Package ‘x3ptools’

November 26, 2021

Type Package

Title Tools for Working with 3D Surface Measurements

Version 0.0.3

Date 2021-11-23

Maintainer Heike Hofmann <hofmann@iastate.edu>

Description The x3p file format is specified in ISO standard 5436:2000 to describe 3d surface measurements. 'x3ptools' allows reading, writing and basic modifications to the 3D surface measurements.

Depends R (>= 4.0)

Imports MASS (>= 7.3), digest (>= 0.6), xml2 (>= 1.3.0), rgl (>= 0.107.14), zoo (>= 1.8-9), png (>= 0.1-7), readr (>= 2.1.0), dplyr (>= 1.0.7), pracma (>= 2.3.3), assertthat (>= 0.2.1), grDevices

Suggests knitr, rmarkdown, testthat (>= 3.0.4), covr, here, magick (>= 2.0)

License MIT + file LICENSE

RoxygenNote 7.1.1

URL https://github.com/heike/x3ptools

BugReports https://github.com/heike/x3ptools/issues

Encoding UTF-8

NeedsCompilation no

Author Heike Hofmann [aut, cre, cph] (<https://orcid.org/0000-0001-6216-5183>), Susan Vanderplas [aut] (<https://orcid.org/0000-0002-3803-0972>), Ganesh Krishnan [aut], Eric Hare [aut] (<https://orcid.org/0000-0002-4277-3146>)

Repository CRAN

Date/Publication 2021-11-26 22:50:02 UTC
R topics documented:

- `df_to_x3p` ... 3
- `head.x3p` ... 3
- `image.x3p` ... 4
- `print.x3p` ... 4
- `stl_to_x3p` .. 5
- `x3p_add_annotation` 5
- `x3p_add_grid` .. 6
- `x3p_add_hline` .. 7
- `x3p_add_legend` 8
- `x3p_add_mask` ... 8
- `x3p_add_mask_layer` 9
- `x3p_add_meta` ... 10
- `x3p_add_vline` 10
- `x3p_average` .. 11
- `x3p_circle_select` 12
- `x3p_crop` ... 13
- `x3p_darker` ... 13
- `x3p_delete_mask` 14
- `x3p_extract` .. 14
- `x3p_extract_profile` 15
- `x3p_flip_x` .. 16
- `x3p_flip_y` .. 17
- `x3p_fuzzyselect` 18
- `x3p_get_scale` .. 19
- `x3p_image` ... 19
- `x3p_interpolate` 20
- `x3p_lighter` ... 21
- `x3p_mask_legend` 22
- `x3p_mask_quantile` 22
- `x3p_modify_xml` 23
- `x3p_m_to_mum` .. 24
- `x3p_read` ... 24
- `x3p_read_dat` .. 25
- `x3p_read_plux` 25
- `x3p_rotate` ... 26
- `x3p_sample` .. 27
- `x3p_scale_unit` 28
- `x3p_scale_unit` 28
- `x3p_select` ... 28
- `x3p_show_xml` ... 29
- `x3p_snapshot` .. 30
- `x3p_to_df` .. 30
- `x3p_transpose` 31
- `x3p_trim_na` .. 32
- `x3p_write` ... 32

Index 34
df_to_x3p

Convert a data frame into an x3p file

Description

Convert a data frame into an x3p file

Usage

df_to_x3p(dframe, var = "value")

Arguments

dframe: data frame. dframe must have the columns x, y, and value.

var: name of the variable containing the surface measurements. Defaults to "value".

Value

x3p object

head.x3p

Show meta information of an x3p file

Description

head.x3p expands the generic head method for x3p objects. It gives a summary of the most relevant 3p meta information and returns the object invisibly.

Usage

```r
## S3 method for class 'x3p'
head(x, n = 6L, ...)
```

Arguments

x: x3p object

n: number of rows/columns of the matrix

...: extra parameters passed to head.matrix()

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
head(logo)
```
image.x3p

Raster image of an x3p surface

Description

image.x3p expands the generic image method for x3p objects. This image function creates a raster image to show the surface of an x3p file. Due to some inconsistency in the mapping of the origin (0,0), (choice between top left or bottom left) image functions from different packages will result in different images.

Usage

```r
## S3 method for class 'x3p'
image(x, ...)
```

Arguments

- `x` an x3p object
- `...` parameters passed into image

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
image(logo)
```

print.x3p

Show meta information of an x3p file

Description

print.x3p expands the generic print method for x3p objects. It gives a summary of the most relevant x3p meta information and returns the object invisibly.

Usage

```r
## S3 method for class 'x3p'
print(x, ...)
```

Arguments

- `x` x3p object
- `...` ignored

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
print(logo)
```
Description

STL files describe 3d objects as mesh objects. Here, we assume that the 3d object consists of a 3d surface on the top of a rectangular, equi-spaced 2d grid. We further assume, that each node of the STL file describes the x-y location of an actual measurement. These measurements are then converted into the surface matrix of an x3p object. The resolution is derived from the distance between consecutive x and y nodes.

Usage

stl_to_x3p(stl)

Arguments

stl

STL file object or path to the file

Value

x3p object

Examples

Not run:
the website https://touchterrain.geol.iastate.edu/ allows a download
of a 3d printable terrain model. For an example we suggest to download a file from there.
gc <- rgl::readSTL("<PATH TO STL FILE>", plot=FALSE)
x3p <- stl_to_x3p(gc)
End(Not run)

Description

Annotations in an x3p object are legend entries for each color of a mask.

Usage

x3p_add_annotation(x3p, color, annotation)
Arguments

- **x3p**: x3p object
- **color**: name or hex value of color
- **annotation**: character value describing the region

Value

x3p object with the added annotations

Examples

```r
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
color_logo <- png::readPNG(system.file("csafe-color.png", package="x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
x3p_image(logoplus, multiply=50, size = c(741, 419), zoom = 0.5)
logoplus <- x3p_add_annotation(logoplus, "#FFFFFF", "background")
logoplus <- x3p_add_annotation(logoplus, "#818285FF", "text")
logoplus <- x3p_add_annotation(logoplus, "#F6BD47FF", "fingerprint")
logoplus <- x3p_add_annotation(logoplus, "#D2202FFF", "fingerprint")
logoplus <- x3p_add_annotation(logoplus, "#92278FFF", "fingerprint")
x3p_add_legend(logoplus)

## End(Not run)
```

x3p_add_grid

Add a grid of helper lines to the mask of an x3p object

Description

Add a grid of lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```r
x3p_add_grid(
  x3p,
  spaces,
  size = c(1, 3, 5),
  color = c("grey50", "black", "darkred")
)
```

Arguments

- **x3p**: x3p object
- **spaces**: space between grid lines, doubled for x
- **size**: width (in pixels) of the lines
- **color**: (vector of) character values to describe color of lines
Value

x3p object with added vertical lines in the mask

Examples

```r
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
# ten vertical lines across:
logoplus <- x3p_add_grid(logo,
    spaces = 50e-6, size = c(1, 3, 5),
    color = c("grey50", "black", "darkred")
)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)
## End(Not run)
```

x3p_add_hline

Add horizontal line to the mask of an x3p object

Description

Add horizontal lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```r
x3p_add_hline(x3p, yintercept, size = 5, color = "#e6bf98")
```

Arguments

- `x3p` x3p object
- `yintercept` (vector of) numerical values for the position of the lines.
- `size` width (in pixels) of the line
- `color` (vector of) character values to describe color of lines

Value

x3p object with added vertical lines in the mask

Examples

```r
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
color_logo <- magick::image_read(system.file("csafe-color.png", package = "x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
# five horizontal lines at equal intervals:
logoplus <- x3p_add_hline(logo, seq(0, 418 * 6.4500e-7, length = 5), size = 3)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)
## End(Not run)
```
x3p_add_legend

Display legend in active rgl object

Description
Display the legend for colors and annotations in the active rgl window. In case no rgl window is opened, a new window displaying the x3p file (using default sizes and zoom) opens.

Usage

```r
x3p_add_legend(x3p, colors = NULL)
```

Arguments

- `x3p`: x3p object with a mask
- `colors`: named character vector of colors (in hex format by default), names contain annotations

Examples

```r
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
# run when rgl can open window on the device
x3p_image(x3p)
x3p_add_legend(x3p) # add legend
## End(Not run)
```

x3p_add_mask

Add/Exchange a mask for an x3p object

Description
Create a mask for an x3p object in case it does not have a mask yet. Masks are used for overlaying colors on the bullets surface.

Usage

```r
x3p_add_mask(x3p, mask = NULL)
```

Arguments

- `x3p`: x3p object
- `mask`: raster matrix of colors with the same dimensions as the x3p surface. If NULL, an object of the right size will be created.
x3p_add_mask_layer

Value

x3p object with added/changed mask

Examples

```r
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
# x3p file has mask consisting color raster image:
x3p$mask[1:5,1:5]
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
color_logo <- png::readPNG(system.file("csafe-color.png", package="x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
x3p_image(logoplus, multiply=50, size = c(741, 419),zoom = 0.5)
## End(Not run)
```

x3p_add_mask_layer Add a layer to the mask

Description

Add a region a mask. The region is specified as TRUE values in a matrix of the same dimensions as the existing mask. In case no mask exists, one is created.

Usage

```r
x3p_add_mask_layer(x3p, mask, color = "red", annotation = "]")
```

Arguments

- `x3p`: x3p object
- `mask`: logical matrix of the same dimension as the surface matrix. Values of TRUE are assumed to be added in the mask, values of FALSE are being ignored.
- `color`: name or hex value of color
- `annotation`: character value describing the region

Value

x3p object with changed mask

x3p_add_meta
Add/change xml meta information in x3p object

Description

Use a specified template to overwrite the general info in the x3p object (and structure of the feature info, if needed).

Usage

```r
x3p_add_meta(x3p, template = NULL)
addtemplate_x3p(x3p, template = NULL)
```

Arguments

- `x3p`: x3p object
- `template`: file path to xml template, use NULL for in-built package template

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# exchange meta information for general x3p information:
logo <- x3p_add_meta(logo, template = system.file("templateXML.xml", package="x3ptools"))
logo$general.info
```

x3p_add_vline
Add vertical line to the mask of an x3p object

Description

Add vertical lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```r
x3p_add_vline(x3p, xintercept, size = 5, color = "#e6bf98")
```

Arguments

- `x3p`: x3p object
- `xintercept`: (vector of) numerical values for the position of the lines.
- `size`: width (in pixels) of the line
- `color`: (vector of) character values to describe color of lines
x3p_average

Value

x3p object with added vertical lines in the mask

Examples

```r
# Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
logo_color <- magick::image_read(system.file("csafe-color.png", package = "x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(logo_color))
# ten vertical lines across:
logoplus <- x3p_add_vline(logo, seq(0, 740 * 6.4500e-7, length = 5), size = 3)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)

# End(Not run)
```

x3p_average

Average an x3p object

Description

Calculate blockwise summary statistics on the surface matrix of an x3p.

Usage

```r
x3p_average(x3p, b = 10, f = mean, ...)
```

Arguments

- `x3p`
 x3p object
- `b`
 positive integer value, block size
- `f`
 function aggregate function
- `...`
 parameters passed on to function f. Make sure to use na.rm = T as needed.

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
small <- x3p_average(logo)
```
x3p_circle_select

Select a circle area on the surface of an x3p file using rgl

Description

In the active rgl window select a circle on the scan’s surface by right-clicking on three points along the circumference. Make sure that x3p file and the rgl window match. If no rgl window is active, an rgl window opens with the scan.

Usage

x3p_circle_select(x3p, col = "#FF0000", update = TRUE)

Arguments

x3p x3p file

col character value of the selection color

update boolean value, whether the rgl window should be updated to show the selected circle

Value

x3p file with selected circle in mask

Examples

```r
## Not run:
if (interactive) {
  if (!file.exists("fadul1-1.x3p")) {
    file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
    download.file(file.path(url, file), destfile="fadul1-1.x3p")
  }
  x3p <- x3p_read("fadul1-1.x3p")
  x3p_image(x3p, size=c(500,500), zoom=.8)
  x3p <- x3p_circle_select(x3p, update=TRUE, col="#FF0000")

  logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
  x3p_image(logo, size=c(500,500), zoom = 1)
  x3p_circle_select(logo, update=TRUE, col="#00FF00")
}
## End(Not run)
```
x3p_crop

Crop an x3p object to a specified width and height

Description

Cuts out a rectangle of size width x height from the location (x, y) of an x3p object. x and y specify
the bottom right corner of the rectangle. In case the dimensions of the surface matrix do not allow
for the full dimensions of the rectangle cutout the dimensions are adjusted accordingly.

Usage

\[
x3p_{\text{crop}}(\text{x3p}, x = 1, y = 1, \text{width} = 128, \text{height} = 128)
\]

Arguments

- **x3p**: x3p object
- **x**: integer, location (in pixels) of the leftmost side of the rectangle,
- **y**: integer, location (in pixels) of the leftmost side of the rectangle,
- **width**: integer, width (in pixels) of the rectangle,
- **height**: integer, height (in pixels) of the rectangle,

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# crop the x3p file to just the CSAFE logo
logo_only <- x3p_crop(logo, x=20, y=50, width = 255 ,height =310)
logo_only <- x3p_crop(logo, x=20, y=50, width = 255 ,height =510)
# x3p_image(logo_only, size=c(500,500), zoom = 1)
```

x3p_darker

Darken active rgl object

Description

Makes the currently active rgl object darker by removing a light source. Once all light sources are
removed the object can not be any darker.

Usage

\[
x3p_{\text{darker}}()
\]
Examples

```r
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
x3p_image(x3p) # run when rgl can open window on the device
x3p_darker() # remove a light source
## End(Not run)
```

x3p_delete_mask
Delete mask from an x3p object

Description

Deletes mask and its annotations from an x3p file.

Usage

```r
x3p_delete_mask(x3p)
```

Arguments

- `x3p`
 x3p object

Value

x3p object without the mask

x3p_extract
Extract values from a surface matrix based on a mask

Description

If a mask is present, a subset of the surface matrix is extracted based on specified value(s).

Usage

```r
x3p_extract(x3p, mask_vals)
```

Arguments

- `x3p`
 x3p object
- `mask_vals`
 vector of mask value(s)

Value

x3p object
Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# add a mask
logo <- x3p_add_mask(logo)
mask <- t(logo$surface.matrix==median(logo$surface.matrix))
logo <- x3p_add_mask_layer(logo, mask, color = "red", annotation = "median")
x3p_extract(logo, "#cd7f32")
# x3p_image(logo, size=c(500,500), zoom = 1)
```

x3p_extract_profile
Interactively select a line on the active rgl device

Description

In the active rgl device select a line on the 3d surface by clicking on start and end-point (order matters). These points define the beginning and end of a line segment. The line segment is drawn on the mask of the x3p object. The returned x3p object is expanded by a dataframe of surface measurements along the line segment.

Usage

```r
x3p_extract_profile(x3p, col = "#FF0000", update = TRUE, line_out = TRUE)
```

Arguments

- `x3p`: x3p file
- `col`: character value of the selection color
- `update`: boolean value, whether the rgl window should be updated to show the selected circle
- `line_out`: boolean enhance result by a data frame of the line? Note that variable x indicates the direction from first click (x=0) to the second click (max x). The values of x in the result are in the same units as the original x3p.

Value

x3p file with identified in mask enhanced by a dataframe of the line segment (line_df).

Examples

```r
## Not run:
if (interactive) {
  x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
  x3p %>% image_x3p(size=dim(x3p$surface.matrix), multiply=1, zoom=.3)
  x3p <- x3p_extract_profile(x3p, update=TRUE, col="#FFFFFF")
  x3p$line_df %>%
    ggplot(aes(x = x, y = value)) + geom_line()
```
x3p$line_df$y <- 1
sigs <- bulletxtrctr::cc_get_signature(ccdata = x3p$line_df,
grooves = list(groove = c(min(x3p$line_df$x), max(x3p$line_df$x))), span1 = 0.75, span2 = 0.03)
sigs %>%
ggplot(aes(x = x)) +
 geom_line(aes(y = raw_sig), colour = "grey50") +
 geom_line(aes(y = sig), size = 1) +
 theme_bw()
}
End(Not run)

x3p_flip_x

x3p_flip_x

Flip the x coordinate of an x3p file

Description

Flip the surface matrix of an x3p file along the x axis.

Usage

```r
x3p_flip_x(x3p)
```

```r
x_flip_x3p(x3p)
```

Arguments

- `x3p`: x3p object

Value

x3p object in which the x coordinate is reversed.

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)

## End(Not run)

# flip the y-axis for the old ISO standard:
logoflip <- x3p_flip_x(logo)
dim(logoflip$surface.matrix)
## Not run:
x3p_image(logoflip)

## End(Not run)
```
x3p_flip_y
Flip the y coordinate of an x3p image

Description

One of the major changes between the previous two ISO standards is the way the y axis is defined in a scan. The entry (0,0) used to refer to the top left corner of a scan, now it refers to the bottom right corner, which means that all legacy x3p files have to flip their y axis in order to conform to the newest ISO norm.

Usage

```r
x3p_flip_y(x3p)
```

```r
y_flip_x3p(x3p)
```

Arguments

- `x3p`
 x3p object

Value

x3p object in which the y coordinate is reversed.

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)
## End(Not run)

# flip the y-axis for the old ISO standard:
logoflip <- x3p_flip_y(logo)
dim(logoflip$surface.matrix)
## Not run:
x3p_image(logoflip)
## End(Not run)
```
x3p_fuzzyselect

Interactive selection of region of interest

Description

Interactive selection of region of interest

Usage

x3p_fuzzyselect(x3p, col = "#FF0000", mad = 5, type = "plane", update = TRUE)

Arguments

x3p x3p file

col character value of the selection color

mad scalar

type only "plane" is implemented at the moment

update boolean value, whether the rgl window should be updated to show the selected rectangle

Value

x3p file with updated mask

Examples

Not run:
if (interactive) {
 if (!file.exists("fadul1-1.x3p")) {
 file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
 download.file(file.path(url, file), destfile="fadul1-1.x3p")
 }
 x3p <- x3p_read("fadul1-1.x3p")
 x3p_image(x3p, size=c(500,500), zoom=.8)
 x3p <- x3p_fuzzyselect(x3p, update=TRUE, col="#FF0000")
 logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
 x3p_image(logo, size=c(500,500), zoom = 1)
 x3p_fuzzyselect(logo, update=TRUE, col="#00FF00")
}
End(Not run)
x3p_get_scale

Description

Scans in x3p format capture 3d topographic surfaces. According to ISO standard ISO5436 - 2000 scans are supposed to be captured in meters. For microscopic images capture in meters might be impractical.

Usage

`x3p_get_scale(x3p)`

Arguments

- `x3p` object

Value

numeric value of resolution per pixel

x3p_image

Plot x3p object as an image

Description

Plot x3p object as an image

Usage

```r
x3p_image(
  x3p,
  file = NULL,
  col = "#cd7f32",
  crosscut = NA,
  ccParam = list(color = "#e6bf98", radius = 5),
  size = c(750, 250),
  zoom = 0.35,
  multiply = 5,
  update = FALSE,
  ...
)
```

```r
image_x3p(
  x3p,
  file = NULL,
```
Arguments

x3p x3p object
col color specification
crosscut crosscut index
cParam list with named components, consisting of parameters for showing crosscuts: color and radius for crosscut region
size vector of width and height
zoom numeric value indicating the amount of zoom
multiply exaggerate the relief by factor multiply
update Boolean value indicating whether a scene should be updated (defaults to FALSE). If FALSE, a new rgl device is opened.

Examples

Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
x3p_image(logoplus, size = c(741, 419), zoom=0.5)
add crosscut:
logoplus <- x3p_add_hline(logo, yintercept = 50*6.45e-6, color = "#e6bf98", size = 5)
x3p_image(logoplus, size = c(741, 419), zoom=0.5)

End(Not run)

x3p_interpolate Interpolate from an x3p object

Description

An interpolated scan is created at specified resolutions resx, resy in x and y direction. The interpolation is based on na.approx from the zoo package. It is possible to create interpolations at a higher resolution than the one specified in the data itself, but it is not recommended to do so. x3p_interpolate can also be used as a way to linearly interpolate any missing values in an existing scan without changing the resolution.
x3p_interpolate

Usage

\[
x3p_interpolate(x3p, \text{resx} = 1e-06, \text{resy} = \text{resx}, \text{maxgap} = 1)
\]

\[
\text{interpolate}_x3p(x3p, \text{resx} = 1e-06, \text{resy} = \text{resx}, \text{maxgap} = 1)
\]

Arguments

- **x3p**: x3p object
- **resx**: numeric value specifying the new resolution for the x axis.
- **resy**: numeric value specifying the new resolution for the y axis.
- **maxgap**: integer variable used in `na.approx` to specify the maximum number of NAs to be interpolated, defaults to 1.

Value

interpolated x3p object

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# resolution:
logo$header.info$incrementX
# change resolution to 1 micron = 1e-6 meters
logo2 <- x3p_interpolate(logo, resx = 1e-6)
logo2$header.info$incrementX
```

x3p_lighter

Lighten active rgl object

Description

Make the currently active rgl object lighter. Adds a light source. Up to eight light sources can be added. Alternatively, any rgl light source can be added (see `light3d`).

Usage

```
x3p_lighter()
```

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
x3p_image(x3p) # run when rgl can open window on the device
x3p_lighter() # add a light source
## End(Not run)
```
x3p_mask_legend

Get legend for mask colors

Description

Retrieve color definitions and annotations from the mask. If available, results in a named vector of colors.

Usage

x3p_mask_legend(x3p)

Arguments

x3p x3p object with a mask

Value
	named vector of colors, names show annotations. In case no annotations exist NULL is returned.

Examples

x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
x3p_mask_legend(x3p) # annotations and color hex definitions

x3p_mask_quantile

Draw a quantile region on the mask

Description

For each x value of the surface matrix add a region to the mask of an x3p object corresponding to the area between two specified quantiles.

Usage

x3p_mask_quantile(
 x3p,
 quantiles = c(0.25, 0.75),
 color = "red",
 annotation = "quantile-region"
)
\text\texttt{x3p_modify_xml}

Arguments

\begin{itemize}
\item \texttt{x3p} \textit{x3p object} \\
\item \texttt{quantiles} \textit{vector of quantiles between which surface matrix values are included in the mask} \\
\item \texttt{color} \textit{name or hex value of color} \\
\item \texttt{annotation} \textit{character value describing the region}
\end{itemize}

Value

\textit{x3p object with changed mask}

\begin{verbatim} x3p_modify_xml \end{verbatim}

\textit{Modify xml elements meta information in x3p object}

Description

Identify xml fields in the meta file of an x3p object by name and modify content if uniquely described.

Usage

\texttt{x3p_modify_xml(x3p, element, value)}

Arguments

\begin{itemize}
\item \texttt{x3p} \textit{x3p object} \\
\item \texttt{element} \textit{character or integer. In case of character, name of xml field in the meta file. Note that element can contain regular expressions, e.g. "*" returns all meta fields. In case of integer, element is used as an index for the meta fields.} \\
\item \texttt{value} \textit{character. Value to be given to the xml field in the meta file.}
\end{itemize}

Value

\textit{x3p object with changed meta information}

Examples

\begin{verbatim}
logo <- x3p_read(system_file("csafe_logo.x3p", package="x3ptools"))
x3p_show_xml(logo, "creator")
x3p_modify_xml(logo, "creator", "I did that")
x3p_show_xml(logo, 20)
x3p_modify_xml(logo, 20, "I did that, too")
\end{verbatim}
x3p_m_to_mum

Convert x3p header information to microns from meters

Description
ISO standard 5436_2 asks for specification of values in meters. For topographic surfaces collected by microscopes values in microns are more readable. Besides scaling the values in the surface matrix, corresponding increments are changed to microns as well.

Usage
x3p_m_to_mum(x3p)

Arguments
x3p
x3p file with header information in meters

Value
x3p with header information in microns

x3p_read

Read an x3p file into an x3p object

Description
Read file in x3p format. x3p formats describe 3d topological surface according to ISO standard ISO5436 – 2000. x3p files are a container format implemented as a zip archive of a folder consisting of an xml file of meta information and a binary matrix of numeric surface measurements.

Usage
x3p_read(file, size = NA, quiet = T, tmpdir = NULL)
read_x3p(file, size = NA, quiet = T, tmpdir = NULL)

Arguments
file
The file path to the x3p file, or an url to an x3p file
size
size in bytes to use for reading the binary file. If not specified, default is used. Will be overwritten if specified in the xml meta file.
quiet
for url downloads, show download progress?
tmpdir
temporary directory to use to extract the x3p file (default NULL uses tempdir() to set a directory).
x3p_read_dat

Value

x3p object consisting of a list of the surface matrix and the four records as specified in the ISO standard

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
```

x3p_read_dat Read data from an x-y-z file

Description

Read data from an x-y-z file

Usage

```r
x3p_read_dat(dat, delim = " ", col_names = FALSE)
```

Arguments

- `dat` path to the x-y-z file
- `delim` character determining delimiter
- `col_names` logical value - does the first line of the file contain the column names? Default is set to FALSE.

Value

x3p object

x3p_read_plux Read information from plux file

Description

plux files are zip containers of 3d topographic scans in a format proprietary to Sensofar™. One of the files in the container is the file `index.xml` which contains meta-information on the instrument, scan settings, date, and creator. This information is added to the x3p meta-information.

Usage

```r
x3p_read_plux(plux)
```

Arguments

- `plux` path to plux file
Value

xml of general information as stored in the plux file

x3p_rotate

Rotate an x3p object

Description

Rotate the surface matrix of an x3p object. Also adjust meta information.

Usage

```
x3p_rotate(x3p, angle = 90)
rotate_x3p(x3p, angle = 90)
```

Arguments

- **x3p**: x3p object
- **angle**: rotate counter-clockwise by angle degrees given as 90, 180, 270 degree (or -90, -180, -270).

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)

## End(Not run)

# rotate the image by 90 degrees counter-clockwise:
logo90 <- x3p_rotate(logo, 90)
dim(logo90$surface.matrix)
## Not run:
x3p_image(logo90)

## End(Not run)
```
Sample from an x3p object

Usage

\[
x3p_sample(x3p, m = 2, mY = m, offset = 0, offsetY = offset) \\
sample_x3p(x3p, m = 2, mY = m, offset = 0, offsetY = offset)
\]

Arguments

- **x3p**: x3p object
- **m**: integer value - every mth value is included in the sample
- **mY**: integer value - every mth value is included in the sample in x direction and every mYth value is included in y direction
- **offset**: integer value between 0 and m-1 to specify offset of the sample
- **offsetY**: integer value between 0 and mY-1 to specify different offsets for x and y direction

Value

down-sampled x3p object

Examples

```r
logo <- x3p\_read(system\_file("csafe\_logo\_x3p", package="x3ptools"))
dim/logo\$surface\_matrix) \\
# down-sample to one-fourth of the image: \\
logo4 <- x3p\_sample/logo, m=4) \\
dim/logo4\$surface\_matrix) \\
## Not run: \\
x3p\_image/logo) \\
x3p\_image/logo4) \\
## End(Not run)
```
x3p_scale_unit

Scale x3p object by given unit

Description

x3p objects can be presented in different units. ISO standard 5436_2 asks for specification of values in meters. For topographic surfaces collected by microscopes values in microns are more readable. This functions allows to convert between different units.

Usage

```r
x3p_scale_unit(x3p, scale_by)
```

Arguments

- `x3p`: object in x3p format, 3d topographic surface.
- `scale_by`: numeric value. Value the surface to be scaled by. While not enforced, values of scale_by make most sense as multiples of 10 (for a metric system).

Value

- x3p with header information in microns

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo # measurements in meters
x3p_scale_unit(logo, scale_by=10^6) # measurements in microns
```

x3p_select

Draw rectangle on the mask of an x3p file using rgl

Description

Interactive selection of rectangular area on the mask of an x3p object. Once the function runs, the active rgl window is brought to the front. Select the window with a click, then use click & drag to select a rectangular area. On release, this area is marked in the mask and (if update is TRUE) appears in the selection color in the active rgl window.

Usage

```r
x3p_select(x3p, col = "#FF0000", update = TRUE)
```
Arguments

x3p x3p file

col character value of the selection color

update boolean value, whether the rgl window should be updated to show the selected rectangle

Value

x3p file with selection in mask

Examples

Not run:
if (interactive) {
 if (!file.exists("fadul1-1.x3p")) {
 file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
 download.file(file.path(url, file), destfile="fadul1-1.x3p")
 }
 x3p <- x3p_read("fadul1-1.x3p")
 x3p_image(x3p, size=c(500,500), zoom=.8)
 x3p <- x3p_select(x3p, update=TRUE, col="#FF0000")

 logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
 x3p_image(logo, size=c(500,500), zoom = 1)
 x3p_select(logo, update=TRUE, col="#00FF00")
}
End(Not run)

x3p_show_xml

Show xml elements from meta information in x3p object

Description

Identify xml fields by name and show content.

Usage

x3p_show_xml(x3p, element)

Arguments

x3p x3p object

element character or integer (vector). In case of character, name of xml field in the meta file. Note that element can contain regular expressions, e.g. "*" returns all meta fields. In case of integer, element is used as an index vector for the meta fields.
Value

list of exact field names and their contents

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
x3p_show_xml(logo, "creator") # all fields containing the word "creator"
x3p_show_xml(logo, "axis")
x3p_show_xml(logo, "CZ.AxisType")
# show all fields:
x3p_show_xml(logo, "+")
# show first five fields
x3p_show_xml(logo, 1:5)
```

x3p_snapshot
Take a snapshot of the active rgl device and save in a file

Description

Make a snapshot of the current rgl device and save it to file. Options for file formats are png, svg, and stl (for 3d printing).

Usage

```r
x3p_snapshot(file)
```

Arguments

- `file`
 file name for saving. The file extension determines the type of output. Possible extensions are png, stl (suitable for 3d printing), or svg.

x3p_to_df
Convert an x3p file into a data frame

Description

An x3p file consists of a list with meta info and a 2d matrix with scan depths. `fortify` turns the matrix into a data frame, using the parameters of the header as necessary.

Usage

```r
x3p_to_df(x3p)
```

Arguments

- `x3p`
 a file in x3p format as returned by function x3p_read
Value

data frame with variables x, y, and value and meta function in attribute

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo_df <- x3p_to_df(logo)
head(logo_df)
```

x3p_transpose
Transpose an x3p object

Description

Transpose the surface matrix of an x3p object. Also adjust meta information.

Usage

```r
x3p_transpose(x3p)
```

```r
transpose_x3p(x3p)
```

Arguments

- `x3p` x3p object

Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
```

```r
## Not run:
x3p_image(logo)
## End(Not run)
```

```r
## Not run:
# transpose the image
logotp <- x3p_transpose(logo)
dim(logotp$surface.matrix)
```

```r
## Not run:
x3p_image(logotp)
## End(Not run)
```
x3p_trim_na

Trim rows and columns with missing values only from an x3p

Description
Trims rows and columns from the edges of a surface matrix that contain missing values only.

Usage
x3p_trim_na(x3p, ratio = 1)

Arguments
- **x3p**: x3p object
- **ratio**: ratio between zero and one, indicating the percent of values that need to be missing in each row and column, for the row or column to be removed

Value
x3p object of the same or smaller dimension where missing values are removed from the boundaries

Examples
```r
go <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
go$surface.matrix[go$surface.matrix == median(go$surface.matrix)] <- NA
x3p_trim_na(go) # reduced to dimension: 668 by 268
```

x3p_write

Write an x3p object to a file

Description
Write an x3p object to a file

Usage
x3p_write(x3p, file, size = 8, quiet = F)
write_x3p(x3p, file, size = 8, quiet = F)

Arguments
- **x3p**: x3p object
- **file**: path to where the file should be written
- **size**: integer. The number of bytes per element in the surface matrix used for creating the binary file. Use size = 4 for 32 bit IEEE 754 floating point numbers and size = 8 for 64 bit IEEE 754 floating point number (default).
- **quiet**: suppress messages
Examples

```r
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# write a copy of the file into a temporary file
x3p_write(logo, file = tempfile(fileext="x3p"))
```
Index

addtemplate_x3p (x3p_add_meta), 10

df_to_x3p, 3

head.x3p, 3

image.x3p, 4
image_x3p (x3p_image), 19
interpolate_x3p (x3p_interpolate), 20

print.x3p, 4

read_x3p (x3p_read), 24
rotate_x3p (x3p_rotate), 26

sample_x3p (x3p_sample), 27
stl_to_x3p, 5

transpose_x3p (x3p_transpose), 31

write_x3p (x3p_write), 32

x3p_add_annotation, 5
x3p_add_grid, 6
x3p_add_hline, 7
x3p_add_legend, 8
x3p_add_mask, 8
x3p_add_mask_layer, 9
x3p_add_meta, 10
x3p_add_vline, 10
x3p_average, 11
x3p_circle_select, 12
x3p_crop, 13
x3p_darker, 13
x3p_delete_mask, 14
x3p_extract, 14
x3p_extract_profile, 15
x3p_flip_x, 16
x3p_flip_y, 17
x3p_fuzzyselect, 18
x3p_get_scale, 19
x3p_image, 19
x3p_interpolate, 20
x3p_lighter, 21
x3p_m_to_mum, 24
x3p_mask_legend, 22
x3p_mask_quantile, 22
x3p_modify_xml, 23
x3p_read, 24
x3p_read_dat, 25
x3p_read_plux, 25
x3p_rotate, 26
x3p_sample, 27
x3p_scale_unit, 28
x3p_select, 28
x3p_show_xml, 29
x3p_snapshot, 30
x3p_to_df, 30
x3p_transpose, 31
x3p_trim_na, 32
x3p_write, 32
x_flip_x3p (x3p_flip_x), 16
y_flip_x3p (x3p_flip_y), 17