  group = "variable",
  type = "lp",
  title = "Individual plots | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir | Page @page of @lastpage",
  tag = NULL,
  log = NULL,
  facets,
  .problem,
  quiet,
  color = c("grey60", "deepskyblue4", "deepskyblue3"),
  point_alpha = c(0.8, 0, 0),
  line_linetype = c("blank", "solid", "55"),
  ...
)

Arguments

- **xpdb**: An xpose database object.
- **mapping**: List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
- **group**: Grouping variable to be used for lines.
- **type**: String setting the type of plot to be used. Can be points ‘p’, line ‘l’, smooth ‘s’ and text ‘t’ or any combination of the four.
title  Plot title. Use NULL to remove.
subtitle  Plot subtitle. Use NULL to remove.
caption  Page caption. Use NULL to remove.
tag  Plot identification tag. Use NULL to remove.
log  String assigning logarithmic scale to axes, can be either ‘x’, y’ or ‘xy’.
facets  Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem  The $problem number to be used. By default returns the last estimation problem.
quiet  Logical, if FALSE messages are printed to the console.
color  Changes the **lines, points and text** color. Should be a vector of 3 values (i.e. DV, IPRED, PRED). This color argument is a special case in xpose as it applies to three different layers (geom_line, geom_point and geom_text). This special case is due to the fact that in ggplot2 it is not possible to have two different color scales for different layers.
point_alpha  Points alpha, should be a vector of 3 values (i.e. DV, IPRED, PRED).
line_linetype  Lines linetype, should be a vector of 3 values (i.e. DV, IPRED, PRED).
...  Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = ‘blue’, smooth_method = ‘lm’, etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c(‘SEX’, ‘MED1’)) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1). All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX*MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = ‘label_both’).

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets = ‘SEX’)) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = ‘SEX’))). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’. 
By default, some plot functions use a custom stratifying variable named 'variable', e.g. `eta_distrib()`. When using the `facets` argument, 'variable' needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

**Template titles**

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '%@run, @nobs observations in @nind subjects%' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under `template_titles`.

**See Also**

`xplot_scatter`

**Examples**

```r
Not run:
Basic example
ind_plots(xpdb_ex_pk, page = 1,
 ncol = 2, nrow = 2)

End(Not run)
```

---

**irep**  
*Add simulation counter*

**Description**

Add a column containing a simulation counter (irep). A new simulation is counted everytime a value in x is lower than its previous value.

**Usage**

`irep(x, quiet = FALSE)`

**Arguments**

- `x`  
The column to be used for computing simulation number, usually the ID column.
- `quiet`  
Logical, if FALSE messages are printed to the console.

**Examples**

```r
xpdb_ex_pk_2 <- xpdb_ex_pk %>%
 mutate(sim_id = irep(ID), .problem = 2)
```
**list_nm_tables**

List NONMEM output tables

---

**Description**

List NONMEM output tables file names from a nm_model object.

**Usage**

```
list_nm_tables(nm_model = NULL)
```

**Arguments**

- `nm_model` An xpose nm_model object generated with `read_nm_model`.

**See Also**

- `read_nm_model`, `read_nm_tables`

**Examples**

```r
Not run:
read_nm_model(file = "run001.lst") %>%
 list_nm_tables()
End(Not run)
```

---

**list_vars**

List available variables

---

**Description**

Function listing all available variables in an xpdb object.

**Usage**

```
list_vars(xpdb, .problem = NULL)
```

**Arguments**

- `xpdb` An xpose_data object from which the model code will be extracted.
- `.problem` The problem to be used, by lists all available problems.

**See Also**

- `set_var_types`
list_xpdb

Examples

list_vars(xpdb_ex_pk)

---

list_xpdb  
List available datasets

Description

Function providing a detailed listing of all available datasets in an xpdb object.

Usage

list_data(xpdb)
list_files(xpdb)
list_special(xpdb)

Arguments

xpdb  
An xpose_data object to be evaluated

See Also

generate, generate_file, generate_special

Examples

# List output tables data
list_data(xpdb_ex_pk)

# List output files data
list_files(xpdb_ex_pk)

# List special data
xpdb_ex_pk %>%
vpc_data(quiet = TRUE) %>%
list_special()
**manual_nm_import**

*Manually define nonmem tables to be imported*

**Description**

Manually provide names of the table files to be imported by xpose_data.

**Usage**

```r
manual_nm_import(
 tab_names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab",
 "cwtab"),
 tab_suffix = "",
 sim_suffix = "sim"
)
```

**Arguments**

- **tab_names**: Provide the name of the tables to import e.g. 'sdtab', 'patab', 'cotab', 'catab' for NONMEM.
- **tab_suffix**: Default is '', but can be changed to any character string to be used as suffix in the table names.
- **sim_suffix**: Default is 'sim', but can be changed to any character string to be used as suffix in the simulation table names e.g. sdtab001sim.

**Details**

In order to be imported manually, table names must follow the following convention: `<tab_names><runno><tab/sim_suffix>`, e.g. sdtab001sim. When the argument ‘file’ is used in xpose_data, the `<runno>` part is guessed by taking the portion of the string starting by any digit and ending at the file extension e.g. file = run001a.mod will guess <runno> as ‘001a’. If no valid <runno> can be guessed, xpose will return an error. In this case it is advised to use the xpose_data argument ‘runno’ directly rather than ‘file’ hence preventing xpose from having to guess <runno>.

Note that with manual table import xpose still reads in the NONMEM model file in order to generate the run summary.

**See Also**

xpose_data

**Examples**

```r
Not run:
Import all names specified by default as in xpose4
xpose_data(runno = '001', manual_import = manual_nm_import())

Import a specific table name
```
minimization_plots
Parameter value or gradient vs. iterations

Description
Change of parameter value or gradient vs. iterations.

Usage
prm_vs_iteration(
  xpdb,
  mapping = NULL,
  group = "variable",
  type = "l",
  title = "Parameter \( y \) vs. \( x \) | \( \text{run} \),
  subtitle = "Method: @method, minimization time: @runtime\nTermination message: @term",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = FALSE,
  facets,
  .problem,
  .subprob,
  .method,
  quiet,
  ...
)

grd_vs_iteration(
  xpdb,
  mapping = NULL,
  group = "variable",
  type = "l",
  title = "Gradient \( y \) vs. \( x \) | \( \text{run} \),
  subtitle = "Method: @method, minimization time: @runtime\nTermination message: @term",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = FALSE,
  facets,
  .problem,
  .subprob,
  .method,
Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either ', 'x', y' or 'xy'.
guide Enable guide display (e.g. unity line).
facets Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
.subprob The sub-problem number to be used. By default returns the last sub-problem associated with the selected problem.
.method The estimation method to be used, by default returns the last one for each file
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10
Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the facets argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter`

Examples

```r
prm_vs_iteration(xpdb_ex_pk)
grd_vs_iteration(xpdb_ex_pk)
```

modify_xpdb

Add, remove or rename variables in an xpdb

Description

`mutate()` adds new variables and preserves existing ones. `select()` keeps only the listed variables; `rename()` keeps all variables.
Usage

```r
S3 method for class 'xpose_data'
mutate(.data, ..., .problem, .source, .where)

S3 method for class 'xpose_data'
select(.data, ..., .problem, .source, .where)

S3 method for class 'xpose_data'
ename(.data, ..., .problem, .source, .where)
```

Arguments

- `.data` An xpose database object.
- `...` Name-value pairs of expressions. Use `NULL` to drop a variable. These arguments are automatically quoted and evaluated in the context of the data frame. They support unquoting and splicing. See the dplyr vignette("programming") for an introduction to these concepts.
- `.problem` The problem from which the data will be modified
- `.source` The source of the data in the xpdb. Can either be `data` or an output file extension e.g. `phi`.
- `.where` A vector of element names to be edited in special (e.g. `.where = c('vpc_dat', 'aggr_obs')` with vpc).

Examples

```r
Mutate columns
xpdb_ex_pk %>%
 mutate(lnDV = log(DV),
 sim_count = irep(ID),
 .problem = 1) %>%
dv_vs_idv(aes(y = lnDV))

Rename/select columns
xpdb_ex_pk %>%
 select(ID:TAD, DV, EVID) %>%
 rename(TSLD = TAD) %>%
dv_vs_idv(aes(x = TSLD))
```

Description

Plot of observations (DV), individual model predictions (IPRED) and/or population predictions (PRED) plotted against the independent variable (IDV).
Usage

dv_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    facets,
    .problem,
    quiet,
    ...
)

ipred_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    facets,
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    .problem,
    quiet,
    ...
)

pred_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    facets,
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    .problem,
    quiet,
    ...
)
dv_preds_vs_idv(
  xpdb,
  mapping = NULL,
  group = "ID",
  type = "pls",
  facets,
  title = "Observations, Individual and Population Predictions vs. @x | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  .problem,
  quiet,
  ...
)

Arguments

xpdb
An xpose database object.

mapping
List of aesthetics mappings to be used for the xpose plot (e.g. point_color).

group
Grouping variable to be used for lines.

type
String setting the type of plot to be used. Can be points ‘p’, line ‘l’, smooth ‘s’ and text ‘t’ or any combination of the four.

title
Plot title. Use NULL to remove.

subtitle
Plot subtitle. Use NULL to remove.

caption
Page caption. Use NULL to remove.

tag
Plot identification tag. Use NULL to remove.

log
String assigning logarithmic scale to axes, can be either ‘x’, ‘y’ or ‘xy’.

facets
Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.

.problem
The $problem number to be used. By default returns the last estimation problem.

quiet
Logical, if FALSE messages are printed to the console.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
• text: options to `geom_text`
• xscale: options to `scale_x_continuous` or `scale_x_log10`
• yscale: options to `scale_y_continuous` or `scale_y_log10`

**Faceting**

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named 'variable', e.g. `eta_distrib()`. When using the facets argument, 'variable' needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.

**Template titles**

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under `template_titles`.

**See Also**

`xplot_scatter`

**Examples**

```r
dv_vs_idv(xpdb_ex_pk)
ipred_vs_idv(xpdb_ex_pk)
pred_vs_idv(xpdb_ex_pk)
dv_preds_vs_idv(xpdb_ex_pk)
```
**print.xpose_data**

*Print an xpose_data object*

**Description**

This function returns to the console a list of the files and options attached to an `xpose_data` object.

**Usage**

```r
S3 method for class 'xpose_data'
print(x, ...
```

**Arguments**

- `x` : An `xpose_data` object generated with `xpose_data`.
- `...` : Ignored in this function

**Examples**

# Using the print function

```r
print(xpdb_ex_pk)
```

# Or simply by writing the xpdb name

```r
xpdb_ex_pk
```

---

**print.xpose_plot**

*Draw an xpose_plot object*

**Description**

This function explicitly draw an `xpose_plot` and interprets keywords contained in labels.

**Usage**

```r
S3 method for class 'xpose_plot'
print(x, page, ...
```

**Arguments**

- `x` : An `xpose_plot` object.
- `page` : The page number to be drawn. Can be specified as vector or range of integer values.
- `...` : Options to be passed on to the ggplot2 print method.
Examples

```r
my_plot <- dv_vs_ipred(xpdb_ex_pk) +
 labs(title = 'A label with keywords: @nind individuals & @nobs observations')
Using the print function
print(my_plot)

Or simply by writting the plot object name
my_plot
```

### prm_table

Display a parameter estimates to the console

**Description**

Display parameter estimates from an xpdb object to the console.

**Usage**

```r
prm_table(
 xpdb,
 .problem = NULL,
 .subprob = NULL,
 .method = NULL,
 digits = 4,
 transform = TRUE,
 show_all = FALSE
)
```

**Arguments**

- `xpdb`: An `xpose_data` object from which the model output file data will be extracted.
- `problem`: The problem to be used, by default returns the last one for each file.
- `subprob`: The subproblem to be used, by default returns the last one for each file.
- `method`: The estimation method to be used, by default returns the last one for each file.
- `digits`: The number of significant digits to be displayed.
- `transform`: Should diagonal OMEGA and SIGMA elements be transformed to standard deviation and off diagonal elements be transformed to correlations.
- `show_all`: Logical, whether the 0 fixed off-diagonal elements should be removed from the output.

**See Also**

- `get_prm`,
- `get_prm_dir`,
- `get_prm_all`
### Examples

```r
Not run:
Store the parameter table
prm <- getprm(xpdb_ex_pk, .problem = 1)

Display parameters to the console
prm_table(xpdb_ex_pk, .problem = 1)

End(Not run)
```

---

**qq_plot**

**QQ plots of ETA and residuals**

**Description**

QQ plots of the ETA and model residuals.

**Usage**

```r
prm_qq(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "p",
 title = "QQ plot of parameters | @run",
 subtitle = "Based on @nind individuals",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets,
 .problem,
 quiet,
 ...
)
```

```r
eta_qq(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "p",
 title = "QQ plot of etas | @run",
 subtitle = "Based on @nind individuals, Eta shrink: @etashk",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets,
 .problem,
 quiet,
 ...
)
```
qq_plot

res_qq(
  xpdb,
  mapping = NULL,
  res = "CWRES",
  type = "p",
  title = "QQ plot of \@sample \| \@run",
  subtitle = "Based on \@nobs observations",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet,
...
)

cov_qq(
  xpdb,
  mapping = NULL,
  drop_fixed = TRUE,
  type = "p",
  title = "QQ plot of continuous covariates \| \@run",
  subtitle = "Based on \@nind individuals",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet,
...
)

Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to use for the xpose plot (e.g. point_color).
drop_fixed Should columns that only have a single unique value (i.e. fixed) be dropped.
type String setting the type of plot. Can only be points 'p'.
title Plot title. Use NULL to remove.
**qq_plot**

- **subtitle**: Plot subtitle. Use NULL to remove.
- **caption**: Page caption. Use NULL to remove.
- **tag**: Plot identification tag. Use NULL to remove.
- **log**: String assigning logarithmic scale to axes, can be either ", 'x', y' or 'xy'.
- **guide**: Should the guide (e.g. reference line) be displayed.
- **facets**: Either a character string to use `facet_wrap_paginate` or a formula to use `facet_grid_paginate`.
- **.problem**: The $problem number to be used. By default returns the last estimation problem.
- **quiet**: Logical, if FALSE messages are printed to the console.
- **...**: Any additional aesthetics to be passed on xplot_scatter.
- **res**: Only used for res_qq. Defines the type of residual to be used. Default is "CWRES".

### Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where layer is one of the names defined in the list below and option is any option supported by this layer e.g. `point_color = 'blue', etc`.

- `point`: options to `geom_point`
- `guide`: options to `geom_abline`
- `xscale`: options to `scale_x_continuous` or `scale_x_log10`
- `yscale`: options to `scale_y_continuous` or `scale_y_log10`

### Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX','MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`).

All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk,facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk,facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by 'SEX'.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the Facets argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.
Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.

See Also

xplot_distrib

Examples

# QQ plot of parameters
prm_qq(xpdb_ex_pk)

# QQ plot of eta
eta_qq(xpdb_ex_pk)

# QQ plot of residuals
res_qq(xpdb_ex_pk, res = c('IWRES', 'CWRES'))

# QQ plot of continuous covariates
cov_qq(xpdb_ex_pk)

read_nm_files  
NONMEM output file import function

Description

Quickly import NONMEM output files into R.

Usage

read_nm_files(
  runno = NULL,
  prefix = "run",
  ext = c(".ext", ".cor", ".cov", ".phi", ".grd", ".shk"),
  file = NULL,
  dir = NULL,
  quiet = FALSE
)
Arguments

runno  Run number to be evaluated.
prefix Prefix of the model file names.
ext  A vector of the file extension to import. By default '.ext', '.cor', '.cov', '.phi', '.grd', '.shk' files are listed.
file Names of the model output file to be imported. Alternative argument to prefix, runno and ext.
dir Location of the model files.
quiet Logical, if FALSE messages are printed to the console.

File path generation

The rules for model file names generation are as follow:

- with runno: the full path is generated as <dir>/<prefix><runno>.<ext> e.g. with dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst' the resulting path would be model/pk/run001.lst
- with file: the full path is generated as <dir>/<file> e.g. with dir = 'model/pk', file = 'run001.lst' the resulting path would also be model/pk/run001.lst. Note: in this case the file extension should be provided as part of the ‘file’ argument.

See Also

xpose_data, read_nm_tables

Examples

## Not run:
# Using the 'file' argument to import a model file:
ext_file <- read_nm_files(file = 'run001.ext', dir = 'models')

# Using the 'runno' argument to import a model file:
ext_file <- read_nm_files(runno = '001', ext = '.ext', dir = 'models')

## End(Not run)
**Usage**

```r
read_nm_model(
 runno = NULL,
 prefix = "run",
 ext = ".lst",
 file = NULL,
 dir = NULL,
 check_ext = TRUE
)
```

**Arguments**

- `runno` Run number to be used to generate model file name. Used in combination with `prefix` and `ext`.
- `prefix` Prefix to be used to generate model file name. Used in combination with `runno` and `ext`.
- `ext` Extension to be used to generate model file name. Should be one of `.lst` (default), `.out`, `.res`, `.mod` or `.ctl` for NONMEM.
- `file` Model file name (preferably a `.lst` file) containing the file extension. Alternative to `prefix`, `runno` and `ext` arguments.
- `dir` Location of the model files.
- `check_ext` Logical, if `TRUE` will provide an error message if the extension of the NONMEM input file is not one of `.lst`, `.out`, `.res`, `.mod` or `.ctl` for NONMEM. If `FALSE` any file extension can be used.

**Details**

A NONMEM model output file (i.e. `.lst`, `.out` or `.res`) should preferably be provided to `read_nm_model` to allow for a more extensive xpose summary. However in some cases these output files may not contain the model code, thus preventing xpose from identifying the associated output tables names. In such cases xpose will attempt to read the associated model file (i.e. `.mod` or `.ctl`) instead to find the model code. Note: it is important that between the naming convention between the NONMEM output and the model file remains consistent e.g. run001.lst should be associated with run001.mod.

**Value**

A **tibble** of class model containing the following columns:

- `problem`: a numeric identifier for the $PROBLEM associated with the code.
- `level`: a unique numeric identifier to each subroutine block associated with the code.
- `subroutine`: a character identifier named after the 3 first letters of the subroutine name e.g. `$THETA` and `STABLE` will become `the` and `tab` respectively. In addition all output from the .lst is labeled `lst`, the general nonmem output e.g. NM-TRAN messages are labelled `oth`. With priors thp, tpv, omp, opd, sip, spd abbreviations are given to the THETAP, THETAPV, OMEGAP, etc.
- `code`: the code without comments or subroutine names e.g. `$THETA 0.5 ; TVCL` will return `0.5`.
- `comment`: the last comment of a record e.g. `0.5 ; Clearance (L/h) ; TVCL` will return `TVCL`.

---

`read_nm_model`
**File path generation**

The rules for model file names generation are as follow:

- with runno: the full path is generated as `<dir>/<prefix><runno>.<ext>` e.g. with `dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst'` the resulting path would be `model/pk/run001.lst`
- with file: the full path is generated as `<dir>/<file>` e.g. with `dir = 'model/pk', file = 'run001.lst'` the resulting path would also be `model/pk/run001.lst`. Note: in this case the file extension should be provided as part of the ‘file’ argument.

**See Also**

- `xpose_data`, `read_nm_tables`

**Examples**

```r
Not run:
Using the 'file' argument to import a model file:
nm_model <- read_nm_model(file = 'run001.lst', dir = 'models')

Using the 'runno' argument to import a model file:
nm_model <- read_nm_model(runno = '001', ext = '.lst', dir = 'models')

End(Not run)
```

---

**Description**

Quickly import NONMEM output tables into R. This function automatically detects the optimal settings to import the tables from nonmem.

**Usage**

```r
read_nm_tables(
 file = NULL,
 dir = NULL,
 combined = TRUE,
 rm_duplicates = TRUE,
 quiet = FALSE,
 simtab = NULL,
 ziptab = TRUE,
 ...
)
```

read_nm_tables

Arguments

- **file**: A character vector of path to the files or a `nm_table_list` object created with `list_nm_tables`.
- **dir**: Location of the model files.
- **combined**: Logical value indicating whether multiple tables should be combined into a single one. If the number of rows does not match an error will be returned.
- **rm_duplicates**: Logical value indicating whether duplicated columns should be removed.
- **quiet**: Logical, if `FALSE` messages are printed to the console.
- **simtab**: If `TRUE` only reads in simulation tables, if `FALSE` only reads estimation tables. Default `NULL` reads all tables.
- **ziptab**: If `TRUE` search for the tables that have been compressed and renamed `<file>.zip`.
- **...**: Additional arguments to be passed to the `read_table` or `read_csv` functions.

Table format requirement

When using `read_nm_tables` with the combined argument set to `FALSE` an ID column must be present in all data tables. When combined is set to `TRUE` instead an ID column must be present in at least one table for each problem and for each ‘firstonly’ category. ID columns are required to properly combine/merge tables and removing NA records. If the ID column is missing from a table and combined = `FALSE` `read_nm_tables` will return the following warning: Unknown variables: `ID`. While the data is returned beware that NA records might be left in the data and the output should be checked carefully. If combined = `TRUE` `read_nm_tables` xpose is more strict and will return the following warning instead: Dropped `<tablenames>` due to missing required `ID` column.

Examples

```r
Not run:
Import tables manually and return them as a list of individual tables
nm_tables <- read_nm_tables(file = c('sdtab001', 'patab001'),
 dir = 'models', combined = FALSE)

Import tables manually and return them as a single merged table
nm_tables <- read_nm_tables(file = c('sdtab001', 'patab001'),
 dir = 'models', combined = TRUE)

Import tables automatically (used internally by xpose_data())
nm_tables <- read_nm_model(file = 'run001.lst', dir = 'models') %>%
 list_nm_tables() %>%
 read_nm_tables()

Passing arguments to readr via `...`
(e.g. import columns as character and only first 10 rows)
nm_tables <- read_nm_tables(file = 'sdtab001', dir = 'models',
 col_type = readr::cols(.default = 'c'),
 n_max = 10)

End(Not run)
```
Residuals plotted against the independent variable (IDV).

The residuals can be one of:

- RES: model residuals
- WRES: weighted model residuals
- CWRES: conditional weighted model residuals
- EWRES/ECWRES: Monte Carlo based model residuals
- NPDE: Normalized prediction distribution error

Usage

```r
res_vs_idv(
 xpdb,
 mapping = NULL,
 res = "CWRES",
 group = "ID",
 type = "pls",
 title = "@y vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets,
 .problem,
 quiet,
 ...
)
```

```r
absval_res_vs_idv(
 xpdb,
 mapping = NULL,
 res = "CWRES",
 group = "ID",
 type = "pls",
 title = "@y vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 ...
facets,
.problem,
quiet,
...
)

Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
res Type of residual to be used. Default is "CWRES".
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either ', x, y' or 'xy'.
guide Enable guide display (e.g. unity line).
facets Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10
Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a `@` (e.g. `@ofv`) which will be replaced by their actual value when rendering the plot. For example `"@run, @nobs observations in @nind subjects"` would become `"run001, 1022 observations in 74 subjects"`. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter`

Examples

```r
# Standard residual
res_vs_idv(xpdb_ex_pk, res = c("IWRES", "CWRES"))

# Absolute value of the residuals
absval_res_vs_idv(xpdb_ex_pk, res = "CWRES")
```

res_vs_pred

Residuals plotted against population predictions

Description

Model residuals plotted against population predictions (PRED).

The residuals can be one of:

- RES: model residuals
- WRES: weighted model residuals
- CWRES: conditional weighted model residuals
- EWRES/ECWRES: Monte Carlo based model residuals
- NPDE: Normalized prediction distribution error

Usage

```r
res_vs_pred(
  xpdb,
  mapping = NULL,
  res = "CWRES",
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
)```
log = NULL,
guide = TRUE,
facets,
.problem,
quiet,
...)

absval_res_vs_pred(xpdb,
  mapping = NULL,
  res = "CWRES",
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = FALSE,
  facets,
  .problem,
  quiet,
  ...
)

Arguments

xpdb                   An xpose database object.
mapping                List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
res                    Type of residual to be used. Default is "CWRES".
group                  Grouping variable to be used for lines.
type                   String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's'
                        and text 't' or any combination of the four.
title                  Plot title. Use NULL to remove.
subtitle                Plot subtitle. Use NULL to remove.
caption                Page caption. Use NULL to remove.
tag                   Plot identification tag. Use NULL to remove.
log                    String assigning logarithmic scale to axes, can be either ", 'x', y' or 'xy'.
guide                  Enable guide display (e.g. unity line).
facets                 Either a character string to use facet_wrap paginate or a formula to use
                        facet_grid paginate.
.problem               The $problem number to be used. By default returns the last estimation problem.
quiet                  Logical, if FALSE messages are printed to the console.
...                    Any additional aesthetics to be passed on xplot_scatter.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and `option` is any option supported by this layer e.g. `point_color = 'blue'`, `smooth_method = 'lm'`, etc.

- point: options to `geom_point`
- line: options to `geom_line`
- guide: options to `geom_abline`
- smooth: options to `geom_smooth`
- text: options to `geom_text`
- xscale: options to `scale_x_continuous` or `scale_x_log10`
- yscale: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by 'SEX'.

By default, some plot functions use a custom stratifying variable named `variable`. e.g. `eta_distrib()`. When using the `facets` argument, `variable` needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter`

Examples

# Standard residual
res_vs_pred(xpdb_ex_pk, res = c('IWRES', 'CWRES'))
### set_vars

**Set variable type, label or units**

#### Description

Function designed to change the type, label or unit associated with variables.

#### Usage

- `set_var_types(xpdb, .problem = NULL, ..., auto_factor = TRUE, quiet)`
- `set_var_labels(xpdb, .problem = NULL, ..., quiet)`
- `set_var_units(xpdb, .problem = NULL, ..., quiet)`

#### Arguments

- **xpdb**: An `xpose_data` object.
- **.problem**: The problem number to which the edits will be applied.
- **...**: Specifications of the edits to be made to the `xpdb` index. Edits are made as type and variable pairs e.g. `idv = 'TAD'` will assign TAD to the type idv (independent variable).
- **auto_factor**: With `set_var_types` only. If `TRUE` new columns assigned to the type `catcov` will be converted to factor.
- **quiet**: Logical, if `FALSE` messages are printed to the console.

#### Value

An `xpose_data` object

#### Recognized variable types

- `a`: Compartments’ amount
- `amt`: Dose amount
- `catcov`: Categorical covariate
- `contcov`: Continuous covariate
- `dv`: Dependent variable
- `dvid`: DV identifier
- `eta`: Eta
- `evid`: Event identifier

#### Example

```r
Absolute value of the residuals
absval_res_vs_pred(xpdb_ex_pk, res = 'CWRES')
```
subset_xpdb

- id: Subject identifier
- idv: Independent variable
- ipred: Individual model predictions
- mdv: Missing dependent variable
- na: Not attributed
- occ: Occasion flag
- param: Model parameter
- pred: Typical model predictions
- res: Residuals

See Also

list_vars

Examples

# Change variable type
xpdb_2 <- set_var_types(xpdb_ex_pk, .problem = 1, idv = 'TAD')

# Change labels
xpdb_2 <- set_var_labels(xpdb_2, .problem = 1, ALAG1 = 'Lag time', CL = 'Clearance', V = 'Volume')

# Change units
xpdb_2 <- set_var_units(xpdb_2, .problem = 1, ALAG1 = 'h', CL = 'L/h', V = 'L')

subset_xpdb  Subset datasets in an xpdb

Description

Use filter() to select rows/cases where conditions are true. Unlike base subsetting, rows where the condition evaluates to NA are dropped. Use slice() to select row/cases by their position

Usage

## S3 method for class 'xpose_data'
filter(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
slice(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
distinct(.data, ..., .problem, .source, .where)
Arguments

.data An xpose database object.
... Name-value pairs of expressions. Use NULL to drop a variable.
These arguments are automatically quoted and evaluated in the context of the
data frame. They support unquoting and splicing. See the dplyr vignette("programming")
for an introduction to these concepts.
.problem The problem from which the data will be modified
.source The source of the data in the xpdb. Can either be 'data' or an output file extension
e.g. 'phi'.
.where A vector of element names to be edited in special (e.g. .where = c('vpc_dat',
'aggr_obs') with vpc).

Examples

# Subset by condition
xpdb_ex_pk %>%
  filter(DV < 1, .problem = 1) %>%
  dv_vs_ipred()

# Subset by positions
xpdb_ex_pk %>%
  slice(1:100, .problem = 1) %>%
  dv_vs_ipred()

# Deduplicate rows
xpdb_ex_pk %>%
  distinct(TIME, .problem = 1) %>%
  dv_vs_ipred()

summarise_xpdb Group/ungroup and summarize variables in an xpdb

Description

group_by() takes an existing table and converts it into a grouped table where operations are per-
formed "by group". ungroup() removes grouping. summarize() reduces multiple values down to
a single value.

Usage

## S3 method for class 'xpose_data'
group_by(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
ungroup(x, ..., .problem, .source, .where)
## Summary

This function returns a summary of an `xpose_data` to the console.

### Usage

```r
S3 method for class 'xpose_data'
summary(object, .problem = NULL, ...)
```

### Arguments

- `object` An `xpose_data` object generated with `xpose_data`.
- `.problem` The problem to be used, by default returns the last one for each label.
- `...` Ignored in this function
Examples

\begin{verbatim}
summary(xpdb_ex_pk)
\end{verbatim}

---

**Template titles**

**Description**

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and the filename when saving with the `xpose_save` function.

Template titles are defined via a single string containing key variables staring with a @ (e.g. @ofv) which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'.

Many key variables are available:

- \texttt{@condn} Condition number
- \texttt{@covtime} Covariance matrix runtime
- \texttt{@data} Model input data used
- \texttt{@descr} Model description
- \texttt{@dir} Model directory
- \texttt{@epsshk} Epsilon shrinkage
- \texttt{@errors} Run errors (e.g. termination error)
- \texttt{@esampleseed} ESAMPLE seed number (used in NPDE)
- \texttt{@etashk} Eta shrinkage
- \texttt{@file} Model file name
- \texttt{@label} Model label
- \texttt{@method} Estimation method or sim
- \texttt{@nesample} Number of ESAMPLE (used in NPDE)
- \texttt{@nind} Number of individuals
- \texttt{@nobs} Number of observations
- \texttt{@nsig} Number of significant digits
- \texttt{@nsim} Number of simulations
- \texttt{@ofv} Objective function value
- \texttt{@page} and \texttt{@lastpage} Are respectively the page number and the number of the last page when faceting on multiple pages
- \texttt{@probn} Problem number
- \texttt{@plotfun} Name of the plot function
- \texttt{@ref} Reference model
@run  Model run name
@runtime  Estimation/Sim runtime
@software  Software used (e.g. NONMEM)
@simseed  Simulation seed
@subroutine  Differential equation solver
@timestart  Run start time
@timestop  Run stop time
@timeplot  Time of the plot rendering
@term  Termination message
@version  Software version (e.g. 7.3)
@vpccic  VPC confidence interval
@vecdir  VPC data directory
@vpcclloq  VPC lower limit of quantification
@vpcnsim  Number of simulations for VPC
@vpcpi  VPC prediction interval
@vpculoq  VPC upper limit of quantification
@warnings  Run warnings (e.g. boundary)
@x @y etc.  Name of any ggplot2 variable used for mapping in an aes() type function

See Also
xpose_save

Examples

# Defined when creating a plot
dv_vs_ipred(xpdb_ex_pk,
    title = '@x vs. @y',
    subtitle = '@ofv, @nind subjects, @nobs obs.',
    caption = '@run, @descr')

# Any label can be modified later on
dv_vs_ipred(xpdb_ex_pk, aes(point_color = SEX,
    line_color = SEX)) +
labs(title = 'This runs is: @descr',
    color = 'Color scale for @run',
    x = 'IPRED for @nind subjects',
    subtitle = NULL)
update_themes  Create xpose theme

Description

Create an xpose theme. This function will update the theme of an xpdb object. All plots generated with this xpdb will automatically use the defined xpose (xp_theme) and ggplot2 (gg_theme) themes.

Usage

update_themes(xpdb = NULL, gg_theme = NULL, xp_theme = NULL, quiet)

Arguments

xpdb An xpose_data object generated with xpose_data.

gg_theme A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.

xp_theme A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).

quiet Logical, if FALSE messages are printed to the console.

Examples

# Before default theme
dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')

# Updating the gg_theme and xp_theme
xpdb_ex_pk %>%
  update_themes(gg_theme = theme(legend.position = 'top'),
                xp_theme = list(point_color = 'blue',
                               line_color = 'blue')) %>
  dv_vs_ipred(facets = 'SEX')

vpc  Visual predictive checks

Description

Generate visual predictive checks (VPC)
vpc

Usage

vpc(
  xpdb,
  vpc_type = NULL,
  mapping = NULL,
  smooth = TRUE,
  type = "alpr",
  title = "Visual predictive checks | @run",
  subtitle = "Number of simulations: @vpcnsim, confidence interval: @vpcci%",
  caption = "@vpcdir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  gg_theme,
  xp_theme,
  facets,
  quiet,
  area_fill = c("steelblue3", "grey60", "steelblue3"),
  line_linetype = c("93", "solid", "93"),
  ...
)

Arguments

xpdb An xpose database object.
vpc_type Only used when multiple vpc data are present in the same xpdb. The type of vpc to be created. Can be one of can be one of: 'continuous', 'categorical', 'censored' or 'time-to-event'.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
smooth Should the bins be smoothed (connect bin midpoints, default) or shown as rectangular boxes.
type String setting the type of plot to be used. Can be points 'p', line 'l', area 'a', rug 'r' and text 't' or any combination of the five.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either '', 'x', 'y' or 'xy'.
guide Enable guide display in vpc continuous (e.g. lloq and uloq lines).
gg_theme A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.
xp_theme A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).
facets Either a character string to use facet_wrap or a formula to use facet_grid.
quiet Logical, if FALSE messages are printed to the console.
area_fill Shaded areas filling color, should be a vector of 3 values (i.e. low, med, high).
line_linetype Lines linetype, should be a vector of 3 values (i.e. low, med, high).
... any additional aesthetics.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', area_fill = 'green', etc.

- point: options to geom_point
- line: options to geom_line
- area: options to geom_ribbon (smooth = TRUE) or geom_rect (smooth = FALSE)
- rug: options to geom_rug
- text: options to geom_text
- guide: options to geom_hline
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1). All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_exPk, facets = 'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_exPk, xp_theme = list(facets = 'SEX'))). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. eta_distrib(). When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX', 'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.
vpc_data

See Also

vpc_data

Examples

```r
xpdb_ex_pk %>%
 vpc_data(opt = vpc_opt(n_bins = 7)) %>%
 vpc()
```

---

vpc_data  Visual predictive checks data

Description

Generate visual predictive checks (VPC) data

Usage

```r
vpc_data(
 xpdb,
 opt,
 stratify,
 vpc_type = c("continuous", "categorical", "censored", "time-to-event"),
 psn_folder = NULL,
 psn_bins = FALSE,
 obs_problem = NULL,
 sim_problem = NULL,
 quiet
)
```

Arguments

- `xpdb`: An xpose database object.
- `opt`: A list of options regarding binning, pi and ci computation. For more information see `vpc_opt`.
- `stratify`: Either a character string or a formula to stratify the data. For 'categorical' vpcs the stratification fixed to the different categories.
- `vpc_type`: A string specifying the type of VPC to be created, can be one of: 'continuous', 'categorical', 'censored' or 'time-to-event'.
- `psn_folder`: Specify a PsN-generated VPC-folder.
- `psn_bins`: Only used with argument `psn_folder`. If TRUE bins will be inputed from the PsN vpc_bins.txt file. If FALSE (default) bins will be re-calculated in R. Note that when `psn_bins = TRUE` only the first bin array will be used and applied to all panels as it is not currently possible to define per panel binning in xpose. In addition when `psn_bins = TRUE` is used along with `vpc(smooth = FALSE)` the observations lines may not be centered in the bins. Check the output carefully.
obs_problem Alternative to the option 'psn_folder'. The $problem number to be used for observations. By default returns the last estimation problem.

sim_problem Alternative to the option 'psn_folder'. The $problem number to be used for simulations. By default returns the last simulation problem.

quiet Logical, if FALSE messages are printed to the console.

See Also

vpc vpc_opt

Examples

## Not run:

```r
xpdb_ex_pk %>%
vpc_data() %>%
vpc()
End(Not run)
```

vpc_opt

Generate a list of options for VPC data generation

Description

Provide a list of options to vpc_data function.

Usage

```r
vpc_opt(
 bins = "jenks",
 n_bins = "auto",
 bin_mid = "mean",
 pred_corr = FALSE,
 pred_corr_lower_bnd = 0,
 pi = c(0.025, 0.975),
 ci = c(0.025, 0.975),
 lloq = NULL,
 uloq = NULL,
 rtte = FALSE,
 rtte_calc_diff = TRUE,
 events = NULL,
 kmmc = NULL,
 reverse_prob = FALSE,
 as_percentage = TRUE
)
```
Arguments

bins Binning method, can be one of 'density', 'time', 'data', 'none', or one of the approaches available in classInterval() such as 'jenks' (default), 'pretty', or a numeric vector specifying the bin separators.

n_bins When using the 'auto' binning method, what number of bins to aim for.

bin_mid Specify how to is the mid bin value calculated, can be either 'mean' for the mean of all timepoints (default) or 'middle' to use the average of the bin boundaries.

pred_corr Option reserved to continuous VPC. Logical, should a prediction correction (pcVPC) of the data be used.

pred_corr_lower_bnd Option reserved to continuous VPC. Lower bound for the prediction-correction.

pi Option reserved to continuous VPC. Simulated prediction interval to plot. Default is c(0.05, 0.95).

ci Confidence interval around the percentiles to plot. Default is c(0.05, 0.95)

lloq Number or NULL indicating lower limit of quantification. Default is NULL.

uloq Number or NULL indicating upper limit of quantification. Default is NULL.

rtte Option reserved to time-to-event VPC. Is the data repeated time-to-event (RTTE) TRUE or single time-to-event (TTE) FALSE.

rtte_calc_diff Option reserved to time-to-event VPC. Should the time be recalculated? When simulating in NONMEM, you will probably need to set this to TRUE to recalculate the TIME to the relative time between events (unless you output the time difference between events and specify that as independent variable in the index.

events Option reserved to time-to-event VPC. Numeric vector describing which events to show a VPC for when repeated TTE data, e.g. c(1:4). Default is NULL, which shows all events.

kmmc Option reserved to time-to-event VPC. Either NULL for regular TTE VPC (default), or a variable name for a KMMC plot (e.g. 'WT').

reverse_prob Option reserved to time-to-event VPC. Should the probability be reversed (i.e. plot 1-probability).

as_percentage Should the Y-scale be in percent (0-100) TRUE (default), or standard (0-1) FALSE.

See Also

vpc vpc_data

Examples

vpc_opt()
Description

Moxonidine xpose_data example.

Format

An xpose_data object

Source


Examples

print(xpdb_ex_pk)

---

Description

Manually generate distribution plots from an xpdb object.

Usage

```r
xplot_distrib(
 xpdb,
 mapping = NULL,
 type = "hr",
 guide = FALSE,
 xscale = "continuous",
 yscale = "continuous",
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 tag = NULL,
 plot_name = "density_plot",
 gg_theme,
 xp_theme,
 opt,
)```

Arguments

- **xpdb**: An `xpose_data` object generated with `xpose_data`.
- **mapping**: List of aesthetics mappings to be used for the `xpose` plot (e.g. `point_color`).
- **type**: String setting the type of plot to be used. Can be histogram 'h', density 'd', rug 'r' or any combination of the three.
- **guide**: Should the guide (e.g. reference distribution) be displayed.
- **xscale**: Scale type for x axis (e.g. 'continuous', 'discrete', 'log10').
- **yscale**: Scale type for y axis (e.g. 'continuous', 'discrete', 'log10').
- **title**: Plot title. Use `NULL` to remove.
- **subtitle**: Plot subtitle. Use `NULL` to remove.
- **caption**: Page caption. Use `NULL` to remove.
- **tag**: Plot identification tag. Use `NULL` to remove.
- **plot_name**: Name to be used by `xpose_save()` when saving the plot.
- **gg_theme**: A complete ggplot2 theme object (e.g. `theme_classic`), a function returning a complete ggplot2 theme, or a change to the current `gg_theme`.
- **xp_theme**: A complete xpose theme object (e.g. `theme_xp_default`) or a list of modifications to the current `xp_theme` (e.g. `list(point_color = 'red', line.linetype = 'dashed')`).
- **opt**: A list of options in order to create appropriate data input for ggplot2. For more information see `data_opt`.
- **quiet**: Logical, if `FALSE` messages are printed to the console.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and option is any option supported by this layer e.g. histogram_fill = 'blue', rug_sides = 'b', etc.

- **histogram**: options to `geom_histogram`
- **density**: options to `geom_density`
- **rug**: options to `geom_rug`
- **xscale**: options to `scale_x_continuous` or `scale_x_log10`
- **yscale**: options to `scale_y_continuous` or `scale_y_log10`
Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter` `xplot_qq`

Examples

```r
# A simple histogram
xplot_distrib(xpdb_ex_pk, aes(x = WT), type = 'hr')

# A simple density plot
xplot_distrib(xpdb_ex_pk, aes(x = CWRES), type = 'dr')
```

xplot_qq

Default xpose QQ plot function

Description

Manually generate QQ plots from an xpdb object.
xplot_qq

Usage

xplot_qq(
 xpdb,
 mapping = NULL,
 type = "p",
 guide = FALSE,
 xscale = "continuous",
 yscale = "continuous",
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 tag = NULL,
 plot_name = "qq_plot",
 gg_theme,
 xp_theme,
 opt,
 quiet,
 ...
)

Arguments

xpdb An xpose_data object generated with xpose_data.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
type String setting the type of plot to be used. Can only be points 'p'.
guide Should the guide (e.g. reference line) be displayed.
xscale Scale type for x axis (e.g. 'continuous', 'discrete', 'log10').
yscale Scale type for y axis (e.g. 'continuous', 'discrete', 'log10').
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
plot_name Name to be used by xpose_save() when saving the plot.
gg_theme A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.
xp_theme A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).
opt A list of options in order to create appropriate data input for ggplot2. For more information see data_opt.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', etc.

- point: options to geom_point
- guide: options to geom_abline
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1).

All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))). In the latter example all plots generate from this xpdb will automatically be stratified by 'SEX'.

By default, some plot functions use a custom stratifying variable named 'variable', e.g. eta_distrib(). When using the facets argument, 'variable' needs to be added manually e.g. facets = c('SEX', 'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.

See Also

xplot_scatter xplot_distrib

Examples

xplot_qq(xpdb_ex_pk, aes(sample = CWRES), guide = TRUE)
Description

Manually generate scatter plots from an xpdb object.

Usage

```r
xplot_scatter(
  xpdb,
  mapping = NULL,
  group = "ID",
  type = "pls",
  guide = FALSE,
  xscale = "continuous",
  yscale = "continuous",
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  tag = NULL,
  plot_name = "scatter_plot",
  gg_theme,
  xp_theme,
  opt,
  quiet,
  ...
)
```

Arguments

- **xpdb**: An `xpose_data` object generated with `xpose_data`.
- **mapping**: List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- **group**: Grouping variable to be used for lines.
- **type**: String setting the type of plot to be used. Can be line 'l', point 'p', smooth 's' and text 't' or any combination of the four.
- **guide**: Should the guide (e.g. unity line) be displayed.
- **xscale**: Scale type for x axis (e.g. 'continuous', 'discrete', 'log10').
- **yscale**: Scale type for y axis (e.g. 'continuous', 'discrete', 'log10').
- **title**: Plot title. Use NULL to remove.
- **subtitle**: Plot subtitle. Use NULL to remove.
- **caption**: Page caption. Use NULL to remove.
- **tag**: Plot identification tag. Use NULL to remove.
- **plot_name**: Name to be used by `xpose_save()` when saving the plot.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and `option` is any option supported by this layer e.g. `point_color = 'blue'`, `smooth_method = 'lm'`, etc.

- **point**: options to `geom_point`
- **line**: options to `geom_line`
- **guide**: options to `geom_abline`
- **smooth**: options to `geom_smooth`
- **text**: options to `geom_text`
- **xscale**: options to `scale_x_continuous` or `scale_x_log10`
- **yscale**: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`).

All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`. Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by `SEX`.

By default, some plot functions use a custom stratifying variable named `variable`, e.g. `eta_distrib()`. When using the `facets` argument, `variable` needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a `@` (e.g. `@ofv`) which will be replaced by their actual value when rendering the plot. For example `@run, @nobs observations in @nind subjects` would become `run001, 1022 observations in 74 subjects`. The available key variables are listed under `template_titles`.

gg_theme

A complete ggplot2 theme object (e.g. `theme_classic`), a function returning a complete ggplot2 theme, or a change to the current `gg_theme`.

xp_theme

A complete xpose theme object (e.g. `theme_xp_default`) or a list of modifications to the current `xp_theme` (e.g. `list(point_color = 'red', line_linetype = 'dashed')`).

opt

A list of options in order to create appropriate data input for ggplot2. For more information see `data_opt`.

quiet

Logical, if FALSE messages are printed to the console.

...

Any additional aesthetics.
xpose_data

Description

Gather model outputs into a R database

Usage

xpose_data(
 runno = NULL,
 prefix = "run",
 ext = ".lst",
 file = NULL,
 dir = NULL,
 gg_theme = theme_readable,
 xp_theme = theme_xp_default(),
 simtab = NULL,
 manual_import = NULL,
 ignore = NULL,
 check_ext = TRUE,
 extra_files,
 quiet,
 ...
)

Arguments

runno Run number to be used to generate model file name. Used in combination with prefix and ext.

prefix Prefix to be used to generate model file name. Used in combination with runno and ext.

ext Extension to be used to generate model file name. Should be one of ".lst" (default), ".out", ".res", ".mod" or ".ctl" for NONMEM.

file Model file name (preferably a ".lst" file) containing the file extension. Alternative to prefix, runno and ext arguments.

dir Location of the model files.

See Also

xplot_distrib xplot_qq

Examples

xplot_scatter(xpdb_ex_pk, aes(x = IPRED, y = DV))

xpose_data Import NONMEM output into R
gg_theme A complete ggplot2 theme object (e.g. theme_classic), or a function returning a complete ggplot2 theme.

xp_theme A complete xpose theme object (e.g. theme_xp_default).

simtab If TRUE only reads in simulation tables, if FALSE only reads estimation tables. Default NULL reads all tables. Option not compatible with manual_import.

manual_import If NULL (default) the names of the output tables to import will be obtained from the model file. To manually import files as in previous versions of xpose, the check the function manual_nm_import.

ignore Character vector be used to ignore the import/generation of: 'data', 'files', 'sum-

check_ext Logical, if TRUE will provide an error message if the extension of the NONMEM input file is not one of '.lst', '.out', '.res', '.mod' or '.ctl' for NONMEM. If FALSE any file extension can be used.

extra_files A vector of additional output file extensions to be imported. Default is '.ext', '.cov', '.cor', '.phi', '.grd' for NONMEM.

quiet Logical, if FALSE messages are printed to the console.

... Additional arguments to be passed to the read_nm_tables functions.

File path generation

The rules for model file names generation are as follow:

- with runno: the full path is generated as <dir>/<prefix><runno>.<ext> e.g. with dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst' the resulting path would be model/pk/run001.lst
- with file: the full path is generated as <dir>/<file> e.g. with dir = 'model/pk', file = 'run001.lst' the resulting path would also be model/pk/run001.lst. Note: in this case the file extension should be provided as part of the 'file' argument.

Table format requirement

When importing data, an ID column must be present in at least one table for each problem and for each 'firstonly' category. ID columns are required to properly combine/merge tables and removing NA records. If ID columns are missing xpose will return the following warning: Dropped '<tablenames>' due to missing required 'ID' column.

Examples

Not run:
Using the 'file' argument to point to the model file:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models')

Using the 'runno' argument to point to the model file:
xpdb <- xpose_data(runno = '001', ext = '.lst', dir = 'models')

Using the 'extra_files' argument to import specific output files only:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', extra_files = c('.ext', '.phi'))
Using `ignore` to disable import of tables and output files:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', ignore = c('data', 'files'))

Using `simtab` to disable import of simulation tables
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', simtab = FALSE)

End(Not run)

xpose_save
Save xpose plot

Description

Built as a wrapper around `ggsave`, this function facilitates the export of xpose plots.

Usage

```r
xpose_save(
  plot = last_plot(),
  file = NULL,
  dir = NULL,
  device = NULL,
  scale = 1,
  width = 7,
  height = 6,
  units = c("in", "cm", "mm", "px"),
  dpi = 200,
  limitsize = TRUE,
  bg = NULL,
  ...
)
```

Arguments

- **plot**
 A xpose plot object.

- **file**
 A name with file extension (if device is NULL) to be given to the output file. Template variables such as `@run` (run number) and `@plotfun` (plot function) can be used to automatically name files e.g. `file = '@run_@plotfun.pdf'`.

- **dir**
 Directory under which the xpose plots will be saved. Template variables such as `@dir` can be used to generate template names.

- **device**
 Graphical device to use. Can be either be a device function (e.g. `png`), or one of `eps`, `ps`, `tex` (pictex), `pdf`, `jpeg`, `tiff`, `png`, `bmp`, `svg` or `wmf` (windows only).

- **scale**
 Multiplicative scaling factor.
width, height, units

Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of current graphics device.

dpi

Plot resolution. Also accepts a string input: "retina" (320), "print" (300), or "screen" (72). Applies only to raster output types.

limitsize

When TRUE (the default), xpose_save() will not save images larger than 50x50 inches, to prevent the common error of specifying dimensions in pixels.

bg

Background color. If NULL, uses the plot.background fill value from the plot theme.

... Other arguments passed on to the graphics device function, as specified by device.

Examples

Not run:
xpdb_ex_pk %>%
dv_vs_ipred() %>%
xpose_save(file = file.path(tempdir(), "dv_vs_ipred_example.pdf"))

End(Not run)

xp_themes A set of xpose themes

Description

xpose themes are used to consistently apply a set of preference for the plot geoms (e.g. color scales, point size, etc.) whereas ggplot2 theme focus on the plot background, axes, titles etc.

• theme_xp_default: The default xp_theme in xpose
• theme_xp_xpose4: An xp_theme that makes xpose look like xpose4.

Usage

theme_xp_default()

theme_xp_xpose4()

Examples

With the xp_theme theme_xp_default() (default)
dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')

With the xp_theme theme_xp_xpose4()
xpdb_ex_pk %>%
 update_themes(xp_theme = theme_xp_xpose4()) %>%
dv_vs_ipred(facets = 'SEX')
Index

absval_res_vs_idv (res_vs_idv), 41
absval_res_vs_pred (res_vs_pred), 43
amt_vs_idv, 3
cov_distrib (distrib_plot), 6
cov_qq (qq_plot), 33
data_opt, 5, 59, 61, 64
distinct.xpose_data (subset_xpdb), 47
distrib.plot, 6
dv_preds_vs_idv (pred_vs_idv), 27
dv_vs_idv (pred_vs_idv), 27
dv_vs_ipred (dv_vs_pred), 9
dv_vs_pred, 9
tta_distrib (distrib_plot), 6
tta_qq (qq_plot), 33
facet_grid, 54
facet_gridpaginate, 4, 8, 10, 11, 19, 25,
 26, 29, 30, 35, 42, 44, 45, 54, 60, 62, 64
facet_wrap, 54
facet_wrappaginate, 4, 8, 10, 11, 19, 25,
 26, 29, 30, 35, 42, 44, 45, 54, 60, 62, 64
filter.xpose_data (subset_xpdb), 47
get_code, 12
get_data, 12, 22
get_file, 13, 22
get_prm, 14, 32
get_special, 16, 22
get_summary, 16
gg_themes, 17
ggsave, 67
grd_vs_iteration (minimization_plots), 24
group_by.xpose_data (summarise_xpdb), 48
ind_plots, 18
ipred_vs_idv (pred_vs_idv), 27
irep, 20
list_data, 13
list_data (list_xpdb), 22
list_files, 14
list_files (list_xpdb), 22
list_nm_tables, 21
list_special, 16
list_special (list_xpdb), 22
list_vars, 21, 47
list_xpdb, 22
manual_nm_import, 23, 66
minimization_plots, 24
modify_xpdb, 26
mutate.xpose_plots (modify_xpdb), 26
png, 67
pred_vs_idv, 27
print.xpose_data, 31
print.xpose_plot, 31
prm_distrib (distrib_plot), 6
prm_qq (qq_plot), 33
prm_table, 15, 32
prm_vs_iteration (minimization_plots), 24
qq_plot, 33
read_csv, 40
read_nm_files, 14, 36
read_nm_model, 12, 21, 37
read_nm_tables, 13, 21, 37, 39, 39, 66
read_table, 40
rename.xpose_data (modify_xpdb), 26
res_distrib (distrib_plot), 6
res_qq (qq_plot), 33
res_vs_idv, 41
res_vs_pred, 43
select.xpose_data(modify_xpdb), 26
set_var_labels(set_vars), 46
set_var_types, 21
set_var_types(set_vars), 46
set_var_units(set_vars), 46
set_vars, 46
slice.xpose_data(subset_xpdb), 47
subset_xpdb, 47
summarise.xpose_data(summarise_xpdb), 48
summarise_xpdb, 48
summarize.xpose_data(summarise_xpdb), 48
summary.xpose_data, 17, 49
template_titles, 4, 9, 11, 17, 20, 26, 30, 36, 43, 45, 50, 54, 60, 62, 64
theme_bw2(gg_themes), 17
theme_classic, 52, 53, 59, 61, 64, 66
theme_readable(gg_themes), 17
theme_xp_default, 52, 53, 59, 61, 64, 66
theme_xp_default(xp_themes), 68
theme_xp_xpose4(xp_themes), 68
tibble, 38
ungroup.xpose_data(summarise_xpdb), 48
update_themes, 52
vpc, 52, 56, 57
vpc_data, 55, 55, 57
vpc_opt, 55, 56, 56
xp_themes, 68
xpdb_ex_pk, 58
xplot_distrib, 6, 9, 36, 58, 62, 65
xplot_qq, 6, 60, 60, 65
xplot_scatter, 5, 6, 11, 20, 26, 30, 43, 45, 60, 62, 63
xpose_data, 12–14, 16, 17, 23, 31, 37, 39, 49, 52, 59, 61, 63, 65
xpose_save, 50, 51, 67