Package ‘xpose’

June 8, 2020

Type Package
Title Diagnostics for Pharmacometric Models
Version 0.4.10
Description Diagnostics for non-linear mixed-effects (population) models from 'NONMEM' <https://www.iconplc.com/innovation/nonmem/>. 'xpose' facilitates data import, creation of numerical run summary and provide 'ggplot2'-based graphics for data exploration and model diagnostics.

Depends R (>= 3.3.0), ggplot2 (>= 3.1.0)
Imports dplyr (>= 0.8.0), ggforce (>= 0.2.0), grDevices, purrr (>= 0.3.0), readr (>= 1.3.0), rlang (>= 0.3.0), stringr (>= 1.4.0), tibble (>= 2.1.0), tidyr (>= 0.8.0), utils, stats, vpc (>= 1.1.0)

Suggests here, gridExtra, markdown, knitr, testthat, plotly, webshot, mvtnorm
License LGPL-3
URL https://github.com/UUPharmacometrics/xpose
BugReports https://github.com/UUPharmacometrics/xpose/issues
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 7.1.0
NeedsCompilation no
Author Benjamin Guiastrennec [aut, cre, cph], Andrew C. Hooker [aut, cph], Sebastian Ueckert [aut, cph], Mike K. Smith [ctb], Mats O. Karlsson [aut, cph]
Maintainer Benjamin Guiastrennec <guiastrennec@gmail.com>
Repository CRAN
Date/Publication 2020-06-08 09:50:03 UTC
R topics documented:

amt_vs_idv .. 3
data_opt .. 5
distrib_plot .. 6
dv_vs_pred .. 9
get_code .. 12
get_data .. 12
get_file .. 13
getprm ... 14
get_special .. 16
gt_summary ... 16
gg_themes .. 17
ind_plots ... 18
irep .. 20
list_nm_tables .. 21
list_vars ... 21
list_xpdb ... 22
manual_nm_import ... 23
minimization_plots ... 24
modify_xpdb .. 26
pred_vs_idv .. 27
print.xpose_data ... 31
print.xpose_plot ... 31
prm_table .. 32
qq_plot ... 33
read_nm_files .. 36
read_nm_model .. 37
read_nm_tables ... 39
res_vs_idv ... 40
res_vs_pred .. 43
set_vars ... 45
subset_xpdb .. 47
summarise_xpdb ... 48
summary.xpose_data ... 49
template_titles ... 50
update_themes .. 52
vpc .. 52
vpc_data ... 55
vpc_opt .. 56
xpdb_ex_pk .. 58
xplot_distrib ... 58
xplot_qq ... 60
xplot_scatter ... 63
xpose_data .. 65
xpose_save .. 67
xp_themes ... 68

Index 69
amt_vs_idv

Compartment kinetics

Description
Plot of the change in compartment amounts over the independent variable

Usage
amt_vs_idv(
 xpdb,
 mapping = NULL,
 group = "ID",
 drop_fixed = TRUE,
 type = "l",
 title = "Compartments amount vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 facets,
 .problem,
 quiet,
 ...
)

Arguments
xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
group Grouping variable to be used for lines.
drop_fixed Should columns that only have a single unique value (i.e. fixed) be dropped.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either '', 'x', y' or 'xy'.
facets Either a character string to use facet_wrappaginate or a formula to use facet_gridpaginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and `option` is any option supported by this layer e.g. `point_color = 'blue'`, `smooth_method = 'lm'`, etc.

- `point`: options to `geom_point`
- `line`: options to `geom_line`
- `guide`: options to `geom_abline`
- `smooth`: options to `geom_smooth`
- `text`: options to `geom_text`
- `xscale`: options to `scale_x_continuous` or `scale_x_log10`
- `yscale`: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when `facets` is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX')`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables starting with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

- `xplot_scatter`

Examples

```
amt_vs_idv(xpdb_ex_pk, nrow = 2, ncol = 1)
```
Create options for data import

Description

Provide a list of options to the general plotting functions such as `xplot_scatter` in order to create appropriate data input for ggplot2.

Usage

```r
data_opt(
  .problem = NULL,
  .subprob = NULL,
  .method = NULL,
  .source = "data",
  simtab = FALSE,
  filter = NULL,
  tidy = FALSE,
  index_col = NULL,
  value_col = NULL,
  post_processing = NULL
)
```

Arguments

- `.problem` The problem to be used, by default returns the last one.
- `.subprob` The subproblem to be used, by default returns the last one.
- `.method` The estimation method to be used, by default returns the last one.
- `.source` Define the location of the data in the xpdb. Should be either 'data' to use the output tables or the name of an output file attached to the xpdb.
- `simtab` Only used when 'data' is defined as the source and `.problem` is default. Should the data be coming from an estimation or a simulation table.
- `filter` A function used to filter the data e.g. `filter = function(x) x[x$TIME > 20,]` where `x` is the data.
- `tidy` Logical, whether the data should be transformed to tidy data.
- `index_col` Only used when `tidy` is defined as a TRUE and `value_col` is NULL. Column names to use as index when tidying the data.
- `value_col` Only used when `tidy` is defined as a TRUE and `index_col` is NULL. Column names to be stacked when tidying the data.
- `post_processing` A function used to modify the data after it has been tidied up e.g. `post_processing = function(x) dplyr::mutate(.data = x, variable = as.factor(.variable))` where `x` is the tidy data.
See Also

xplot_distrib xplot_qq xplot_scatter

Examples

data_opt(.problem = 1, .source = 'data', simtab = TRUE)

distrib_plot Distribution plots of ETA and parameters

Description

Histograms and density plots of the ETA and parameter values.

Usage

prm_distrib(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "hr",
 title = "Parameter distribution | @run",
 subtitle = "Based on @nind individuals",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 facets,
 .problem,
 quiet,
 ...
)

eta_distrib(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "hr",
 title = "Eta distribution | @run",
 subtitle = "Based on @nind individuals, Eta shrink: @etashk",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 facets,
 .problem,
Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
drop_fixed Should columns that only have a single unique value (i.e. fixed) be dropped.
type String setting the type of plot to be used. Can be histogram 'h', density 'd', rug 'r' or any combination of the three.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either ’’, ’x’, y’ or ’xy’.
guide Should the guide (e.g. reference distribution) be displayed.
facets Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.
res Only used for res_distrib. Defines the type of residual to be used. Default is "CWRES".

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. histogram_fill = 'blue', rug_sides = 'b', etc.

- histogram: options to geom_histogram
- density: options to geom_density
- rug: options to geom_rug
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c(’SEX’, ’MED1’)) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1).

All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = ’label_both’).

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets = ’SEX’)) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = ’SEX’))). In the latter example all plots generate from this xpdb will automatically be stratified by ’SEX’.

By default, some plot functions use a custom stratifying variable named ’variable’, e.g. eta_distrib(). When using the facets argument, ’variable’ needs to be added manually e.g. facets = c(’SEX’, ’variable’) or Facets = c(’SEX’, ’variable’), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.
Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under template_titles.

See Also

xplot_distrib

Examples

Histogram of parameters
prm_distrib(xpdb_ex_pk, type = 'h')

Density plot of etas with a rug
eta_distrib(xpdb_ex_pk, type = 'dr')

Histogram of different residuals
res_distrib(xpdb_ex_pk, type = 'hr', res = c('IWRES', 'CWRES'))

Density plot of continuous covariates
cov_distrib(xpdb_ex_pk, type = 'd')
dv_vs_pred(
 xpdb,
 mapping = NULL,
 group = "ID",
 type = "pls",
 title = "@y vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets,
 .problem,
 quiet,
 ...
)

Arguments
xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's'
 and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either ', 'x', y' or 'xy'.
guide Enable guide display (e.g. unity line).
facets Either a character string to use facet_wrap_paginate or a formula to use
 facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.

Layers mapping
Plots can be customized by mapping arguments to specific layers. The naming convention is
layer_option where layer is one of the names defined in the list below and option is any option
supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.
• point: options to `geom_point`
• line: options to `geom_line`
• guide: options to `geom_abline`
• smooth: options to `geom_smooth`
• text: options to `geom_text`
• xscale: options to `scale_x_continuous` or `scale_x_log10`
• yscale: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the
functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets =
c('SEX', 'MED1')`) or `facet_grid_paginate` when `facets` is a formula (e.g. `facets = SEX~MED1`).
All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate`
functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins
= TRUE, labeller = 'label_both').` Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets =
'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme
= list(facets = 'SEX')).` In the latter example all plots generate from this xpdb will automati-
cally be stratified by `SEX`. By default, some plot functions use a custom stratifying variable named `variable`, e.g. `eta_distrib()`. When using the `facets` argument, `variable` needs to be added manually e.g. `facets = c('SEX','variable')`
or `facets = c('SEX','variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to
any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key
variables staring with a `@` (e.g. `@ofv`) which will be replaced by their actual value when render-
ing the plot. For example `@run, @nobs observations in @nind subjects` would become `run001,
1022 observations in 74 subjects`. The available key variables are listed under `template_titles`.

See Also

 `xplot_scatter`

Examples

 `dv_vs_pred(xpdb_ex_pk)`

 `dv_vs_ipred(xpdb_ex_pk)`
get_code

Access model code

Description

Access model code from an xpdb object.

Usage

get_code(xpdb, .problem = NULL)

Arguments

- **xpdb**: An xpose_data object from which the model code will be extracted.
- **.problem**: The problem to be used, in addition, problem 0 is attributed to general output (e.g. NM-TRAN warnings in NONMEM). By default returns the entire code.

Value

A tibble of the parsed model.

See Also

- xpose_data, read_nm_model

Examples

```r
parsed_model <- get_code(xpdb_ex_pk)
parsed_model
```

get_data

Access model output table data

Description

Access model output table data from an xpdb object.

Usage

get_data(xpdb, table = NULL, .problem = NULL, quiet)
Arguments

- **xpdb**: An `xpose_data` object from which the model output file data will be extracted.
- **table**: Name of the output table to be extracted from the xpdb e.g. 'sdtab001'. Alternative to the '.problem' argument.
- **.problem**: Accesses all tables from the specified problem. Alternative to the 'table' argument.
- **quiet**: Logical, if FALSE messages are printed to the console.

Value

By default returns data from the last estimation problem. If only simulation problems are present then the data from last simulation will be returned instead. Object returned as tibble for single tables/problems or a named list for multiple tables/problems.

See Also

- `list_data`, `xpose_data`, `read_nm_tables`

Examples

```r
# By table name
sdtab <- get_data(xpdb_ex_pk, 'sdtab001')
sdtab

# By problem
tables <- get_data(xpdb_ex_pk, .problem = 1)
tables

# Tip to list available tables in the xpdb
print(xpdb_ex_pk)
```

get_file

Access model output file data

Description

Access model output file data from an xpdb object.

Usage

```r
get_file(
  xpdb,
  file = NULL,
  ext = NULL,
  .problem = NULL,
  .subprob = NULL,
)```
Arguments

- **xpdb**: An xpose_data object from which the model output file data will be extracted.
- **file**: Full name of the file to be extracted from the xpdb e.g. 'run001.phi'. Alternative to the 'ext' argument.
- **ext**: Extension of the file to be extracted from the xpdb e.g. 'phi'. Alternative to the 'file' argument.
- **.problem**: The problem to be used, by default returns the last one for each file.
- **.subprob**: The subproblem to be used, by default returns the last one for each file.
- **.method**: The estimation method to be used (e.g. 'foce', 'imp', 'saem'), by default returns the last one for each file.
- **quiet**: Logical, if FALSE messages are printed to the console.

Value

A tibble for single file or a named list for multiple files.

See Also

- list_files
- xpose_data
- read_nm_files

Examples

```r
Single file (returns a tibble)
ex_file <- get_file(xpdb_ex_pk, file = 'run001.ext')
ex_file

Multiple files (returns a list)
files <- get_file(xpdb_ex_pk, file = c('run001.ext', 'run001.phi'))
files

Tip to list available files in the xpdb
print(xpdb_ex_pk)
```

---

**get_prm**

\[ .method = \text{NULL}, \]

\[
\text{quiet}
\]

**Arguments**

- **xpdb**: An xpose_data object from which the model output file data will be extracted.
- **file**: Full name of the file to be extracted from the xpdb e.g. 'run001.phi'. Alternative to the 'ext' argument.
- **ext**: Extension of the file to be extracted from the xpdb e.g. 'phi'. Alternative to the 'file' argument.
- **.problem**: The problem to be used, by default returns the last one for each file.
- **.subprob**: The subproblem to be used, by default returns the last one for each file.
- **.method**: The estimation method to be used (e.g. 'foce', 'imp', 'saem'), by default returns the last one for each file.
- **quiet**: Logical, if FALSE messages are printed to the console.

**Value**

A tibble for single file or a named list for multiple files.

**See Also**

- list_files
- xpose_data
- read_nm_files

**Examples**

```r
Single file (returns a tibble)
ex_file <- get_file(xpdb_ex_pk, file = 'run001.ext')
ex_file

Multiple files (returns a list)
files <- get_file(xpdb_ex_pk, file = c('run001.ext', 'run001.phi'))
files

Tip to list available files in the xpdb
print(xpdb_ex_pk)
```
get prm

Usage

get_prm(
  xpdb,
  .problem = NULL,
  .subprob = NULL,
  .method = NULL,
  digits = 4,
  transform = TRUE,
  show_all = FALSE,
  quiet
)

Arguments

xpdb An xpose_data object from which the model output file data will be extracted.
.proBLEM The problem to be used, by default returns the last one for each file.
.subprob The subproblem to be used, by default returns the last one for each file.
.method The estimation method to be used, by default returns the last one for each file
digits The number of significant digits to be displayed.
transform Should diagonal OMEGA and SIGMA elements be transformed to standard deviation and off diagonal elements be transformed to correlations.
show_all Logical, whether the 0 fixed off-diagonal elements should be removed from the output.
quiet Logical, if FALSE messages are printed to the console.

Value

A tibble for single problem/subprob or a named list for multiple problem/subprob.

See Also

prm_table

Examples

# Store the parameter table
prm <- get_prm(xpdb_ex_pk, .problem = 1)

# Display parameters to the console
prm_table(xpdb_ex_pk, .problem = 1)
get_special

Access special model data

Description

Access special model data from an xpdb object.

Usage

get_special(xpdb, .problem = NULL, quiet)

Arguments

- **xpdb**: An xpose_data object from which the special data will be extracted.
- **.problem**: The problem to be used, by default returns the last one.
- **quiet**: Logical, if FALSE messages are printed to the console.

Value

A list.

See Also

- list_special
- xpose_data

Examples

```r
special <- get_summary(xpdb_ex_pk)
special
```

get_summary

Access model summary data

Description

Access model summary data from an xpdb object.

Usage

get_summary(xpdb, .problem = NULL, .subprob = NULL, only_last = FALSE)
Arguments

- **xdpb**: An xpose_data object from which the summary data will be extracted.
- **.problem**: The .problem to be used, by default returns the last one for each label.
- **.subprob**: The subproblem to be used, by default returns the last one for each label.
- **only_last**: Logical, if TRUE only the last record for each label is returned in case of multiple problem and/or subproblem. If FALSE all values are returned.

Value

A tibble of model summary.

See Also

- xpose_data, template_titles, summary.xpose_data

Examples

```r
run_summary <- get_summary(xpdb_ex_pk)
run_summary
```

---

**gg_themes**

An additional set of themes for ggplot2

Description

An additional set of complete ggplot2 themes intended to make ggplot2 more readable when used in presentation or publications. These themes also bring the legend_position option without having to call the ggplot2 theme() function to modify a complete theme.

- **theme_bw2**: Black and white theme inspired by a theme from Gunnar Yngman.
- **theme_readable**: Light grey theme, with dimmed background and grid lines intended to bring the focus on the data.

Usage

```r
theme_bw2(base_size = 11, base_family = "", legend_position = "right")
theme_readable(base_size = 11, base_family = "", legend_position = "right")
```

Arguments

- **base_size**: Base font size.
- **base_family**: Base font family.
- **legend_position**: The position of legends defined as 'none', 'left', 'right', 'bottom', 'top', or a two-element numeric vector.
Examples

# With the gg_theme theme_readable() (default)
dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')

# With the gg_theme theme_bw2()
xpdb_ex_pk %>%
  update_themes(gg_theme = theme_bw2()) %>%
dv_vs_ipred(facets = 'SEX')

ind_plots
Observations, individual predictions and population predictions plotted against the independent variable for every individual

Description

Observations (DV), individual predictions (IPRED) and population predictions (PRED) plotted against the independent variable for every individual

Usage

ind_plots(
  xpdb,
  mapping = NULL,
  group = "variable",
  type = "lp",
  title = "Individual plots | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir | Page @page of @lastpage",
  tag = NULL,
  log = NULL,
  facets,
  .problem,
  quiet,
  color = c("grey60", "deepskyblue4", "deepskyblue3"),
  point_alpha = c(0.8, 0, 0),
  line_linetype = c("blank", "solid", "55"),
  ...
)

Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points ’p’, line ’l’, smooth ’s’ and text ’t’ or any combination of the four.
ind_plots

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>title</td>
<td>Plot title. Use NULL to remove.</td>
</tr>
<tr>
<td>subtitle</td>
<td>Plot subtitle. Use NULL to remove.</td>
</tr>
<tr>
<td>caption</td>
<td>Page caption. Use NULL to remove.</td>
</tr>
<tr>
<td>tag</td>
<td>Plot identification tag. Use NULL to remove.</td>
</tr>
<tr>
<td>log</td>
<td>String assigning logarithmic scale to axes, can be either&quot;, 'x', y' or 'xy'.</td>
</tr>
<tr>
<td>facets</td>
<td>Either a character string to use <code>facet_wrap_paginate</code> or a formula to use</td>
</tr>
<tr>
<td></td>
<td><code>facet_grid_paginate</code>.</td>
</tr>
<tr>
<td>.problem</td>
<td>The $problem number to be used. By default returns the last estimation problem.</td>
</tr>
<tr>
<td>quiet</td>
<td>Logical, if FALSE messages are printed to the console.</td>
</tr>
<tr>
<td>color</td>
<td>Changes the <strong>lines, points and text</strong> color. Should be a vector of 3 values (i.e. DV, IPRED, PRED). This color argument is a special case in xpose as it applies to three different layers (geom_line, geom_point and geom_text). This special case is due to the fact that in ggplot2 it is not possible to have two different color scales for different layers.</td>
</tr>
<tr>
<td>point_alpha</td>
<td>Points alpha, should be a vector of 3 values (i.e. DV, IPRED, PRED).</td>
</tr>
<tr>
<td>line_linetype</td>
<td>Lines linetype, should be a vector of 3 values (i.e. DV, IPRED, PRED).</td>
</tr>
<tr>
<td>...</td>
<td>Any additional aesthetics to be passed on <code>xplot_scatter</code>.</td>
</tr>
</tbody>
</table>

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where layer is one of the names defined in the list below and option is any option supported by this layer e.g. `point_color = 'blue', smooth_method = 'lm', etc.`

- point: options to `geom_point`
- line: options to `geom_line`
- guide: options to `geom_abline`
- smooth: options to `geom_smooth`
- text: options to `geom_text`
- xscale: options to `scale_x_continuous` or `scale_x_log10`
- yscale: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX')))`. In the latter example all plots generate from this xpdb will automatically be stratified by 'SEX'.

...
By default, some plot functions use a custom stratifying variable named 'variable', e.g. \texttt{eta_distrib()}. When using the \texttt{facets} argument, 'variable' needs to be added manually e.g. \texttt{facets = c('SEX', 'variable')} or \texttt{facets = c('SEX', 'variable')}, but is optional, when using the \texttt{facets} argument in \texttt{xp_theme} variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under \texttt{template_titles}.

See Also

\texttt{xplot_scatter}

Examples

```r
Basic example
ind_plots(xpdb_ex_pk, page = 1, ncol = 2, nrow = 2)
```

---

### irep

#### Add simulation counter

**Description**

Add a column containing a simulation counter (irep). A new simulation is counted everytime a value in x is lower than its previous value.

**Usage**

```r
irep(x, quiet = FALSE)
```

**Arguments**

- **x**
  
  The column to be used for computing simulation number, usually the ID column.

- **quiet**
  
  Logical, if FALSE messages are printed to the console.

**Examples**

```r
xpdb_ex_pk_2 <- xpdb_ex_pk %>%
mutate(sim_id = irep(ID), .problem = 2)
```
list_nm_tables  List NONMEM output tables

Description

List NONMEM output tables file names from a nm_model object.

Usage

list_nm_tables(nm_model = NULL)

Arguments

nm_model  An xpose nm_model object generated with read_nm_model.

See Also

read_nm_model, read_nm_tables

Examples

## Not run:
read_nm_model(file = 'run001.lst') %>%
  list_nm_tables()

## End(Not run)

list_vars  List available variables

Description

Function listing all available variables in an xpdb object.

Usage

list_vars(xpdb, .problem = NULL)

Arguments

xpdb  An xpose_data object from which the model code will be extracted.

.problem  The problem to be used, by lists all available problems.

See Also

set_var_types
**list_xpdb**

List available datasets

**Description**

Function providing a detailed listing of all available datasets in an xpdb object.

**Usage**

```r
list_data(xpdb)
list_files(xpdb)
list_special(xpdb)
```

**Arguments**

- `xpdb` An `xpose_data` object to be evaluated

**See Also**

`get_data, get_file, get_special`

**Examples**

```r
List output tables data
list_data(xpdb_ex_pk)

List output files data
list_files(xpdb_ex_pk)

List special data
xpdb_ex_pk %>%
 vpc_data(quiet = TRUE) %>%
 list_special()
```
Description

Manually provide names of the table files to be imported by xpose_data.

Usage

```r
manual_nm_import(
 tab_names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab", "cwtab"),
 tab_suffix = "",
 sim_suffix = "sim"
)
```

Arguments

- `tab_names`: Provide the name of the tables to import e.g. 'sdtab', 'patab', 'cotab', 'catab' for NONMEM.
- `tab_suffix`: Default is "", but can be changed to any character string to be used as suffix in the table names.
- `sim_suffix`: Default is 'sim', but can be changed to any character string to be used as suffix in the simulation table names e.g. sdtab001sim.

Details

In order to be imported manually, table names must follow the following convention: `<tab_names><runno><tab/sim_suffix>`, e.g. sdtab001sim. When the argument 'file' is used in xpose_data, the `<runno>` part is guessed by taking the portion of the string starting by any digit and ending at the file extension e.g. file = run001a.mod will guess `<runno>` as '001a'. If no valid `<runno>` can be guessed, xpose will return an error. In this case it is advised to use the xpose_data argument 'runno' directly rather than 'file' hence preventing xpose from having to guess `<runno>`.

Note that with manual table import xpose still reads in the NONMEM model file in order to generate the run summary.

See Also

- `xpose_data`

Examples

```r
Not run:
Import all names specified by default as in xpose4
xpose_data(runno = '001', manual_import = manual_nm_import())

Import a specific table name
```
minimization_plots

Parameter value or gradient vs. iterations

Description

Change of parameter value or gradient vs. iterations.

Usage

```r
prm_vs_iteration(
 xpdb,
 mapping = NULL,
 group = "variable",
 type = "l",
 title = "Parameter \(y \) vs. \(x \) | \(\text{run} \),
 subtitle = "Method: \(\text{method} \), minimization time: \(\text{runtime} \)\n \text{Termination message: \(\text{term} \)"
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 facets,
 .problem,
 .subprob,
 .method,
 quiet,
 ...)
)
```

```r
grd_vs_iteration(
 xpdb,
 mapping = NULL,
 group = "variable",
 type = "l",
 title = "Gradient \(y \) vs. \(x \) | \(\text{run} \),
 subtitle = "Method: \(\text{method} \), minimization time: \(\text{runtime} \)\n \text{Termination message: \(\text{term} \)"
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 facets,
 .problem,
```
Arguments

xpdb
mapping
group
type
title
subtitle
caption
tag
log
guide
facets
.problem
.subprob
.method
quiet
...

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10
Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c("SEX", "MED1")`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = "label_both")`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = c("SEX", "variable")`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = "SEX"))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the facets argument, ‘variable’ needs to be added manually e.g. `facets = c("SEX", "variable")` or `facets = c("SEX", "variable")`, but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter`

Examples

```r
prm_vs_iteration(xpdb_ex_pk)
grd_vs_iteration(xpdb_ex_pk)
```

**modify_xpdb**

*Add, remove or rename variables in an xpdb*

**Description**

`mutate()` adds new variables and preserves existing ones. `select()` keeps only the listed variables; `rename()` keeps all variables.
Usage

## S3 method for class 'xpose_data'
mutate(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
select(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
rename(.data, ..., .problem, .source, .where)

Arguments

.data An xpose database object.

... Name-value pairs of expressions. Use NULL to drop a variable.
These arguments are automatically quoted and evaluated in the context of the
data frame. They support unquoting and splicing. See the dplyr vignette("programming")
for an introduction to these concepts.

.problem The problem from which the data will be modified

.source The source of the data in the xpdb. Can either be 'data' or an output file extension
e.g. 'phi'.

.where A vector of element names to be edited in special (e.g. .where = c('vpc_dat', 'aggr_obs')
with vpc).

Examples

# Mutate columns
xpdb_ex_pk %>%
  mutate(lnDV = log(DV),
        sim_count = irep(ID),
        .problem = 1) %>%
  dv_vs_idv(aes(y = lnDV))

# Rename/select columns
xpdb_ex_pk %>%
  select(ID:TAD, DV, EVID) %>%
  rename(TSLD = TAD) %>%
  dv_vs_idv(aes(x = TSLD))

pred_vs_idv

Observations and model predictions plotted against the independent variable

Description

Plot of observations (DV), individual model predictions (IPRED) and/or population predictions
(PRED) plotted against the independent variable (IDV).
Usage

dv_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    facets,
    .problem,
    quiet,
    ...
)

ipred_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    facets,
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    .problem,
    quiet,
    ...
)

pred_vs_idv(
    xpdb,
    mapping = NULL,
    group = "ID",
    type = "pls",
    facets,
    title = "@y vs. @x | @run",
    subtitle = "Ofv: @ofv",
    caption = "@dir",
    tag = NULL,
    log = NULL,
    .problem,
    quiet,
    ...
)
pred_vs_idv

```r
dv_preds_vs_idv(
 xpdb,
 mapping = NULL,
 group = "ID",
 type = "pls",
 facets,
 title = "Observations, Individual and Population Predictions vs. @x | @run",
 subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 .problem,
 quiet,
 ...
)
```

Arguments

- `xpdb` An xpose database object.
- `mapping` List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
- `group` Grouping variable to be used for lines.
- `type` String setting the type of plot to be used. Can be points ‘p’, line ‘l’, smooth ‘s’ and text ‘t’ or any combination of the four.
- `title` Plot title. Use NULL to remove.
- `subtitle` Plot subtitle. Use NULL to remove.
- `caption` Page caption. Use NULL to remove.
- `tag` Plot identification tag. Use NULL to remove.
- `log` String assigning logarithmic scale to axes, can be either ’x’, y’ or ‘xy’.
- `facets` Either a character string to use `facet_wrap_paginate` or a formula to use `facet_grid_paginate`.
- `.problem` The $problem number to be used. By default returns the last estimation problem.
- `quiet` Logical, if FALSE messages are printed to the console.
- `...` Any additional aesthetics to be passed on `xplot_scatter`.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- `point`: options to `geom_point`
- `line`: options to `geom_line`
- `guide`: options to `geom_abline`
- `smooth`: options to `geom_smooth`
• text: options to `geom_text`
• xscale: options to `scale_x_continuous` or `scale_x_log10`
• yscale: options to `scale_y_continuous` or `scale_y_log10`

**Faceting**

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX','MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`).

All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk,facets = c('SEX','MED1'),ncol = 3,nrow = 3,page = 1,margins = TRUE,labeler = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk,facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk,xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by 'SEX'.

By default, some plot functions use a custom stratifying variable named 'variable', e.g. `eta_distrib()`. When using the facets argument, 'variable' needs to be added manually e.g. `facets = c('SEX','variable')` or `facets = c('SEX','variable')`, but is optional, when using the facets argument in `xp_theme` variable is automatically added whenever needed.

**Template titles**

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under `template_titles`.

**See Also**

`xplot_scatter`

**Examples**

`dv_vs_idv(xpdb_ex_pk)`

`ipred_vs_idv(xpdb_ex_pk)`

`pred_vs_idv(xpdb_ex_pk)`

`dv_preds_vs_idv(xpdb_ex_pk)`
print.xpose_data  

**Print an xpose_data object**

**Description**

This function returns to the console a list of the files and options attached to an `xpose_data` object.

**Usage**

```r
S3 method for class 'xpose_data'
print(x, ...)
```

**Arguments**

- `x`: An `xpose_data` object generated with `xpose_data`.
- `...`: Ignored in this function

**Examples**

```r
Using the print function
print(xpdb_ex_pk)

Or simply by writing the xpdb name
xpdb_ex_pk
```

---

print.xpose_plot  

**Draw an xpose_plot object**

**Description**

This function explicitly draw an `xpose_plot` and interprets keywords contained in labels.

**Usage**

```r
S3 method for class 'xpose_plot'
print(x, page, ...)
```

**Arguments**

- `x`: An `xpose_plot` object.
- `page`: The page number to be drawn. Can be specified as vector or range of integer values.
- `...`: Options to be passed on to the ggplot2 print method.
Examples

```r
my_plot <- dv_vs_ipred(xpdb_ex_pk) +
 labs(title = 'A label with keywords: @nind individuals & @nobs observations')

Using the print function
print(my_plot)

Or simply by writing the plot object name
my_plot
```

### prm_table

**Display a parameter estimates to the console**

**Description**

Display parameter estimates from an xpdb object to the console.

**Usage**

```r
prm_table(
 xpdb,
 .problem = NULL,
 .subprob = NULL,
 .method = NULL,
 digits = 4,
 transform = TRUE,
 show_all = FALSE
)
```

**Arguments**

- **xpdb**: An `xpose_data` object from which the model output file data will be extracted.
- **.problem**: The problem to be used, by default returns the last one for each file.
- **.subprob**: The subproblem to be used, by default returns the last one for each file.
- **.method**: The estimation method to be used, by default returns the last one for each file.
- **digits**: The number of significant digits to be displayed.
- **transform**: Should diagonal OMEGA and SIGMA elements be transformed to standard deviation and off diagonal elements be transformed to correlations.
- **show_all**: Logical, whether the 0 fixed off-diagonal elements should be removed from the output.

**See Also**

- `get_prm`
Examples

# Store the parameter table
prm <- get_prm(xpdb_ex_pk, .problem = 1)

# Display parameters to the console
prm_table(xpdb_ex_pk, .problem = 1)

---

**qq_plot**

QQ plots of ETA and residuals

**Description**

QQ plots of the ETA and model residuals.

**Usage**

```r
prm_qq(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "p",
 title = "QQ plot of parameters | @run",
 subtitle = "Based on @nind individuals",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets, .problem,
 quiet,
 ...
)
```

```r
eta_qq(
 xpdb,
 mapping = NULL,
 drop_fixed = TRUE,
 type = "p",
 title = "QQ plot of etas | @run",
 subtitle = "Based on @nind individuals, Eta shrink: @etashk",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets, .problem,
 quiet,
 ...
)
```
Arguments

- **xpdb**: An xpose database object.
- **mapping**: List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- **drop_fixed**: Should columns that only have a single unique value (i.e. fixed) be dropped.
- **type**: String setting the type of plot. Can only be points 'p'.
- **title**: Plot title. Use NULL to remove.
- **subtitle**: Plot subtitle. Use NULL to remove.
- **caption**: Page caption. Use NULL to remove.
**tag**  
Plot identification tag. Use NULL to remove.

**log**  
String assigning logarithmic scale to axes, can be either ‘’, ‘x’, ‘y’ or ‘xy’.

**guide**  
Should the guide (e.g. reference line) be displayed.

**facets**  
Either a character string to use `facet_wrap_paginate` or a formula to use `facet_grid_paginate`.

**.problem**  
The $problem number to be used. By default returns the last estimation problem.

**quiet**  
Logical, if FALSE messages are printed to the console.

**...**  
Any additional aesthetics to be passed on `xplot_scatter`.

**res**  
Only used for `res_qq`. Defines the type of residual to be used. Default is "CWRES".

### Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and `option` is any option supported by this layer e.g. `point_color = 'blue'`, etc.

- **point**: options to `geom_point`
- **guide**: options to `geom_abline`
- **xscale**: options to `scale_x_continuous` or `scale_x_log10`
- **yscale**: options to `scale_y_continuous` or `scale_y_log10`

### Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets = c('SEX','MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk,facets = SEX~MED1,ncol = 3,nrow = 3,page = 1,margins = TRUE,labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk,facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <-update_themes(xpdb_ex_pk,xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named 'variable', e.g. `eta_distrib()`. When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX','variable')` or `facets = c('SEX','variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

### Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`. 

```r
Example of using template titles
template_titles <- c('Run @run', 'Nobs @nobs observations in @nind subjects')

dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, margrings = TRUE, labeller = 'label_both', template_titles)
```
See Also

xplot_distrib

Examples

# QQ plot of parameters
prm_qq(xpdb_ex_pk)

# QQ plot of eta
esta_qq(xpdb_ex_pk)

# QQ plot of residuals
res_qq(xpdb_ex_pk, res = c('IWRES', 'CWRES'))

# QQ plot of continuous covariates
cov_qq(xpdb_ex_pk)

read_nm_files

NONMEM output file import function

Description

Quickly import NONMEM output files into R.

Usage

read_nm_files(
  runno = NULL,
  prefix = "run",
  ext = c(".ext", ".cor", ".cov", ".phi", ".grd", ".shk"),
  file = NULL,
  dir = NULL,
  quiet = FALSE
)

Arguments

runno Run number to be evaluated.

prefix Prefix of the model file names.

ext A vector of the file extension to import. By default ‘.ext’, ‘.cor’, ‘.cov’, ‘.phi’, ‘.grd’, ‘.shk’ files are listed.

file Names of the model output file to be imported. Alternative argument to prefix, runno and ext.

dir Location of the model files.

quiet Logical, if FALSE messages are printed to the console.
File path generation

The rules for model file names generation are as follow:

- with `runno`: the full path is generated as `<dir>/<prefix><runno>.<ext>` e.g. with `dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst'` the resulting path would be `model/pk/run001.lst`
- with `file`: the full path is generated as `<dir>/<file>` e.g. with `dir = 'model/pk', file = 'run001.lst'` the resulting path would also be `model/pk/run001.lst`. Note: in this case the file extension should be provided as part of the ‘file’ argument.

See Also

`xpose_data, read_nm_tables`

Examples

```r
Not run:
Using the `file` argument to import a model file:
ext_file <- read_nm_files(file = 'run001.ext', dir = 'models')

Using the `runno` argument to import a model file:
ex
```

Description

Parse NONMEM model files in R format

Usage

```r
read_nm_model(
 runno = NULL,
 prefix = "run",
 ext = "\.lst",
 file = NULL,
 dir = NULL
)
```

Arguments

- `runno` Run number to be used to generate model file name. Used in combination with `prefix` and `ext`.
- `prefix` Prefix to be used to generate model file name. Used in combination with `runno` and `ext`.

read_nm_model  NONMEM model file parser
Extension to be used to generate model file name. Should be one of '.lst' (default), '.out', '.res', '.mod' or '.ctl' for NONMEM.

Model file name (preferably a '.lst' file) containing the file extension. Alternative to prefix, runno and ext arguments.

Location of the model files.

Details

A NONMEM model output file (i.e. .lst, .out or .res) should preferably be provided to `read_nm_model` to allow for a more extensive xpose summary. However in some cases these output files may not contain the model code, thus preventing xpose from identifying the associated output tables names. In such cases xpose will attempt to read the associated model file (i.e. .mod or .ctl) instead to find the model code. Note: it is important that between the naming convention between the NONMEM output and the model file remains consistent e.g. run001.lst should be associated with run001.mod.

Value

A tibble of class `model` containing the following columns:

- **problem**: a numeric identifier for the `$PROBLEM` associated with the code.
- **level**: a unique numeric identifier to each subroutine block associated with the code.
- **subroutine**: a character identifier named after the 3 first letters of the subroutine name e.g. `$THETA` and `$TABLE` will become 'the' and 'tab' respectively. In addition all output from the .lst is labeled 'lst', the general nonmem output e.g. NM-TRAN messages are labelled 'oth'. With priors thp, tpv, omp, opd, sip, spd abbreviations are given to the THETAP, THETAPV, OMEGAP, etc.
- **code**: the code without comments or subroutine names e.g. 'STHETA 0.5 ; TVCL' will return '0.5'.
- **comment**: the last comment of a record e.g. '0.5 ; Clearance (L/h) ; TVCL' will return 'TVCL'.

File path generation

The rules for model file names generation are as follow:

- with runno: the full path is generated as `<dir>/<prefix><runno>.<ext>` e.g. with dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst' the resulting path would be model/pk/run001.lst
- with file: the full path is generated as `<dir>/<file>` e.g. with dir = 'model/pk', file = 'run001.lst' the resulting path would also be model/pk/run001.lst. Note: in this case the file extension should be provided as part of the 'file' argument.

See Also

`xpose_data`, `read_nm_tables`
Examples

```r
Not run:
Using the `file` argument to import a model file:
nm_model <- read_nm_model(file = 'run001.lst', dir = 'models')

Using the `runno` argument to import a model file:
nm_model <- read_nm_model(runno = '001', ext = '.lst', dir = 'models')
```

## End(Not run)

---

**read_nm_tables**  
*NONMEM output table import function*

### Description

Quickly import NONMEM output tables into R. This function automatically detects the optimal settings to import the tables from nonmem.

### Usage

```r
read NM_tables(
 file = NULL,
 dir = NULL,
 combined = TRUE,
 rm_duplicates = TRUE,
 quiet = FALSE,
 simtab = NULL,
 ziptab = TRUE,
 ...
)
```

### Arguments

- `file`  
  A character vector of path to the files or a `nm_table_list` object created with `list_nm_tables`.

- `dir`  
  Location of the model files.

- `combined`  
  Logical value indicating whether multiple tables should be combined into a single one. If the number of rows does not match an error will be returned.

- `rm_duplicates`  
  Logical value indicating whether duplicated columns should be removed.

- `quiet`  
  Logical, if `FALSE` messages are printed to the console.

- `simtab`  
  If `TRUE` only reads in simulation tables, if `FALSE` only reads estimation tables. Default `NULL` reads all tables.

- `ziptab`  
  If `TRUE` search for the tables that have been compressed and renamed `<file>.zip`.

- `...`  
  Additional arguments to be passed to the `read_table2` or `read_csv` functions.
Table format requirement

When using `read_nm_tables` with the combined argument set to FALSE an ID column must be present in all data tables. When combined is set to TRUE instead an ID column must be present in at least one table for each problem and for each ‘firstonly’ category. ID columns are required to properly combine/merge tables and removing NA records. If the ID column is missing from a table and combined = FALSE `read_nm_tables` will return the following warning: Unknown variables: ‘ID’. While the data is returned beware that NA records might be left in the data and the output should be checked carefully. If combined = TRUE `read_nm_tables` xpose is more strict and will return the following warning instead: Dropped `<tablenames>` due to missing required ‘ID’ column..

Examples

```r
Not run:
Import tables manually and return them as a list of individual tables
nm_tables <- read_nm_tables(file = c('sdtab001', 'patab001'),
 dir = 'models', combined = FALSE)

Import tables manually and return them as a single merged table
nm_tables <- read_nm_tables(file = c('sdtab001', 'patab001'),
 dir = 'models', combined = TRUE)

Import tables automatically (used internally by xpose_data())
nm_tables <- read_nm_model(file = 'run001.lst', dir = 'models') %>%
 list_nm_tables() %>%
 read_nm_tables()

Passing arguments to readr via '...'
(e.g. import columns as character and only first 10 rows)
nm_tables <- read_nm_tables(file = 'sdtab001', dir = 'models',
 col_type = readr::cols(.default = 'c'),
 n_max = 10)
```

## End(Not run)

---

### res_vs_idv

Residuals plotted against the independent variable

**Description**

Model residuals plotted against the independent variable (IDV).

The residuals can be one of:

- RES: model residuals
- WRES: weighted model residuals
- CWRES: conditional weighted model residuals
- EWRES/ECWRES: Monte Carlo based model residuals
- NPDE: Normalized prediction distribution error
res_vs_idv

Usage

```r
res_vs_idv(
 xpdb,
 mapping = NULL,
 res = "CWRES",
 group = "ID",
 type = "pls",
 title = "@y vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = TRUE,
 facets,
 .problem,
 quiet,
 ...
)
```

```r
absval_res_vs_idv(
 xpdb,
 mapping = NULL,
 res = "CWRES",
 group = "ID",
 type = "pls",
 title = "@y vs. @x | @run",
 subtitle = "Ofv: @ofv",
 caption = "@dir",
 tag = NULL,
 log = NULL,
 guide = FALSE,
 facets,
 .problem,
 quiet,
 ...
)
```

Arguments

- `xpdb`: An xpose database object.
- `mapping`: List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- `res`: Type of residual to be used. Default is "CWRES".
- `group`: Grouping variable to be used for lines.
- `type`: String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
- `title`: Plot title. Use NULL to remove.
- `subtitle`: Plot subtitle. Use NULL to remove.
caption    Page caption. Use NULL to remove.
tag     Plot identification tag. Use NULL to remove.
log     String assigning logarithmic scale to axes, can be either "", 'x', y' or 'xy'.
guide     Enable guide display (e.g. unity line).
facets     Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem     The $problem number to be used. By default returns the last estimation problem.
quiet     Logical, if FALSE messages are printed to the console.
...     Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables starting with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.

See Also

xplot_scatter

Examples

# Standard residual
res_vs_idv(xpdb_ex_pk, res = c('IWRES', 'CWRES'))

# Absolute value of the residuals
absval_res_vs_idv(xpdb_ex_pk, res = 'CWRES')
Residuals plotted against population predictions

Description

Model residuals plotted against population predictions (PRED).

The residuals can be one of:

- RES: model residuals
- WRES: weighted model residuals
- CWRES: conditional weighted model residuals
- EWRES/ECWRES: Monte Carlo based model residuals
- NPDE: Normalized prediction distribution error

Usage

res_vs_pred(
  xpdb,
  mapping = NULL,
  res = "CWRES",
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet,
  ...
)

absval_res_vs_pred(
  xpdb,
  mapping = NULL,
  res = "CWRES",
  group = "ID",
  type = "pls",
  title = "@y vs. @x | @run",
  subtitle = "Ofv: @ofv",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = FALSE,
facets,  
.problem,  
quiet,  
...  
)

Arguments

xpdb An xpose database object.
mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
res Type of residual to be used. Default is "CWRES".
group Grouping variable to be used for lines.
type String setting the type of plot to be used. Can be points 'p', line 'l', smooth 's' and text 't' or any combination of the four.
title Plot title. Use NULL to remove.
subtitle Plot subtitle. Use NULL to remove.
caption Page caption. Use NULL to remove.
tag Plot identification tag. Use NULL to remove.
log String assigning logarithmic scale to axes, can be either '', 'x', y' or 'xy'.
guide Enable guide display (e.g. unity line).
facets Either a character string to use facet_wrap_paginate or a formula to use facet_grid_paginate.
.problem The $problem number to be used. By default returns the last estimation problem.
quiet Logical, if FALSE messages are printed to the console.
... Any additional aesthetics to be passed on xplot_scatter.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10
Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter`

Examples

```r
Standard residual
res_vs_pred(xpdb_ex_pk, res = c('IWRES', 'CWRES'))

Absolute value of the residuals
absval_res_vs_pred(xpdb_ex_pk, res = 'CWRES')
```

---

**set_vars**  
*Set variable type, label or units*

**Description**

Function designed to change the type, label or unit associated with variables.
Usage

set_var_types(xpdb, .problem = NULL, ..., auto_factor = TRUE, quiet)

set_var_labels(xpdb, .problem = NULL, ..., quiet)

set_var_units(xpdb, .problem = NULL, ..., quiet)

Arguments

xpdb
   An xpose_data object.

.problem
   The problem number to which the edits will be applied.

...
   Specifications of the edits to be made to the xpdb index. Edits are made as type and variable pairs e.g. idv = 'TAD' will assign TAD to the type idv (independent variable).

auto_factor
   With set_var_types only. If TRUE new columns assigned to the type 'catcov' will be converted to factor.

quiet
   Logical, if FALSE messages are printed to the console.

Value

An xpose_data object

Recognized variable types

- a: Compartments’ amount
- amt: Dose amount
- catcov: Categorical covariate
- contcov: Continuous covariate
- dv: Dependent variable
- dvid: DV identifier
- eta: Eta
- evid: Event identifier
- id: Subject identifier
- idv: Independent variable
- ipred: Individual model predictions
- mdv: Missing dependent variable
- na: Not attributed
- occ: Occasion flag
- param: Model parameter
- pred: Typical model predictions
- res: Residuals
subset_xpdb

See Also

list_vars

Examples

# Change variable type
xpdb_2 <- set_var_types(xpdb_ex_pk, .problem = 1, idv = 'TAD')

# Change labels
xpdb_2 <- set_var_labels(xpdb_2, .problem = 1, A LaGi = 'Lag time', CL = 'Clearance', V = 'Volume')

# Change units
xpdb_2 <- set_var_units(xpdb_2, .problem = 1, A LaGi = 'h', CL = 'L/h', V = 'L')

subset_xpdb  Subset datasets in an xpdb

Description

Use filter() to select rows/cases where conditions are true. Unlike base subsetting, rows where
the condition evaluates to NA are dropped. Use slice() to select row/cases by their position

Usage

## S3 method for class 'xpose_data'
filter(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
slice(.data, ..., .problem, .source, .where)

## S3 method for class 'xpose_data'
distinct(.data, ..., .problem, .source, .where)

Arguments

.data             An xpose database object.

...               Name-value pairs of expressions. Use NULL to drop a variable.
These arguments are automatically quoted and evaluated in the context of the
data frame. They support unquoting and splicing. See the dplyr vignette("programming")
for an introduction to these concepts.

.problem          The problem from which the data will be modified

.source           The source of the data in the xpdb. Can either be `data` or an output file extension
e.g. `phi`.

.where            A vector of element names to be edited in special (e.g. .where = c('vpc_dat', 'aggr_obs')
with vpc).
summarise_xpdb

Examples

# Subset by condition
xpdb_ex_pk %>%
  filter(DV < 1, .problem = 1) %>%
  dv_vs_ipred()

# Subset by positions
xpdb_ex_pk %>%
  slice(1:100, .problem = 1) %>%
  dv_vs_ipred()

# Deduplicate rows
xpdb_ex_pk %>%
  distinct(TIME, .problem = 1) %>%
  dv_vs_ipred()

summarise_xpdb

Group/ungroup and summarize variables in an xpdb

Description

`group_by()` takes an existing table and converts it into a grouped table where operations are performed "by group". `ungroup()` removes grouping. `summarize()` reduces multiple values down to a single value.

Usage

```r
S3 method for class 'xpose_data'
group_by(.data, ..., .problem, .source, .where)

S3 method for class 'xpose_data'
ungroup(x, ..., .problem, .source, .where)

S3 method for class 'xpose_data'
summarise(.data, ..., .problem, .source, .where)

S3 method for class 'xpose_data'
summarize(.data, ..., .problem, .source, .where)
```

Arguments

- `.data` An xpose database object.
- `...` Name-value pairs of expressions. Use NULL to drop a variable. These arguments are automatically quoted and evaluated in the context of the data frame. They support unquoting and splicing. See the dplyr vignette("programming") for an introduction to these concepts.
- `.problem` The problem from which the data will be modified
The source of the data in the xpdb. Can either be 'data' or an output file extension e.g. 'phi'.
A vector of element names to be edited in special (e.g. .where = c('vpc_dat', 'aggr_obs') with vpc).
Same as .data (used for consistency with dplyr functions).

Examples

# Create a distribution plot of Cmax
xpdb_ex_pk %>%
group_by(ID, SEX, .problem = 1) %>%
summarize(CMAX = max(DV), .problem = 1) %>%
ungroup(.problem = 1) %>%
xplot_distrib(aes(x = CMAX, density_fill = SEX), type = 'dr')

summary(xpdb_ex_pk)
Description

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and the filename when saving with the \texttt{xpose\_save} function.

Template titles are defined via a single string containing key variables staring with a \texttt{@} (e.g. \texttt{@ofv}) which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects’ would become 'run001, 1022 observations in 74 subjects’

Many key variables are available:

- \texttt{@condn}  
  Condition number
- \texttt{@covtime}  
  Covariance matrix runtime
- \texttt{@data}  
  Model input data used
- \texttt{@descr}  
  Model description
- \texttt{@dir}  
  Model directory
- \texttt{@epsshk}  
  Epsilon shrinkage
- \texttt{@errors}  
  Run errors (e.g. termination error)
- \texttt{@esampleseed}  
  ESAMPLE seed number (used in NPDE)
- \texttt{@etashk}  
  Eta shrinkage
- \texttt{@file}  
  Model file name
- \texttt{@label}  
  Model label
- \texttt{@method}  
  Estimation method or sim
- \texttt{@nesample}  
  Number of ESAMPLE (used in NPDE)
- \texttt{@nind}  
  Number of individuals
- \texttt{@nobs}  
  Number of observations
- \texttt{@nsig}  
  Number of significant digits
- \texttt{@nsim}  
  Number of simulations
- \texttt{@ofv}  
  Objective function value
- \texttt{@page}  
  Are respectively the page number and the number of the last page when faceting on multiple pages
- \texttt{@probn}  
  Problem number
- \texttt{@plotfun}  
  Name of the plot function
- \texttt{@ref}  
  Reference model
- \texttt{@run}  
  Model run name
- \texttt{@runtime}  
  Estimation/Sim runtime
- \texttt{@software}  
  Software used (e.g. NONMEM)
@simseed Simulation seed
@subroutine Differential equation solver
@timestart Run start time
@timestop Run stop time
@timeplot Time of the plot rendering
@term Termination message
@version Software version (e.g. 7.3)
@vpcci VPC confidence interval
@vpcdir VPC data directory
@vpcloq VPC lower limit of quantification
@vpcnsim Number of simulations for VPC
@vpcpi VPC prediction interval
@vpculoq VPC upper limit of quantification
@warnings Run warnings (e.g. boundary)
@x @y etc. Name of any ggplot2 variable used for mapping in an aes() type function

See Also
xpose_save

Examples

# Defined when creating a plot
dv_vs_ipred(xpdb_ex_pk, 
    title = '@x vs. @y',
    subtitle = '@ofv, @nind subjects, @nobs obs.',
    caption = '@run, @descr')

# Any label can be modified later on
dv_vs_ipred(xpdb_ex_pk, aes(point_color = SEX,
    line_color = SEX)) +
  labs(title = 'This runs is: @descr',
       color = 'Color scale for @run',
       x = 'IPRED for @nind subjects',
       subtitle = NULL)
update_themes

Create xpose theme

Description

Create an xpose theme. This function will update the theme of an xpdb object. All plots generated with this xpdb will automatically use the defined xpose (xp_theme) and ggplot2 (gg_theme) themes.

Usage

update_themes(xpdb = NULL, gg_theme = NULL, xp_theme = NULL, quiet)

Arguments

xpdb An xpose_data object generated with xpose_data.

 gg_theme A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.

 xp_theme A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).

 quiet Logical, if FALSE messages are printed to the console.

Examples

# Before default theme
dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')

# Updating the gg_theme and xp_theme
xpdb_ex_pk %>%
  update_themes(gg_theme = theme(legend.position = 'top'),
               xp_theme = list(point_color = 'blue',
                              line_color = 'blue')) %>%
dv_vs_ipred(facets = 'SEX')

vpc Visual predictive checks

Description

Generate visual predictive checks (VPC)
vpc

Usage

vpc(
  xpdb,
  vpc_type = NULL,
  mapping = NULL,
  smooth = TRUE,
  type = "alpr",
  title = "Visual predictive checks | @run",
  subtitle = "Number of simulations: @vpcnsim, confidence interval: @vpcci%",
  caption = "@vpcdir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  gg_theme,
  xp_theme,
  facets,
  quiet,
  area_fill = c("steelblue3", "grey60", "steelblue3"),
  line_linetype = c("93", "solid", "93"),
...
)

Arguments

xpdb An xpose database object.

vpc_type Only used when multiple vpc data are present in the same xpdb. The type of
  vpc to be created. Can be one of can be one of: 'continuous', 'categorical',
  'censored' or 'time-to-event'.

mapping List of aesthetics mappings to be used for the xpose plot (e.g. point_color).

smooth Should the bins be smoothed (connect bin midpoints, default) or shown as rect-
  angular boxes.

type String setting the type of plot to be used. Can be points 'p', line 'l', area 'a', rug
  'r' and text 't' or any combination of the five.

title Plot title. Use NULL to remove.

subtitle Plot subtitle. Use NULL to remove.

caption Page caption. Use NULL to remove.

tag Plot identification tag. Use NULL to remove.

log String assigning logarithmic scale to axes, can be either ", 'x', y" or 'xy'.

guide Enable guide display in vpc continuous (e.g. lloq and uloq lines).

gg_theme A complete ggplot2 theme object (e.g. theme_classic), a function returning a
  complete ggplot2 theme, or a change to the current gg_theme.

xp_theme A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to
  the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).
facets Either a character string to use facet_wrap or a formula to use facet_grid.
quiet Logical, if FALSE messages are printed to the console.
area_fill Shaded areas filling color, should be a vector of 3 values (i.e. low, med, high).
line_linetype Lines linetype, should be a vector of 3 values (i.e. low, med, high).

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', area_fill = 'green', etc.

- point: options to geom_point
- line: options to geom_line
- area: options to geom_ribbon (smooth = TRUE) or geom_rect (smooth = FALSE)
- rug: options to geom_rug
- text: options to geom_text
- guide: options to geom_hline
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap paginate when the facets argument is a character string (e.g. facets = c('SEX','MED1')) or facet_grid paginate when facets is a formula (e.g. facets = SEX~MED1).

All xpose plot functions accept all the arguments for the facet_wrap paginate and facet_grid paginate functions e.g. dv_vs_ipred(xpdb_ex_pk,facets = SEX~MED1,ncol = 3,nrow = 3,page = 1,margins = TRUE,labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk,facets = 'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <-update_themes(xpdb_ex_pk,xp_theme = list(facets = 'SEX'))). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. eta_distrib(). When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX','variable') or facets = c('SEX','variable'), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a @ (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.
See Also

`vpc_data`

Examples

```r
xpdb_ex_pk %>%
 vpc_data(opt = vpc_opt(n_bins = 7)) %>%
 vpc()
```

---

### Description

Generate visual predictive checks (VPC) data

### Usage

```r
vpc_data(
 xpdb,
 opt,
 stratify,
 vpc_type = c("continuous", "categorical", "censored", "time-to-event"),
 psn_folder = NULL,
 psn_bins = FALSE,
 obs_problem = NULL,
 sim_problem = NULL,
 quiet
)
```

### Arguments

- **xpdb**: An xpose database object.
- **opt**: A list of options regarding binning, pi and ci computation. For more information see `vpc_opt`
- **stratify**: Either a character string or a formula to stratify the data. For `categorical` vpcs the stratification fixed to the different categories.
- **vpc_type**: A string specifying the type of VPC to be created, can be one of: `continuous`, `categorical`, `censored` or `time-to-event`.
- **psn_folder**: Specify a PsN-generated VPC-folder.
- **psn_bins**: Only used with argument `psn_folder`. If TRUE bins will be imputed from the PsN `vpc_bins.txt` file. If FALSE (default) bins will be re-calculated in R. Note that when `psn_bins = TRUE` only the first bin array will be used and applied to all panels as it is not currently possible to define per panel binning in xpose. In addition when `psn_bins = TRUE` is used along with `vpc(smooth = FALSE)` the observations lines may not be centered in the bins. Check the output carefully.
obs_problem Alternative to the option 'psn_folder'. The $problem number to be used for observations. By default returns the last estimation problem.

sim_problem Alternative to the option 'psn_folder'. The $problem number to be used for simulations. By default returns the last simulation problem.

quiet Logical, if FALSE messages are printed to the console.

See Also

vpc vpc_opt

Examples

## Not run:
xpdb_ex_pk %>%
  vpc_data() %>%
  vpc()
## End(Not run)

---

vpc_opt Generate a list of options for VPC data generation

Description

Provide a list of options to vpc_data function.

Usage

vpc_opt(
bins = "jenks",
n_bins = "auto",
bin_mid = "mean",
pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.025, 0.975),
ci = c(0.025, 0.975),
lloq = NULL,
uloq = NULL,
rtte = FALSE,
rtte_calc_diff = TRUE,
events = NULL,
kmmc = NULL,
reverse_prob = FALSE,
as_percentage = TRUE
)

vpc_opt

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bins</td>
<td>Binning method, can be one of 'density', 'time', 'data', 'none', or one of the approaches available in classInterval() such as 'jenks' (default), 'pretty', or a numeric vector specifying the bin separators.</td>
</tr>
<tr>
<td>n_bins</td>
<td>When using the 'auto' binning method, what number of bins to aim for.</td>
</tr>
<tr>
<td>bin_mid</td>
<td>Specify how to is the mid bin value calculated, can be either 'mean' for the mean of all timepoints (default) or 'middle' to use the average of the bin boundaries.</td>
</tr>
<tr>
<td>pred_corr</td>
<td>Option reserved to continuous VPC. Logical, should a prediction correction (pcVPC) of the data be used.</td>
</tr>
<tr>
<td>pred_corr_lower_bnd</td>
<td>Option reserved to continuous VPC. Lower bound for the prediction-correction.</td>
</tr>
<tr>
<td>pi</td>
<td>Option reserved to continuous VPC. Simulated prediction interval to plot. Default is c(0.05, 0.95).</td>
</tr>
<tr>
<td>ci</td>
<td>Confidence interval around the percentiles to plot. Default is c(0.05, 0.95)</td>
</tr>
<tr>
<td>lloq</td>
<td>Number or NULL indicating lower limit of quantification. Default is NULL.</td>
</tr>
<tr>
<td>uloq</td>
<td>Number or NULL indicating upper limit of quantification. Default is NULL.</td>
</tr>
<tr>
<td>rtte</td>
<td>Option reserved to time-to-event VPC. Is the data repeated time-to-event (RTTE) TRUE or single time-to-event (TTE) FALSE.</td>
</tr>
<tr>
<td>rtte_calc_diff</td>
<td>Option reserved to time-to-event VPC. Should the time be recalculated? When simulating in NONMEM, you will probably need to set this to TRUE to recalculate the TIME to the relative time between events (unless you output the time difference between events and specify that as independent variable in the index.</td>
</tr>
<tr>
<td>events</td>
<td>Option reserved to time-to-event VPC. Numeric vector describing which events to show a VPC for when repeated TTE data, e.g. c(1:4). Default is NULL, which shows all events.</td>
</tr>
<tr>
<td>kmmc</td>
<td>Option reserved to time-to-event VPC. Either NULL for regular TTE VPC (default), or a variable name for a KMMC plot (e.g. 'WT').</td>
</tr>
<tr>
<td>reverse_prob</td>
<td>Option reserved to time-to-event VPC. Should the probability be reversed (i.e. plot 1-probability).</td>
</tr>
<tr>
<td>as_percentage</td>
<td>Should the Y-scale be in percent (0-100) TRUE (default), or standard (0-1) FALSE.</td>
</tr>
</tbody>
</table>

See Also

vpc vpc_data

Examples

vpc_opt()
**Description**

Moxonidine `xpose` data example.

**Format**

An `xpose` object

**Source**


**Examples**

```r
print(xpdb_ex_pk)
```

---

**xplot_distrib**  
*Default xpose distribution plot function*

**Description**

Manually generate distribution plots from an `xpdb` object.

**Usage**

```r
xplot_distrib(xpdb,
 mapping = NULL,
 type = "hr",
 guide = FALSE,
 xscale = "continuous",
 yscale = "continuous",
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 tag = NULL,
 plot_name = "density_plot",
 gg_theme,
 xp_theme,
 opt,
```

---
Arguments

- **xpdb**: An xpose_data object generated with xpose_data.
- **mapping**: List of aesthetics mappings to be used for the xpose plot (e.g. point_color).
- **type**: String setting the type of plot to be used. Can be histogram ’h’, density ’d’, rug ’r’ or any combination of the three.
- **guide**: Should the guide (e.g. reference distribution) be displayed.
- **xscale**: Scale type for x axis (e.g. ’continuous’, ’discrete’, ’log10’).
- **yscale**: Scale type for y axis (e.g. ’continuous’, ’discrete’, ’log10’).
- **title**: Plot title. Use NULL to remove.
- **subtitle**: Plot subtitle. Use NULL to remove.
- **caption**: Page caption. Use NULL to remove.
- **tag**: Plot identification tag. Use NULL to remove.
- **plot_name**: Name to be used by xpose_save() when saving the plot.
- **gg_theme**: A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.
- **xp_theme**: A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).
- **opt**: A list of options in order to create appropriate data input for ggplot2. For more information see data_opt.
- **quiet**: Logical, if FALSE messages are printed to the console.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. histogram_fill = 'blue', rug_sides = 'b', etc.

- **histogram**: options to geom_histogram
- **density**: options to geom_density
- **rug**: options to geom_rug
- **xscale**: options to scale_x_continuous or scale_x_log10
- **yscale**: options to scale_y_continuous or scale_y_log10
Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the facets argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`). All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets = SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`. When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’. The available key variables are listed under `template_titles`.

See Also

`xplot_scatter` `xplot_qq`

Examples

```r
A simple histogram
xplot_distrib(xpdb_ex_pk, aes(x = WT), type = 'hr')

A simple density plot
xplot_distrib(xpdb_ex_pk, aes(x = CWRES), type = 'dr')
```

---

**xplot_qq**

Default xpose QQ plot function

**Description**

Manually generate QQ plots from an xpdb object.
Usage

```r
xplot_qq(
 xpdb,
 mapping = NULL,
 type = "p",
 guide = FALSE,
 xscale = "continuous",
 yscale = "continuous",
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 tag = NULL,
 plot_name = "qq_plot",
 gg_theme,
 xp_theme,
 opt,
 quiet,
 ...
)
```

Arguments

- `xpdb` An `xpose_data` object generated with `xpose_data`.
- `mapping` List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- `type` String setting the type of plot to be used. Can only be points 'p'.
- `guide` Should the guide (e.g. reference line) be displayed.
- `xscale` Scale type for x axis (e.g. 'continuous', 'discrete', 'log10').
- `yscale` Scale type for y axis (e.g. 'continuous', 'discrete', 'log10').
- `title` Plot title. Use NULL to remove.
- `subtitle` Plot subtitle. Use NULL to remove.
- `caption` Page caption. Use NULL to remove.
- `tag` Plot identification tag. Use NULL to remove.
- `plot_name` Name to be used by `xpose_save()` when saving the plot.
- `gg_theme` A complete `ggplot2` theme object (e.g. `theme_classic`), a function returning a complete `ggplot2` theme, or a change to the current `gg_theme`.
- `xp_theme` A complete xpose theme object (e.g. `theme_xp_default`) or a list of modifications to the current `xp_theme` (e.g. `list(point_color = 'red', line_linetype = 'dashed')`).
- `opt` A list of options in order to create appropriate data input for `ggplot2`. For more information see `data_opt`.
- `quiet` Logical, if FALSE messages are printed to the console.
- `...` Any additional aesthetics.
Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is `layer_option` where `layer` is one of the names defined in the list below and `option` is any option supported by this layer e.g. `point_color = 'blue'`, etc.

- `point`: options to `geom_point`
- `guide`: options to `geom_abline`
- `xscale`: options to `scale_x_continuous` or `scale_x_log10`
- `yscale`: options to `scale_y_continuous` or `scale_y_log10`

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions `facet_wrap_paginate` when the `facets` argument is a character string (e.g. `facets = c('SEX', 'MED1')`) or `facet_grid_paginate` when facets is a formula (e.g. `facets = SEX~MED1`).

All xpose plot functions accept all the arguments for the `facet_wrap_paginate` and `facet_grid_paginate` functions e.g. `dv_vs_ipred(xpdb_ex_pk, facets =SEX~MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both')`.

Faceting options can either be defined in plot functions (e.g. `dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')`) or assigned globally to an xpdb object via the `xp_theme` (e.g. `xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))`). In the latter example all plots generate from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. `eta_distrib()`.

When using the `facets` argument, ‘variable’ needs to be added manually e.g. `facets = c('SEX', 'variable')` or `facets = c('SEX', 'variable')`, but is optional, when using the `facets` argument in `xp_theme` variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a ‘@’ (e.g. ‘@ofv’) which will be replaced by their actual value when rendering the plot. For example ‘@run, @nobs observations in @nind subjects’ would become ‘run001, 1022 observations in 74 subjects’.

The available key variables are listed under `template_titles`.

See Also

`xplot_scatter` `xplot_distrib`

Examples

```r
xplot_qq(xpdb_ex_pk, aes(sample = CWRES), guide = TRUE)
```
**Description**

Manually generate scatter plots from an xpdb object.

**Usage**

```r
xplot_scatter(
 xpdb,
 mapping = NULL,
 group = "ID",
 type = "pls",
 guide = FALSE,
 xscale = "continuous",
 yscale = "continuous",
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 tag = NULL,
 plot_name = "scatter_plot",
 gg_theme,
 xp_theme,
 opt,
 quiet,
 ...
)
```

**Arguments**

- `xpdb`: An xpose_data object generated with `xpose_data`.
- `mapping`: List of aesthetics mappings to be used for the xpose plot (e.g. `point_color`).
- `group`: Grouping variable to be used for lines.
- `type`: String setting the type of plot to be used. Can be line 'l', point 'p', smooth 's' and text 't' or any combination of the four.
- `guide`: Should the guide (e.g. unity line) be displayed.
- `xscale`: Scale type for x axis (e.g. 'continuous', 'discrete', 'log10').
- `yscale`: Scale type for y axis (e.g. 'continuous', 'discrete', 'log10').
- `title`: Plot title. Use NULL to remove.
- `subtitle`: Plot subtitle. Use NULL to remove.
- `caption`: Page caption. Use NULL to remove.
- `tag`: Plot identification tag. Use NULL to remove.
- `plot_name`: Name to be used by `xpose_save()` when saving the plot.
gg_theme  
A complete ggplot2 theme object (e.g. theme_classic), a function returning a complete ggplot2 theme, or a change to the current gg_theme.

xp_theme  
A complete xpose theme object (e.g. theme_xp_default) or a list of modifications to the current xp_theme (e.g. list(point_color = 'red', line_linetype = 'dashed')).

opt  
A list of options in order to create appropriate data input for ggplot2. For more information see data_opt.

quiet  
Logical, if FALSE messages are printed to the console.

...  
Any additional aesthetics.

Layers mapping

Plots can be customized by mapping arguments to specific layers. The naming convention is layer_option where layer is one of the names defined in the list below and option is any option supported by this layer e.g. point_color = 'blue', smooth_method = 'lm', etc.

- point: options to geom_point
- line: options to geom_line
- guide: options to geom_abline
- smooth: options to geom_smooth
- text: options to geom_text
- xscale: options to scale_x_continuous or scale_x_log10
- yscale: options to scale_y_continuous or scale_y_log10

Faceting

Every xpose plot function has built-in faceting functionalities. Faceting arguments are passed to the functions facet_wrap_paginate when the facets argument is a character string (e.g. facets = c('SEX', 'MED1')) or facet_grid_paginate when facets is a formula (e.g. facets = SEX~MED1). All xpose plot functions accept all the arguments for the facet_wrap_paginate and facet_grid_paginate functions e.g. dv_vs_ipred(xpdb_ex_pk, facets = SEX+MED1, ncol = 3, nrow = 3, page = 1, margins = TRUE, labeller = 'label_both').

Faceting options can either be defined in plot functions (e.g. dv_vs_ipred(xpdb_ex_pk, facets = 'SEX')) or assigned globally to an xpdb object via the xp_theme (e.g. xpdb <- update_themes(xpdb_ex_pk, xp_theme = list(facets = 'SEX'))). In the latter example all plots generated from this xpdb will automatically be stratified by ‘SEX’.

By default, some plot functions use a custom stratifying variable named ‘variable’, e.g. eta_distrib(). When using the facets argument, ‘variable’ needs to be added manually e.g. facets = c('SEX', 'variable') or facets = c('SEX', 'variable'), but is optional, when using the facets argument in xp_theme variable is automatically added whenever needed.

Template titles

Template titles can be used to create highly informative diagnostics plots. They can be applied to any plot title, subtitle, caption and tag. Template titles are defined via a single string containing key variables staring with a '@' (e.g. '@ofv') which will be replaced by their actual value when rendering the plot. For example '@run, @nobs observations in @nind subjects' would become 'run001, 1022 observations in 74 subjects'. The available key variables are listed under template_titles.
xpose_data

See Also

xplot_distrib xplot_qq

Examples

xplot_scatter(xpdb_ex_pk, aes(x = IPRED, y = DV))

xpose_data  Import NONMEM output into R

Description

Gather model outputs into a R database

Usage

xpose_data(
  runno = NULL,
  prefix = "run",
  ext = ".lst",
  file = NULL,
  dir = NULL,
  gg_theme = theme_readable,
  xp_theme = theme_xp_default(),
  simtab = NULL,
  manual_import = NULL,
  ignore = NULL,
  extra_files,
  quiet,
  ...
)

Arguments

runno  Run number to be used to generate model file name. Used in combination with prefix and ext.

prefix  Prefix to be used to generate model file name. Used in combination with runno and ext.

ext  Extension to be used to generate model file name. Should be one of `.lst` (default), `.out`, `.res`, `.mod` or `.ctl` for NONMEM.

file  Model file name (preferably a `.lst` file) containing the file extension. Alternative to prefix, runno and ext arguments.

dir  Location of the model files.

gg_theme  A complete ggplot2 theme object (e.g. theme_classic), or a function returning a complete ggplot2 theme.
xp_theme  A complete xpose theme object (e.g. theme_xp_default).
simtab    If TRUE only reads in simulation tables, if FALSE only reads estimation tables. Default NULL reads all tables. Option not compatible with manual_import.
manual_import If NULL (default) the names of the output tables to import will be obtained from the model file. To manually import files as in previous versions of xpose, check the function manual_nm_import.
ignore    Character vector be used to ignore the import/generation of: 'data', 'files', 'summary' or any combination of the three.
extra_files A vector of additional output file extensions to be imported. Default is '.ext', '.cov', '.cor', '.phi', '.grd' for NONMEM.
quiet     Logical, if FALSE messages are printed to the console.
...        Additional arguments to be passed to the read_nm_tables functions.

File path generation

The rules for model file names generation are as follow:

- with runno: the full path is generated as <dir>/<prefix><runno>.<ext> e.g. with dir = 'model/pk', prefix = 'run', runno = '001', ext = '.lst' the resulting path would be model/pk/run001.lst
- with file: the full path is generated as <dir>/<file> e.g. with dir = 'model/pk', file = 'run001.lst' the resulting path would also be model/pk/run001.lst. Note: in this case the file extension should be provided as part of the 'file' argument.

Table format requirement

When importing data, an ID column must be present in at least one table for each problem and for each 'firstonly' category. ID columns are required to properly combine/merge tables and removing NA records. If ID columns are missing xpose will return the following warning: Dropped '<tablenames>' due to missing required 'ID' column.

Examples

```r
Not run:
Using the 'file' argument to point to the model file:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models')

Using the 'runno' argument to point to the model file:
xpdb <- xpose_data(runno = '001', ext = '.lst', dir = 'models')

Using the 'extra_files' argument to import specific output files only:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', extra_files = c('.ext', '.phi'))

Using 'ignore' to disable import of tables and output files:
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', ignore = c('data', 'files'))

Using 'simtab' to disable import of simulation tables
xpdb <- xpose_data(file = 'run001.lst', dir = 'models', simtab = FALSE)
```
Description

Inspired by the `ggsave`, this function facilitates the export of xpose plots.

Usage

```r
xpose_save(
 plot = last_plot(),
 file = NULL,
 dir = NULL,
 device = NULL,
 width = 7,
 height = 6,
 units = c("in", "cm", "mm"),
 dpi = 200,
 ...
)
```

Arguments

- **plot**: A xpose plot object.
- **file**: A name with file extension (if device is `NULL`) to be given to the output file. Template variables such as `@run` (run number) and `@plotfun` (plot function) can be used to automatically name files e.g. `file = '@run_@plotfun.pdf'`.
- **dir**: Directory under which the xpose plots will be saved. Template variables such as `@dir` can be used to generate template names.
- **device**: Graphical device to use. Can be either be a device function (e.g. `png`), or one of `eps`, `ps`, `tex` (pictex), `pdf` (default), `jpeg`, `tiff`, `png`, `bmp`, `svg` or `wmf` (windows only).
- **width, height**: Plot size in units.
- **units**: Units of the plot size (‘in’, ‘cm’, or ‘mm’).
- **dpi**: Plot resolution. Applies only to raster output types.
- **...**: Additional arguments passed on to `ggsave` or graphics device.
Examples

```r
Not run:
xpdb_ex_pk %>%
dv_vs_ipred() %>%
xpose_save(file = file.path(tempdir(), "dv_vs_ipred_example.pdf"))

End(Not run)
```

### Description

Xpose themes are used to consistently apply a set of preference for the plot geoms (e.g. color scales, point size, etc.) whereas ggplot2 theme focus on the plot background, axes, titles etc.

- theme_xp_default: The default xp_theme in xpose
- theme_xp_xpose4: An xp_theme that makes xpose look like xpose4.

### Usage

```r
theme_xp_default()
theme_xp_xpose4()
```

### Examples

```r
With the xp_theme theme_xp_default() (default)
dv_vs_ipred(xpdb_ex_pk, facets = "SEX")

With the xp_theme theme_xp_xpose4()
xpdb_ex_pk %>%
 update_themes(xp_theme = theme_xp_xpose4()) %>%
dv_vs_ipred(facets = "SEX")
```
Index

absval_res_vs_idv (res_vs_idv), 40
absval_res_vs_pred (res_vs_pred), 43
amt_vs_idv, 3
cov_distrib (distrib_plot), 6
cov_qq (qq_plot), 33
data_opt, 5, 59, 61, 64
distinct_xpose_data (subset_xpdb), 47
distplot, 6
dv_preds_vs_idv (pred_vs_idv), 27
dv_vs_idv (pred_vs_idv), 27
dv_vs_ipred (dv_vs_pred), 9
dv_vs_pred, 9
eta_distrib (distrib_plot), 6
etta_qq (qq_plot), 33
facet_grid, 54
facet_grid_paginate, 3, 4, 8, 10, 11, 19, 25,
26, 29, 30, 35, 42, 44, 45, 54, 60, 62,
64
facet_wrap, 54
facet_wrap_paginate, 3, 4, 8, 10, 11, 19, 25,
26, 29, 30, 35, 42, 44, 45, 54, 60, 62,
64
filter_xpose_data (subset_xpdb), 47
get_code, 12
get_data, 12, 22
get_file, 13, 22
get_prm, 14, 32
get_special, 16, 22
get_summary, 16
gg_themes, 17
ggsave, 67
grd_vs_iteration (minimization_plots), 24
group_by_xpose_data (summarise_xpdb), 48
ind_plots, 18
ipred_vs_idv (pred_vs_idv), 27
irep, 20
list_data, 13
list_data (list_xpdb), 22
list_files, 14
list_files (list_xpdb), 22
list_nm_tables, 21
list_special, 16
list_special (list_xpdb), 22
list_vars, 21, 47
list_xpdb, 22
manual_nm_import, 23, 66
minimization_plots, 24
modify_xpdb, 26
mutate_xpose_data (modify_xpdb), 26
png, 67
pred_vs_idv, 27
print_xpose_data, 31
print_xpose_plot, 31
prm_distrib (distrib_plot), 6
prm_qq (qq_plot), 33
prm_table, 15, 32
prm_vs_iteration (minimization_plots), 24
qq_plot, 33
read_csv, 39
read_nm_files, 14, 36
read_nm_model, 12, 21, 37
read_nm_tables, 13, 21, 37, 38, 39, 66
read_table2, 39
rename_xpose_data (modify_xpdb), 26
res_distrib (distrib_plot), 6
res_qq (qq_plot), 33
res_vs_idv, 40
res_vs_pred, 43

69
select.xpose_data(modify_xpdb), 26
set_var_labels(set_vars), 45
set_var_types, 21
set_var_types(set_vars), 45
set_var_units(set_vars), 45
set_vars, 45
slice.xpose_data(subset_xpdb), 47
subset_xpdb, 47
summarise.xpose_data(summarise_xpdb),
48
summarise_xpdb, 48
summarize.xpose_data(summarise_xpdb),
48
summary.xpose_data, 17, 49
template_titles, 4, 9, 11, 17, 20, 26, 30, 35,
42, 45, 50, 54, 60, 62, 64
theme_bw2(gg_themes), 17
theme_classic, 52, 53, 59, 61, 64, 65
theme_readable(gg_themes), 17
theme_xp_default, 52, 53, 59, 61, 64, 66
theme_xp_default(xp_themes), 68
theme_xp_xpose4(xp_themes), 68
tibble, 38
ungroup.xpose_data(summarise_xpdb), 48
update_themes, 52
vpc, 52, 56, 57
vpc_data, 55, 55, 57
vpc_opt, 55, 56, 56
xp_themes, 68
xpdb_ex_pk, 58
xplot_distrib, 6, 9, 36, 58, 62, 65
xplot_qq, 6, 60, 60, 65
xplot_scatter, 4, 6, 11, 20, 26, 30, 42, 45,
60, 62, 63
xpose_data, 12–14, 16, 17, 23, 31, 37, 38, 49,
52, 59, 61, 63, 65
xpose_save, 50, 51, 67