xnet: Two-Step Kernel Ridge Regression for Network Predictions

Fit a two-step kernel ridge regression model for predicting edges in networks, and carry out cross-validation using shortcuts for swift and accurate performance assessment (Stock et al, 2018 <doi:10.1093/bib/bby095> ).

Version: 0.1.11
Depends: R (≥ 3.4.0)
Imports: methods, utils, graphics, stats, grDevices
Suggests: testthat, knitr, rmarkdown, ChemmineR, covr, fmcsR
Published: 2020-02-03
Author: Joris Meys [cre, aut], Michiel Stock [aut]
Maintainer: Joris Meys <Joris.Meys at UGent.be>
BugReports: https://github.com/CenterForStatistics-UGent/xnet/issues
License: GPL-3
URL: https://github.com/CenterForStatistics-UGent/xnet
NeedsCompilation: no
Citation: xnet citation info
Materials: NEWS
CRAN checks: xnet results

Downloads:

Reference manual: xnet.pdf
Vignettes: Preparation of the example data
xnet Class structure
xnet
Package source: xnet_0.1.11.tar.gz
Windows binaries: r-devel: xnet_0.1.11.zip, r-devel-gcc8: xnet_0.1.11.zip, r-release: xnet_0.1.11.zip, r-oldrel: xnet_0.1.11.zip
OS X binaries: r-release: xnet_0.1.11.tgz, r-oldrel: xnet_0.1.11.tgz
Old sources: xnet archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=xnet to link to this page.