Package ‘wrappedtools’

May 8, 2021

Type Package

Title Useful Wrappers Around Commonly Used Functions

Description The main functionalities of ‘wrappedtools’ are:
adding backticks to variable names; rounding to desired precision
with special case for p-values;
selecting columns based on pattern and storing their position, name,
and backticked name; computing and formatting of descriptive statistics
(e.g. mean±SD), comparing groups and creating publication-ready tables with
descriptive statics and p-values; creating specialized plots for correlation
or regression trees. Functions were mainly written for my own daily work or
teaching, but may be of use to others as well.

Version 0.7.8

Date 2021-05-06

Maintainer Andreas Busjahn <andreas@busjahn.net>

License GPL-3

Encoding UTF-8

Imports stats, boot, knitr, coin, utils, dplyr, forcats, purrr, glue,
rlang, stringr, magrittr, ggplot2, tibble, tidyr, kableExtra

Depends tidyverse

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests rmarkdown, testthat

NeedsCompilation no

Author Andreas Busjahn [cre, aut] <https://orcid.org/0000-0001-9650-6919>}

Repository CRAN

Date/Publication 2021-05-08 08:10:02 UTC

R topics documented:

bt ... 2
bt

Add backticks to names or remove them

Description

bt adds leading and trailing backticks to make illegal variable names usable. Optionally removes them.

Usage

bt(x, remove = FALSE)

Arguments

x Names to add backtick to.
remove Option to remove existing backticks, default=FALSE.
Value

Character vector with backticks added.

Examples

bt('name 1')

cat_desc_stats
Compute absolute and relative frequencies.

Description

cat_desc_stats computes absolute and relative frequencies for categorical data with a number of formatting options.

Usage

cat_desc_stats(
 quelle,
 separator = " ",
 return_level = TRUE,
 ndigit = 0,
 groupvar = NULL,
 singleline = FALSE,
 percent = TRUE,
 prettynum = FALSE,
 .german = FALSE
)

Arguments

- **quelle**: Data for computation.
- **separator**: delimiter between results per level, preset as ’ ’.
- **return_level**: Should levels be reported?
- **ndigit**: Digits for rounding of relative frequencies.
- **groupvar**: Optional grouping factor.
- **singleline**: Put all group levels in a single line?
- **percent**: Logical, add percent-symbol after relative frequencies?
- **prettynum**: logical, apply prettyNum to results?
- **.german**: logical, should "." and "," be used as bigmark and decimal? Sets prettynum to TRUE.
Value

Structure depends on parameter return_level: if FALSE than a tibble with descriptives, otherwise a list with two tibbles with levels of factor and descriptives. If parameter singleline is FALSE (default), results for each factor level is reported in a separate line, otherwise they are pasted. Number of columns for result tibbles is one or number of levels of the additional grouping variable.

Examples

cat_desc_stats(mtcars$gear)
cat_desc_stats(mtcars$gear, return_level = FALSE)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am, singleline = TRUE)

cn
Shortcut for colnames()

Description

cn lists column names, by default for variable rawdata.

Usage

cn(data = rawdata)

Arguments

data
Data structure to read column names from.

Value

Character vector with column names.

Examples

cn(mtcars)
Comparison for columns of numbers for 2 groups

Description

`compare2numvars` computes either `t_var_test` or `wilcox.test`, depending on parameter `gaussian`. Descriptive statistics, depending on distribution, are reported as well.

Usage

```r
compare2numvars(
  data,
  dep_vars,
  indep_var,
  gaussian,
  round_p = 3,
  round_desc = 2,
  range = FALSE,
  rangesep = " ",
  pretext = FALSE,
  mark = FALSE,
  n = FALSE,
  add_n = FALSE
)
```

Arguments

- `data`: name of dataset (tibble/data.frame) to analyze.
- `dep_vars`: vector of column names for independent variables.
- `indep_var`: name of grouping variable, has to translate to 2 groups.
- `gaussian`: logical specifying normal or ordinal values.
- `round_p`: level for rounding p-value.
- `round_desc`: number of significant digits for rounding of descriptive stats.
- `range`: include min/max?
- `rangesep`: text between statistics and range or other elements.
- `pretext`: for function `formatP`.
- `mark`: for function `formatP`.
- `n`: create columns for n per group?
- `add_n`: add n to descriptive statistics?

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of `dep_vars`.

compare2numvars
Examples

Assuming Normal distribution:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = TRUE
)
Ordinal scale:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = FALSE
)

compare2qualvars

Comparison for columns of factors for 2 groups

Description

compare2qualvars computes fisher.test with simulated p-value and descriptive statistics for a group of categorical dependent variables.

Usage

compare2qualvars(
 data, dep_vars, indep_var, round_p = 3, round_desc = 2, pretext = FALSE, mark = FALSE, singleline = FALSE, spacer = " ", linebreak = "\\n"
)

Arguments

data name of data set (tibble/data.frame) to analyze.
dep_vars vector of column names for dependent variables.
indep_var name of grouping variable, has to translate to 2 groups.
round_p level for rounding p-value.
round_desc number of significant digits for rounding of descriptive stats.
pretext for function formatP.
mark for function formatP.
singleline Put all group levels in a single line?
spacer Text element to indent levels and fill empty cells, defaults to " ".
linebreak place holder for newline.
Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

Examples

cmpy2qualvars(
 data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
 spacer = " ",
)
cmpy2qualvars(
 data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
 spacer = " ", singleline = TRUE
)

Description

Comparison for columns of Gaussian measures for n groups

Usage

cmpy_n_numvars(
 .data = rawdata,
 dep_vars, indep_var,
 round_desc = 2,
 range = FALSE,
 rangesep = " ",
 pretext = FALSE,
 mark = FALSE,
 round_p = 3,
 add_n = FALSE
)

Arguments

.data name of dataset (tibble/data.frame) to analyze, defaults to rawdata.
dep_vars vector of column names.
indep_var name of grouping variable.
round_desc number of significant digits for rounding of descriptive stats.
range include min/max?
rangesep text between statistics and range or other elements.
pretext, mark for function formatP.
round_p level for rounding p-value.
add_n add n to descriptive statistics?
Value

A list with elements "results": tibble with descriptive statistics, p-value from ANOVA, p-values for pairwise comparisons, significance indicators, and descriptives pasted with significance. "raw": nested list with output from all underlying analyses.

Examples

Usually, only the result table is relevant:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "qsec"),
 indep_var = "cyl"
)$results
For a report, result columns may be filtered as needed:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "qsec"),
 indep_var = "cyl"
)$results %>%
 dplyr::select(Variable, `cyl 4 fn`:`cyl 8 fn`, pANOVA)

compare_n_qualvars

Comparison for columns of factors for more than 2 groups with post-hoc

Description

Comparison for columns of factors for more than 2 groups with post-hoc

Usage

```r
compare_n_qualvars(
  data,
  dep_vars,
  indep_var,
  round_p = 3,
  round_desc = 2,
  pretext = FALSE,
  mark = FALSE,
  singleline = FALSE,
  spacer = "\n",
  linebreak = "\n",
  prettynum = FALSE
)
```

Arguments

- `data` name of data set (tibble/data.frame) to analyze.
- `dep_vars` vector of column names.
indep_var name of grouping variable, has to translate to 2 groups.
round_p level for rounding p-value.
round_desc number of significant digits for rounding of descriptive stats
pretext for function formatP
mark for function formatP
singleline Put all group levels in a single line?
spacer Text element to indent levels, defaults to " ".
linebreak place holder for newline.
prettynum Apply prettyNum to results?

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

Examples

Separate lines for each factor level:
compare_n_qualvars(
 data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
 spacer = " "
)
All levels in one row but with linebreaks:
compare_n_qualvars(
 data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
 singleline = TRUE
)
All levels in one row, separateted by ";":
compare_n_qualvars(
 data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
 singleline = TRUE, linebreak = "; ";
)

cortestR Correlations with significance

Description

cortestR computes correlations and their significance level based on cortest. Coefficients and p-values may be combined or reported separately.
Usage

cortestR(
cordata,
method = "pearson",
digits = 3,
digits_p = 3,
sign_symbol = TRUE,
split = FALSE,
space = " "
)

Arguments

cordata data frame or matrix with rawdata.
method as in cor.test.
digits rounding level for estimate.
digits_p rounding level for p value.
sign_symbol If true, use significance indicator instead of p-value.
split logical, report correlation and p combined (default) or split in list.
space character to fill empty upper triangle.

Value

Depending on parameters split and sign_symbol, either a single data frame with coefficient and p-values or significance symbols or a list with two data frames.

Examples

with defaults
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = FALSE, sign_symbol = TRUE)
separate coefficients and p-values
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = TRUE, sign_symbol = FALSE)

FindVars

Find numeric index and names of columns based on patterns

Description

FindVars looks up colnames (by default for data-frame rawdata) based on parts of names, using regular expressions. Exclusion rules may be specified as well.
Usage

```r
FindVars(
  varnames,
  allnames = NULL,
  exact = FALSE,
  exclude = NA,
  casesensitive = TRUE,
  fixed = FALSE
)
```

Arguments

- `varnames`: Vector of pattern to look for.
- `allnames`: Vector of values to detect pattern in; by default, colnames(rawdata).
- `exact`: Partial matching or exact only (adding ^ and $)?
- `exclude`: Vector of pattern to exclude from found names.
- `casesensitive`: Logical if case is respected in matching (default FALSE: a<>A)
- `fixed`: Logical, treat pattern as regex?

Value

A list with index, names, backticked names, and symbols

Examples

```r
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars))
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars), exclude = "r")
rawdata <- mtcars
FindVars(varnames = c("^c", "g"))
```

formatP

Re-format p-values, avoiding rounding to 0

Description

`formatP` simplifies p-values by rounding to the maximum of p or a predefined level. Optionally < or = can be added, as well as symbols according to significance level.

Usage

```r
formatP(
  pIn,
  ndigits = 3,
  textout = TRUE,
  pretext = FALSE,
  mark = FALSE,
  german_num = FALSE
)
```
Arguments

- **pIn**: A numeric vector or matrix with p-values.
- **ndigits**: Number of digits (default=3).
- **textout**: Cast output to character (default=TRUE)?
- **pretext**: Should = or < be added before p (default=FALSE)?
- **mark**: Should significance level be added after p (default=FALSE)?
- **german_num**: change dot (default) to comma?

Value

matrix with type character (default) or numeric, depending on parameter textout

Examples

- `formatP(0.012345)`
- `formatP(0.012345, ndigits = 4)`
- `formatP(0.000122345, ndigits = 3, pretext = TRUE)`

ggcormat

Print graphical representation of a correlation matrix.

Description

Print graphical representation of a correlation matrix.

Usage

```r
ggcormat(
  cor_mat,
  p_mat = NULL,
  method = "Correlation",
  title = "",
  maxpoint = 2.1,
  textsize = 5,
  axistextsize = 2,
  titlesize = 3,
  breaklabels = NULL,
  lower_only = TRUE,
  .low = "blue3",
  .high = "red2",
  .legendtitle = NULL
)
```
Arguments

- **cor_mat**: correlation matrix as produced by cor.
- **p_mat**: Optional matrix of p-values; if provided, this is used to define size of dots rather than absolute correlation.
- **method**: text specifying type of correlation.
- **title**: plot title.
- **maxpoint**: maximum for scale_size_manual, may need adjustment depending on plotsize.
- **textsize**: for theme text.
- **axistextsize**: relative text size for axes.
- **titlesize**: as you already guessed, relative text size for title.
- **breaklabels**: currently not used, intended for str_wrap.
- **lower_only**: should only lower triangle be plotted?
- **.low**: Color for heatmap.
- **.high**: Color for heatmap.
- **.legendtitle**: Optional name for color legend.

Value

A ggplot object, allowing further styling.

Examples

```r
coeff_pvalues <- cortestR(mtcars[, c("wt", "mpg", "qsec", "hp")], 
    split = TRUE, sign_symbol = FALSE 
)
# focus on coefficients:
ggcormat(cor_mat = coeff_pvalues$corout, maxpoint = 5) 
# size take from p-value:
ggcormat( 
    cor_mat = coeff_pvalues$corout, 
    p_mat = coeff_pvalues$pout, maxpoint = 5 
)
```

glmCI

Confidence interval for generalized linear models

Description

glmCI computes and formats of CIs for glm.

Usage

```r
glmCI(model, min = .01, max = 100, cisep = '\U0000022ef', ndigit=2)
```
Arguments

model Output from glm.
min, max Lower and upper limits for CIs, useful for extremely wide CIs.
cisep Separator between CI values.
ndigit rounding level.

Value

A list with coefficient, CIs, and pasted coef(CIs)).

Examples

```r
glm_out <- glm(am ~ mpg, family = binomial, data = mtcars)
glmCI(glm_out)
```

ksnormal Kolmogorov-Smirnov-Test against Normal distribution

Description

ksnormal is a convenience function around ks.test, testing against Normal distribution.

Usage

ksnormal(x)

Arguments

x Vector of data to test.

Value

p.value from ks.test.

Examples

```r
# original ks.test:
ks.test(
  x = mtcars$wt, pnorm, mean = mean(mtcars$wt, na.rm = TRUE),
  sd = sd(mtcars$wt, na.rm = TRUE)
)
# wrapped version:
ksnormal(x = mtcars$wt)
```
logrange_1

Predefined sets of labels for plots with log-scaled axes

Description

logrange_1 returns a vector for log-labels at .1, 1, 100, 1000 ...

Usage

logrange_1
logrange_5
logrange_123456789
logrange_12357
logrange_15

Format

An object of class numeric of length 41.
An object of class numeric of length 738.
An object of class numeric of length 369.
An object of class numeric of length 205.
An object of class numeric of length 82.

Value

numeric vector
numeric vector

Functions

• logrange_5: vector for log-labels at 1.0, 1.5, 2.0, 2.5 ... 10, 15, 20, 25 ...
• logrange_123456789: vector for log-labels at 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100 ...
• logrange_12357: vector for log-labels at 1, 2, 3, 5, 7, 10, 20, 30, 50, 70 ...
• logrange_15: vector for log-labels at 1, 5, 10, 50 ...

Examples

```r
ggplot(mtcars, aes(wt, mpg)) + geom_point() + scale_y_log10(breaks = logrange_5)
ggplot(mtcars, aes(wt, mpg)) + geom_point() + scale_y_log10(breaks = logrange_123456789)
```
markSign

Convert significance levels to symbols

Description

markSign returns the symbol associated with a significance level.

Usage

markSign(SignIn, plabel = c("n.s.", "+", "+", "**", "***"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignIn</td>
<td>A single p-value.</td>
</tr>
<tr>
<td>plabel</td>
<td>A translation table, predefined with the usual symbols.</td>
</tr>
</tbody>
</table>

Value

factor with label as defined in plabel.

Examples

markSign(0.012)

meansd

Compute mean and sd and put together with the ± symbol.

Description

Compute mean and sd and put together with the ± symbol.

Usage

meansd(
 x,
 roundDig = 2,
 drop0 = FALSE,
 groupvar = NULL,
 range = FALSE,
 rangesep = " ",
 add_n = FALSE,
 .german = FALSE
)
meanse

Arguments

- **x** Data for computation.
- **roundDig** Number of relevant digits for roundR.
- **drop0** Should trailing zeros be dropped?
- **groupvar** Optional grouping variable for subgroups.
- **range** Should min and max be included in output?
- **rangesep** How should min/max be separated from mean±sd?
- **add_n** Should n be included in output?
- **.german** logical, should "." and "," be used as bigmark and decimal?

Value

character vector with mean ± SD, rounded to desired precision

Examples

```r
# basic usage of meansd
meansd(x = mtcars$wt)
# with additional options
meansd(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
```

Description

meanse computes SEM based on Standard Deviation/square root(n)

Usage

```r
meanse(x, mult = 1, roundDig = 2, drop0 = FALSE)
```

Arguments

- **x** Data for computation.
- **mult** multiplier for SEM, default 1, can be set to e.g. 2 or 1.96 to create confidence intervals
- **roundDig** Number of relevant digits for roundR.
- **drop0** Should trailing zeros be dropped?

Value

character vector with mean ± SEM, rounded to desired precision
Examples

basic usage of meanse
meanse(x = mtcars$wt)

`median_cl_boot` *Compute confidence interval of median by bootstrapping.*

Description

`median_cl_boot` computes lower and upper confidence limits for the estimated median, based on bootstrapping.

Usage

`median_cl_boot(x, conf = 0.95, type = "basic", nrepl = 10^3)`

Arguments

- `x` Data for computation.
- `conf` confidence interval with default 95%.
- `type` type for function boot.ci.
- `nrepl` number of bootstrap replications, defaults to 1000.

Value

A tibble with one row and three columns: Median, CIlow, CIhigh.

Examples

basic usage of meanse
median_cl_boot(x = mtcars$wt)

`median_quart` *Compute median and quartiles and put together.*

Description

Compute median and quartiles and put together.
median_quart

Usage

median_quart(
 x,
 nround = NULL,
 probs = c(0.25, 0.5, 0.75),
 qtype = 8,
 roundDig = 2,
 drop0 = FALSE,
 groupvar = NULL,
 range = FALSE,
 rangesep = " ",
 rangearrow = " -> ",
 prettynum = FALSE,
 .german = FALSE,
 add_n = FALSE
)

Arguments

 x Data for computation.
 nround Number of digits for fixed round.
 probs Quantiles to compute.
 qtype Type of quantiles.
 roundDig Number of relevant digits for roundR.
 drop0 Should trailing zeros be dropped?
 groupvar Optional grouping variable for subgroups.
 range Should min and max be included in output?
 rangesep How should min/max be separated from mean+-sd?
 rangearrow What is put between min -> max?
 prettynum logical, apply prettyNum to results?
 .german logical, should "." and "," be used as bigmark and decimal?
 add_n Should n be included in output?

Value

 character vector with median [1stQuartile/3rdQuartile], rounded to desired precision

Examples

 # basic usage of median_quart
 median_quart(x = mtcars$wt)
 # with additional options
 median_quart(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
pairwise_fisher_test
Pairwise Fisher's exact tests

Description

pairwise_fisher-test calculates pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise_fisher_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1],
 ref = FALSE
)

Arguments

dep_var dependent variable, containing the data.
indep_var independent variable, should be factor or coercible.
adjmethod method for adjusting p values (see p.adjust).
plevel threshold for significance.
symbols predefined as b,c, d...: provides footnotes to mark group differences, e.g. b means different from group 2
ref is the 1st subgroup the reference (like in Dunnett test)?

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

Examples

All pairwise comparisons
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear)
Only comparison against reference gear=3
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear, ref = TRUE)
pairwise_ordcat_test
Pairwise comparison for ordinal categories

Description

`pairwise_ordcat_test` calculates pairwise comparisons for ordinal categories between all group levels with corrections for multiple testing.

Usage

```r
pairwise_ordcat_test(
  dep_var, 
  indep_var, 
  adjmethod = "fdr", 
  plevel = 0.05, 
  symbols = letters[-1], 
  ref = FALSE, 
  cmh = TRUE 
)
```

Arguments

- `dep_var`: dependent variable, containing the data
- `indep_var`: independent variable, should be factor
- `adjmethod`: method for adjusting p values (see `p.adjust`)
- `plevel`: threshold for significance
- `symbols`: predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2
- `ref`: is the 1st subgroup the reference (like in Dunnett test)
- `cmh`: Should Cochran-Mantel-Haenszel test (`cmh_test`) be used for testing? If false, the linear-by-linear association test (`lbl_test`) is applied.

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

Examples

```r
# All pairwise comparisons
mtcars2 <- mutate(mtcars, cyl = factor(cyl, ordered = TRUE))
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear)
# Only comparison against reference gear=3
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear, ref = TRUE)
```
pairwise_t_test

Description

`pairwise_t_test` calculate pairwise comparisons between group levels with corrections for multiple testing based on `pairwise.t.test`.

Usage

```r
pairwise_t_test(
  dep_var,
  indep_var,
  adjmethod = "fdr",
  plevel = 0.05,
  symbols = letters[-1]
)
```

Arguments

- `dep_var`: dependent variable, containing the data
- `indep_var`: independent variable, should be factor
- `adjmethod`: method for adjusting p values (see `p.adjust`)
- `plevel`: threshold for significance
- `symbols`: predefined as `b,c,d,...`; provides footnotes to mark group differences, e.g. b means different from group 2

Value

A list with method output of `pairwise.t.test`, matrix of p-values, and character vector with significance indicators.

Examples

```r
pairwise_t_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
```
pairwise_wilcox_test

Pairwise Wilcoxon tests

Description

pairwise_wilcox_test calculates pairwise comparisons on ordinal data between all group levels with corrections for multiple testing based on wilcox_test from package 'coin'.

Usage

pairwise_wilcox_test(
 dep_var, # dependent variable, containing the data.
 indep_var, # independent variable, should be factor.
 strat_var = NA, # optional factor for stratification.
 adjmethod = "fdr", # method for adjusting p values (see p.adjust)
 distr = "exact", # Computation of p-values, see wilcox_test.
 plevel = 0.05, # threshold for significance.
 symbols = letters[-1], # predefined as b, c, d...; provides footnotes to mark group differences, e.g. b means different from group 2.
 sep = "" # text between statistics and range or other elements.
)

Arguments

dep_var dependent variable, containing the data.

indep_var independent variable, should be factor.

strat_var optional factor for stratification.

adjmethod method for adjusting p values (see p.adjust)

distr Computation of p-values, see wilcox_test.

plevel threshold for significance.

symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2.

sep text between statistics and range or other elements.

Value

A list with matrix of p-values and character vector with significance indicators.

Examples

pairwise_wilcox_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
pdf_kable

Enhanced kable with latex

Description

pdf_kable formats tibbles/df’s for markdown

Usage

pdf_kable(
 .input,
 width1 = 6,
 twidth = 14,
 tposition = "left",
 innercaption = NULL,
 caption = "",
 foot = NULL,
 escape = TRUE
)

Arguments

- .input: table to print
- width1: Width of 1st column, default 6.
- twidth: Default 14
- tposition: Default left
- innercaption: subheader
- caption: header
- foot: footnote
- escape: see kable

Value

A character vector of the table source code.
print_kable
Enhanced kable with definable number of rows/columns for splitting

Description

`print_kable` formats and prints tibbles/df’s in markdown with splitting into sub-tables with repeated caption and header.

Usage

```r
print_kable(t, nrows = 30, caption = "", ncols = 100, ...)
```

Arguments

- `t`
 - table to print.
- `nrows`
 - number of rows (30) before splitting.
- `caption`
 - header.
- `ncols`
 - number of columns (100) before splitting.
- `...`
 - Further arguments passed to `kable`.

Value

No return value, called for side effects.

roundR
Automatic rounding to a reasonable length, based on largest number

Description

`roundR` takes a vector or matrix of numbers and returns rounded values with selected precision and various formatting options.

Usage

```r
roundR(  
  roundin,  
  level = 2,  
  smooth = FALSE,  
  textout = TRUE,  
  drop0 = FALSE,  
  .german = FALSE,  
  .bigmark = FALSE
)
```
Arguments

roundin A vector or matrix of numbers.
level A number specifying number of relevant digits to keep.
smooth A logical specifying if you want rounding before the dot (e.g. 12345 to 12300).
textout A logical if output is converted to text.
drop0 A logical if trailing zeros should be dropped.
 A logical if german numbers should be reported.
 A logical if big.mark is to be shown, mark itself depends on parameter .german.

Value

vector of type character (default) or numeric, depending on parameter textout.

Examples

roundR(1.23456, level = 3)
roundR(1.23456, level = 3, .german = TRUE)
roundR(1234.56, level = 2, smooth = TRUE)

SEM Standard Error of Mean.

Description

SEM computes standard error of mean.

Usage

SEM(x)

Arguments

x Data for computation.

Value

numeric vector with SEM.

Examples

SEM(x = mtcars$wt)
se_median

Compute standard error of median.

Description

median_cl_boot is based on mad/square root(n)

Usage

se_median(x)

Arguments

x Data for computation.

Value

numeric vector with SE Median.

Examples

basic usage of meanse
se_median(x = mtcars$wt)

tab.search

Search within data.frame or tibble

Description

tab.search searches for pattern within a data-frame or tibble, returning column(s) and row(s)

Usage

tab.search(searchdata = rawdata, pattern, find.all = T, names.only = FALSE)

Arguments

searchdata table to search in, predefined as rawdata
pattern regex, for exact matches add ^findme$ find.all return all row indices or only 1st per column, default=TRUE names.only return only vector of colnames rather than list with names and rows, default=FALSE

Value

A list with numeric vectors for each column giving row numbers of matched elements
t_var_test

Independent sample t-test with test for equal variance

Description

`t_var_test` tests for equal variance based on `var.test` and calls `t.test`, setting the option `var.equal` accordingly.

Usage

```r
  t_var_test(data, formula, cutoff = 0.05)
```

Arguments

- **data**: Tibble or data_frame.
- **formula**: Formula object with dependent and independent variable.
- **cutoff**: is significance threshold for equal variances.

Value

A list from `t.test`

Examples

```r
  t_var_test(mtcars, wt ~ am)
  # may be used in pipes:
  mtcars %>% t_var_test(wt ~ am)
```

var_coeff

Compute coefficient of variance.

Description

`var_coeff` computes relative variability as standard deviation/mean *100

Usage

```r
  var_coeff(x)
```

Arguments

- **x**: Data for computation.

Value

numeric vector with coefficient of variance.
var_coeff

Examples

 var_coeff(x = mtcars$wt)
Index

* datasets
 logrange_1, 15
 logrange_123456789 (logrange_1), 15
 logrange_12357 (logrange_1), 15
 logrange_15 (logrange_1), 15
 logrange_5 (logrange_1), 15

bt, 2

cat_desc_stats, 3
cmh_test, 2/
cn, 4
compare2numvars, 5
compare2qualvars, 6
compare_n_numvars, 7
compare_n_qualvars, 8
cor.test, 9
cortestR, 9

FindVars, 10
fisher.test, 6
formatP, 5, 6, 9, 11

ggcormat, 12
glm, 14
glmCI, 13

kable, 25
ks.test, 14
ksnormal, 14

lbl_test, 2/
logrange_1, 15
logrange_123456789 (logrange_1), 15
logrange_12357 (logrange_1), 15
logrange_15 (logrange_1), 15
logrange_5 (logrange_1), 15

mad, 27
markSign, 16
meansd, 16
meanse, 17
median_cl_boot, 18
median_quart, 18

p.adjust, 20–23
pairwise.t.test, 22
pairwise_fisher_test, 20
pairwise_ordcat_test, 21
pairwise_t_test, 22
pairwise_wilcoxon_test, 23
pdf_kable, 24
print_kable, 25

roundR, 25

se_median, 27
SEM, 26

t.test, 28
t_var_test, 5, 28
tab.search, 27

var.test, 28
var_coeff, 28

wilcoxon.test, 5
wilcoxon_test, 23