Package ‘wpa’

July 5, 2022

Type Package

Title Tools for Analysing and Visualising Viva Insights Data

Version 1.8.0

Description Opinionated functions that enable easier and faster analysis of Viva Insights data. There are three main types of functions in ’wpa’: (i) Standard functions create a ’ggplot’ visual or a summary table based on a specific Viva Insights metric; (2) Report Generation functions generate HTML reports on a specific analysis area, e.g. Collaboration; (3) Other miscellaneous functions cover more specific applications (e.g. Subject Line text mining) of Viva Insights data. This package adheres to ’tidyverse’ principles and works well with the pipe syntax. ’wpa’ is built with the beginner-to-intermediate R users in mind, and is optimised for simplicity.

URL https://github.com/microsoft/wpa/

BugReports https://github.com/microsoft/wpa/issues/

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.1.2)

Imports dplyr, stats, utils, tidyr, tidyselect (>= 1.0.0), magrittr, purrr, reshape2, ggplot2, ggrepel, scales, htmltools, markdown, rmarkdown, networkD3, DT, tidytext, ggraph, igraph, proxy, ggwordcloud, methods, data.table

RoxygenNote 7.2.0

Suggests knitr, extrafont, leiden, lifecycle, fst, glue, flexdashboard, lmtest, sandwich, testthat (>= 3.0.0)

Language en-US

Config/testthat/edition 3

NeedsCompilation no

Author Martin Chan [aut, cre], Carlos Morales [aut], 1
Mark Powers [ctb],
Ainiz Cidoncha [ctb],
Rosamary Ochoa Vargas [ctb],
Tannaz Sattari [ctb],
Lucas Hogner [ctb],
Jasminder Thind [ctb],
Simone Liebal [ctb],
Aleksey Ashikhmin [ctb],
Ellen Trinklein [ctb],
Microsoft Corporation [cph]

Maintainer Martin Chan <martin.chan@microsoft.com>
Repository CRAN
Date/Publication 2022-07-05 15:40:02 UTC

R topics documented:

afterhours_dist .. 6
afterhours_fizz ... 7
afterhours_line ... 9
afterhours_rank ... 10
afterhours_summary .. 12
afterhours_trend .. 13
anonymise ... 15
calculate_IV ... 15
camel_clean ... 16
capacity_report ... 17
check_inputs .. 18
check_query ... 19
coaching_report .. 20
collaboration_area ... 21
collaboration_dist ... 22
collaboration_fizz ... 24
collaboration_line ... 26
collaboration_rank ... 27
collaboration_report ... 29
collaboration_sum ... 30
collaboration_trend .. 32
combine_signals .. 33
comma .. 34
connectivity_report ... 35
copy_df .. 36
create_bar ... 36
create_bar_asis ... 39
create_boxplot .. 41
create_bubble ... 43
create_density ... 45
create_dist ... 46
R topics documented:

create_dt
create_fizz
create_hist
create_inc
create_ITSA
create_IV
create_line
create_line_asis
create_period_scatter
create_rank
create_rank_combine
create_sankey
create_scatter
create_stacked
create_tracking
create_trend
cut_hour
dv_data
email_dist
email_fizz
email_line
email_rank
email_summary
email_trend
em_data
export
external_dist
external_fizz
external_line
external_network_plot
external_rank
external_sum
extract_date_range
extract_hr
flag_ch_ratio
flag_em_ratio
flag_extreme
flag_outlooktime
flex_index
g2g_data
generate_report
generate_report2
GetResiduals
heat_colours
hrvar_count
hrvar_count_all
hrvar_trend
hr_trend
R topics documented:

identify_churn .. 122
identify_datefreq ... 123
identify_holidayweeks 125
identify_inactiveweeks 126
identify_nkw ... 127
identify_outlier .. 128
identify_privacythreshold 129
identify_query ... 131
identify_shifts ... 132
identify_shifts_wp ... 133
identify_tenure .. 135
import_to_fst .. 136
import_wpa .. 137
internal_network_plot ... 138
is_date_format .. 139
IV_by_period ... 140
IV_report ... 141
jitter_metrics .. 143
keymetrics_scan .. 143
keymetrics_scan_asis .. 145
LjungBox ... 147
map_IV ... 149
maxmin ... 150
meetingtype_dist .. 151
meetingtype_dist_ca .. 152
meetingtype_dist_mt .. 153
meetingtype_summary ... 154
meeting_dist .. 156
meeting_extract .. 157
meeting_fizz .. 159
meeting_line .. 160
meeting_quality .. 161
meeting_rank .. 163
meeting_skim .. 165
meeting_summary .. 166
meeting_tm_report .. 167
meeting_trend .. 168
mgrcoatt_dist .. 170
mgrrel_matrix .. 171
mt_data ... 173
network_describe .. 175
network_g2g ... 176
network_leiden ... 179
network_louvain ... 181
network_p2p ... 183
network_summary .. 186
one2one_dist ... 187
one2one_fizz ... 189
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>one2one_freq</td>
</tr>
<tr>
<td>one2one_line</td>
</tr>
<tr>
<td>one2one_rank</td>
</tr>
<tr>
<td>one2one_sum</td>
</tr>
<tr>
<td>one2one_trend</td>
</tr>
<tr>
<td>p2p_data_sim</td>
</tr>
<tr>
<td>pad2</td>
</tr>
<tr>
<td>pairwise_count</td>
</tr>
<tr>
<td>period_change</td>
</tr>
<tr>
<td>personas_hclust</td>
</tr>
<tr>
<td>plot_flex_index</td>
</tr>
<tr>
<td>plot_hourly_pat</td>
</tr>
<tr>
<td>plot_WOE</td>
</tr>
<tr>
<td>p_test</td>
</tr>
<tr>
<td>read_preamble</td>
</tr>
<tr>
<td>remove_outliers</td>
</tr>
<tr>
<td>rgb2hex</td>
</tr>
<tr>
<td>sq_data</td>
</tr>
<tr>
<td>standardise_pq</td>
</tr>
<tr>
<td>subject_classify</td>
</tr>
<tr>
<td>subject_scan</td>
</tr>
<tr>
<td>subject_validate</td>
</tr>
<tr>
<td>subject_validate_report</td>
</tr>
<tr>
<td>theme_wpa</td>
</tr>
<tr>
<td>theme_wpa_basic</td>
</tr>
<tr>
<td>tm_clean</td>
</tr>
<tr>
<td>tm_cooc</td>
</tr>
<tr>
<td>tm_freq</td>
</tr>
<tr>
<td>tm_wordcloud</td>
</tr>
<tr>
<td>totals_bind</td>
</tr>
<tr>
<td>totals_col</td>
</tr>
<tr>
<td>totals_reorder</td>
</tr>
<tr>
<td>track_HR_change</td>
</tr>
<tr>
<td>tstamp</td>
</tr>
<tr>
<td>us_to_space</td>
</tr>
<tr>
<td>validation_report</td>
</tr>
<tr>
<td>wellbeing_report</td>
</tr>
<tr>
<td>workloads_dist</td>
</tr>
<tr>
<td>workloads_fizz</td>
</tr>
<tr>
<td>workloads_line</td>
</tr>
<tr>
<td>workloads_rank</td>
</tr>
<tr>
<td>workloads_summary</td>
</tr>
<tr>
<td>workloads_trend</td>
</tr>
<tr>
<td>workpatterns_area</td>
</tr>
<tr>
<td>workpatterns_classify</td>
</tr>
<tr>
<td>workpatterns_classify_bw</td>
</tr>
<tr>
<td>workpatterns_classify_pav</td>
</tr>
<tr>
<td>workpatterns_hclust</td>
</tr>
</tbody>
</table>
afterhours_dist

workpatterns_rank ... 254
workpatterns_report .. 256
wrap .. 258
wrap_text ... 258

Index 260

afterhours_dist Distribution of After-hours Collaboration Hours as a 100% stacked bar

Description

Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

afterhours_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(1, 2, 3)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"

See Value for more information.
cut A vector specifying the cuts to use for the data, accepting "default" or "range-cut" as character vector, or a numeric value of length three to specify the exact breaks to use. e.g. c(1, 3, 5)

Details

Uses the metric After_hours_collaboration_hours. See create_dist() for applying the same analysis to a different metric.
afterhours_fizz

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()

Other After-hours Collaboration: `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `external_rank()`

Examples

```r
# Return plot
afterhours_dist(sq_data, hrvar = "Organization")

# Return summary table
afterhours_dist(sq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
afterhours_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
```

afterhours_fizz

Distribution of After-hours Collaboration Hours (Fizzy Drink plot)

Description

Analyze weekly after-hours collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```r
afterhours_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

 • "plot"
 • "table"

See Value for more information.

Details

Uses the metric After_hours_collaboration_hours. See create_fizz() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

 • "plot": 'ggplot' object. A jittered scatter plot for the metric.
 • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other After-hours Collaboration: afterhours_dist(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), external_rank()
afterhours_line

Examples

Return plot
afterhours_fizz(sq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
afterhours_fizz(sq_data, hrvar = "Organization", return = "table")

Description

Provides a week by week view of after-hours collaboration time, visualized as line charts. By default returns a line chart for after-hours collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

afterhours_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"
See Value for more information.

Details

Uses the metric After_hours_collaboration_hours.

Value

A different output is returned depending on the value passed to the return argument:
• "plot": `ggplot` object. A faceted line plot for the metric.
• "table": data frame. A summary table for the metric.
afterhours_rank

Rank groups with high After-Hours Collaboration Hours

Description

This function scans a Standard Person Query for groups with high levels of After-Hours Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of After-Hours Collaboration Hours.

Usage

```r
afterhours_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Examples

```r
# Return a line plot
afterhours_line(sq_data, hrvar = "LevelDesignation")

# Return summary table
afterhours_line(sq_data, hrvar = "LevelDesignation", return = "table")
```
Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mimgroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
mode String to specify calculation mode. Must be either:
 • "simple"
 • "combine"
plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
 • 1: Top and bottom five groups across the data population are highlighted
 • 2: Top and bottom groups per organizational attribute are highlighted
return String specifying what to return. This must be one of the following strings:
 • "plot" (default)
 • "table"
 See Value for more information.

Details

Uses the metric After_hours_collaboration_hours. See create_rank() for applying the same analysis to a different metric.

Value

When 'table' is passed in return, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mnt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), oneZone_dist(), oneZone_fizz(), oneZone_freq(), oneZone_line(), oneZone_rank(), oneZone_sum(), oneZone_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()
afterhours_summary

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_summary(), afterhours_trend(), external_rank()

afterhours_summary Summary of After-Hours Collaboration Hours

Description

Provides an overview analysis of after-hours collaboration time. Returns a bar plot showing average weekly after-hours collaboration hours by default. Additional options available to return a summary table.

Usage

afterhours_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

afterhours_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Details

Uses the metric After_hours_collaboration_hours.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.
afterhours_trend

After-Hours Time Trend

Description

Provides a week by week view of after-hours collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

afterhours_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
afterhours_trend

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric After_hours_collaboration_hours.

Value

Returns a `ggplot` object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), external_rank()

Examples

Run plot
afterhours_trend(sq_data)

Run table
afterhours_trend(sq_data, hrvar = "LevelDesignation", return = "table")
anonymise

Anonymise a categorical variable by replacing values

Description

Anonymize categorical variables such as HR variables by replacing values with dummy team names such as 'Team A'. The behaviour is to make 1 to 1 replacements by default, but there is an option to completely randomise values in the categorical variable.

Usage

```r
anonymise(x, scramble = FALSE, replacement = NULL)
anonymize(x, scramble = FALSE, replacement = NULL)
```

Arguments

- `x` Character vector to be passed through.
- `scramble` Logical value determining whether to randomise values in the categorical variable.
- `replacement` Character vector containing the values to replace original values in the categorical variable. The length of the vector must be at least as great as the number of unique values in the original variable. Defaults to `NULL`, where the replacement would consist of "Team A", "Team B", etc.

See Also

- `jitter`

Examples

```r
unique(anonymise(sq_data$Organization))
rep <- c("Manager+", "Manager", "IC")
unique(anonymise(sq_data$Layer), replacement = rep)
```

calculate_IV

Calculate Weight of Evidence (WOE) and Information Value (IV) between a single predictor and a single outcome variable.
Description

Calculates Weight of Evidence (WOE) and Information Value (IV) between a single predictor and a single outcome variable. This function implements the common Information Value calculations whilst maintaining the minimum reliance on external dependencies. Use `map_IV()` for the equivalent of `Information::create_infotables()`, which performs calculations for multiple predictors and a single outcome variable.

Usage

calculate_IV(data, outcome, predictor, bins)

Arguments

data Data frame containing the data.
outcome String containing the name of the outcome variable.
predictor String containing the name of the predictor variable.
bins Numeric value representing the number of bins to use.

Details

The approach used mirrors the one used in `Information::create_infotables()`.

Value

A data frame is returned as an output.

camel_clean

Convert "CamelCase" to "Camel Case"

Description

Convert a text string from the format "CamelCase" to "Camel Case". This is used for converting variable names such as "LevelDesignation" to "Level Designation" for the purpose of prettifying plot labels.

Usage

camel_clean(string)

Arguments

string A string vector in 'CamelCase' format to format

Value

Returns a formatted string.
See Also

Other Support: check_inputs(), combine_signals(), cut_hour(), extract_date_range(),
extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(),
plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(),
tstamp(), us_to_space(), wrap()

Examples

camel_clean("NoteHowTheStringIsFormatted")

capacity_report Generate a Capacity report in HTML

Description

The function generates an interactive HTML report using the Standard Person Query data as an
input. The report contains a series of summary analysis and visualisations relating to key capacity
metrics in Viva Insights, including length of week and time in after-hours collaboration.

Usage

capacity_report(
 data,
 hrvar = "Organization",
 mingroup = 5,
 path = "capacity report",
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.

path Pass the file path and the desired file name, excluding the file extension. For
example, "capacity report".

timestamp Logical vector specifying whether to include a timestamp in the file name. De-
defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working
directory. No outputs are directly returned by the function.
check_inputs

Check whether a data frame contains all the required variable

Description

Checks whether a data frame contains all the required variables. Matching works via variable
names, and used to support individual functions in the package. Not used directly.

Usage

check_inputs(input, requirements, return = "stop")

Arguments

input Pass a data frame for checking
requirements A character vector specifying the required variable names
return A character string specifying what to return. The default value is "stop". Also
accepts "names" and "warning".

Value

The default behaviour is to return an error message, informing the user what variables are not
included. When return is set to "names", a character vector containing the unmatched variable
names is returned.

See Also

Other Support: camel_clean(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(),
heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(),
read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(),
us_to_space(), wrap()

Examples

Return error message
Not run:
check_inputs(iris, c("Sepal.Length", "mpg"))

End(Not run)

Return warning message
check_query

check_inputs(iris, c("Sepal.Length", "mpg"), return = "warning")

Return variable names
check_inputs(iris, c("Sepal.Length", "Sepal.Width", "RandomVariable"), return = "names")

check_query

Description

Prints diagnostic data about the data query to the R console, with information such as date range, number of employees, HR attributes identified, etc.

Usage

check_query(data, return = "message", validation = FALSE)

Arguments

data A person-level query in the form of a data frame. This includes:
• Standard Person Query
• Ways of Working Assessment Query
• Hourly Collaboration Query

All person-level query have a PersonId column and a Date column.

return String specifying what to return. This must be one of the following strings:
• "message" (default)
• "text"

See Value for more information.

validation Logical value to specify whether to show summarized version. Defaults to FALSE. To hide checks on variable names, set validation to TRUE.

Details

This can be used with any person-level query, such as the standard person query, Ways of Working assessment query, and the hourly collaboration query. When run, this prints diagnostic data to the R console.

Value

A different output is returned depending on the value passed to the return argument:
• "message": a message is returned to the console.
• "text": string containing the diagnostic message.
coaching_report

See Also

Other Data Validation: extract_hr(). flag_ch_ratio(). flag_em_ratio(). flag_extreme(). flag_outlooktime(). hr_trend(). hrvar_count_all(). hrvar_count(). hrvar_trend(). identify_churn(). identify_holidayweeks(). identify_inactiveweeks(). identify_nkw(). identify_outlier(). identify_privacythreshold(). identify_query(). identify_shifts_wp(). identify_shifts(). identify_tenure(). remove_outliers(). standardise_pq(). subject_validate_report(). subject_validate(). track_HR_change(). validation_report()

Examples

check_query(sq_data)

coaching_report Generate a Coaching report in HTML

Description

The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key coaching metrics in Viva Insights, specifically relating to the time spent between managers and their direct reports.

Usage

caching_report(
 data,
 hrvar = "LevelDesignation",
 mingroup = 5,
 path = "coaching report",
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
path Pass the file path and the desired file name, excluding the file extension. For example, "coaching report".
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.
collaboration_area

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Reports: IV_report(), capacity_report(), collaboration_report(), connectivity_report(), generate_report(), meeting_tm_report(), read_preamble(), subject_validate_report(), validation_report(), workpatterns_report()

collaboration_area Collaboration - Stacked Area Plot

Description

Provides an overview analysis of Weekly Digital Collaboration. Returns an stacked area plot of Email and Meeting Hours by default. Additional options available to return a summary table.

Usage

collaboration_area(data, hrvar = NULL, mingroup = 5, return = "plot")

collab_area(data, hrvar = NULL, mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame. A Ways of Working assessment dataset may also be provided, in which Unscheduled call hours would be included in the output.

hrvar HR Variable by which to split metrics, defaults to NULL, but accepts any character vector, e.g. "LevelDesignation". If NULL is passed, the organizational attribute is automatically populated as "Total".

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"

See Value for more information.

Details

Uses the metrics Meeting_hours, Email_hours, Unscheduled_Call_hours, and Instant_Message_hours.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A stacked area plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Collaboration: `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`

Examples

```r
# Return plot with total (default)
collaboration_area(sq_data)

# Return plot with hrvar split
collaboration_area(sq_data, hrvar = "Organization")

# Return summary table
collaboration_area(sq_data, return = "table")
```

collaboration_dist Distribution of Collaboration Hours as a 100% stacked bar

Description

Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
collaboration_dist

Usage

collaboration_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(15, 20, 25)
)

collab_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(15, 20, 25)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:

 • "plot": 'ggplot' object. A stacked bar plot for the metric.
 • "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Collaboration: collaboration_area(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

```
# Return plot
collaboration_dist(sq_data, hrvar = "Organization")

# Return summary table
collaboration_dist(sq_data, hrvar = "Organization", return = "table")
```

collaboration_fizz
Distribution of Collaboration Hours (Fizzy Drink plot)

Description

Analyze weekly collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```
collaboration_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
collaboration_fizz

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings:
- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_scatter(), create_scatter(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_network_plot(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist(), meetingtype_dist(), meetingtype_dist(), meetingtype_summary(), mgrocoatt_dist(), mgrocoatt_dist(), mgrpreatl_matrix(), one2one_dist(), one2one_dist(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

Return plot
collaboration_fizz(sq_data, hrvar = "Organization", return = "plot")

Return summary table
collaboration_fizz(sq_data, hrvar = "Organization", return = "table")
collaboration_line

Collaboration Time Trend - Line Chart

Description

Provides a week by week view of collaboration time, visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

collaboration_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data
A Standard Person Query dataset in the form of a data frame.

hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return
String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object. A faceted line plot for the metric.
• "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.
collaboration_rank

Collaboration Ranking

Description

This function scans a standard query output for groups with high levels of 'Weekly Digital Collaboration'. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage

```r
collaboration_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Examples

```r
# Return a line plot
collaboration_line(sq_data, hrvar = "LevelDesignation")

# Return summary table
collaboration_line(sq_data, hrvar = "LevelDesignation", return = "table")
```

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_rank(), collaboration_sum(), collaboration_trend()
collab_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. De-
faults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.

mode String to specify calculation mode. Must be either:
 • "simple"
 • "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2,
and is only used when return = "plot".
 • 1: Top and bottom five groups across the data population are highlighted
 • 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:
 • "plot" (default)
 • "table"

See Value for more information.

Details

Uses the metric Collaboration_hours. See create_rank() for applying the same analysis to a
different metric.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot":: 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis
 represents the HR attributes, and the size of the bubbles represent the size of the organizations.
 Note that there is no plot output if mode is set to "combine".
 • "table": data frame. A summary table for the metric.
collaboration_report

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrocoatt_dist(), mgrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend()

Examples

Return rank table
collaboration_rank(
data = sq_data,
return = "table"
)

Return plot
collaboration_rank(
data = sq_data,
return = "plot"
)

collaboration_report Generate a Collaboration Report in HTML

Description

The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key collaboration metrics, including email and meeting hours.
collaboration_sum

Usage

collaboration_report(
 data,
 hrvar = "AUTO",
 mingroup = 5,
 path = "collaboration report",
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
path Pass the file path and the desired file name, excluding the file extension. For example, "collaboration report".
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Reports: IV_report(), capacity_report(), coaching_report(), connectivity_report(), generate_report(), meeting_tm_report(), read_preamble(), subject_validate_report(), validation_report(), workpatterns_report()
Usage

collaboration_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

collab_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

collaboration_summary(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)

collab_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting by
an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are
"plot" and "table".

Details

Uses the metrics Meeting_hours, Email_hours, Unscheduled_Call_hours, and Instant_Message_hours.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a
summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_trend(),
create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(),
create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_scatter(), create_scatter(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
e-mail_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(),
external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(),
keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(),
meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrp_rel_matrix(), one2one_dist(),
collaboration_trend

Description

Provides a week by week view of collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

collaboration_trend(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.
combine_signals

Combine signals from the Hourly Collaboration query

Description

Takes in an Hourly Collaboration Data, and for each hour sums and aggregates the signals (e.g. `Emails_sent` and `IMs_sent`) in `Signals_sent`. This is an internal function used in the Working Patterns functions.

Usage

```r
combine_signals(data, hr, signals = c("Emails_sent", "IMs_sent"))
```

Arguments

- **data**: Hourly Collaboration query containing signal variables (e.g. `Emails_sent_00_01`)
- **hr**: Numeric value between 0 to 23 to iterate through
- **signals**: Character vector for specifying which signal types to combine. Defaults to `c("Emails_sent", "IMs_sent")`. Other valid values include "Unscheduled_calls" and "Meetings".

Details

combine_signals uses string matching to aggregate columns.

Value

Returns a numeric vector that represents the sum of signals sent for a given hour.
See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(), us_to_space(), wrap()

Examples

Demo using simulated variables
sim_data <-
 data.frame(Emails_sent_09_10 = sample(1:5, size = 10, replace = TRUE),
 Unscheduled_calls_09_10 = sample(1:5, size = 10, replace = TRUE))

combine_signals(sim_data, hr = 9, signals = c("Emails_sent", "Unscheduled_calls"))

comma

Add comma separator for thousands

Description

Takes a numeric value and returns a character value which is rounded to the whole number, and adds a comma separator at the thousands. A convenient wrapper function around round() and format().

Usage

`comma(x)`

Arguments

- **x** A numeric value

Value

Returns a formatted string.
connectivity_report
Generate a Connectivity report in HTML

Description

The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key connectivity metrics, including external/internal network size vs breadth (Networking_outside_organization, Networking_outside_domain).

Usage

```r
connectivity_report(
  data,
  hrvar = "LevelDesignation",
  mingroup = 5,
  path = "connectivity report",
  timestamp = TRUE
)
```

Arguments

- **data**
 A Standard Person Query dataset in the form of a data frame.

- **hrvar**
 String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- **mingroup**
 Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- **path**
 Pass the file path and the desired file name, excluding the file extension. For example, "connectivity report".

- **timestamp**
 Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Reports: `IV_report()`, `capacity_report()`, `coaching_report()`, `collaboration_report()`, `generate_report()`, `meeting_tm_report()`, `read_preamble()`, `subject_validate_report()`, `validation_report()`, `workpatterns_report()`
copy_df
Copy a data frame to clipboard for pasting in Excel

Description

This is a pipe-optimised function, that feeds into wpa::export(), but can be used as a stand-alone function.

Based on the original function from https://github.com/martinctc/surveytoolbox.

Usage

```r
copy_df(x, row.names = FALSE, col.names = TRUE, quietly = FALSE, ...)
```

Arguments

- `x`: Data frame to be passed through. Cannot contain list-columns or nested data frames.
- `row.names`: A logical vector for specifying whether to allow row names. Defaults to FALSE.
- `col.names`: A logical vector for specifying whether to allow column names. Defaults to FALSE.
- `quietly`: Set this to TRUE to not print data frame on console
- `...`: Additional arguments for write.table().

Value

Copies a data frame to the clipboard with no return value.

See Also

Other Import and Export: `create_dt()`, `export()`, `import_to_fst()`, `import_wpa()`, `standardise_pq()`

create_bar
Mean Bar Plot for any metric

Description

Provides an overview analysis of a selected metric by calculating a mean per metric. Returns a bar plot showing the average of a selected metric by default. Additional options available to return a summary table.
Usage

```r
create_bar(
  data,
  metric,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  bar_colour = "default",
  na.rm = FALSE,
  percent = FALSE,
  plot_title = us_to_space(metric),
  plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
  legend_lab = NULL,
  rank = "descending",
  xlim = NULL,
  text_just = 0.5,
  text_colour = "#FFFFFF"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

metric Character string containing the name of the metric, e.g. "Collaboration_hours"

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"

See Value for more information.

bar_colour String to specify colour to use for bars. In-built accepted values include "default" (default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted. You can also supply RGB values via rgb2hex().

na.rm A logical value indicating whether NA should be stripped before the computation proceeds. Defaults to FALSE.

percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

plot_title An option to override plot title.

plot_subtitle An option to override plot subtitle.

legend_lab String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.

rank String specifying how to rank the bars. Valid inputs are:
create_bar

- "descending" - ranked highest to lowest from top to bottom (default).
- "ascending" - ranked lowest to highest from top to bottom.
- NULL - uses the original levels of the HR attribute.

xlim An option to set max value in x axis.
text_just [Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.5.
text_colour [Experimental] String to specify colour to use for the text labels. Defaults to "#FFFFFF".

Value
A different output is returned depending on the value passed to the return argument:
- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_rank(), create_period_scatter(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples
Return a ggplot bar chart
create_bar(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

Change bar colour
create_bar(sq_data,
 metric = "After_hours_collaboration_hours",
 bar_colour = "alert")
Custom data label positions and formatting

```r
sq_data %>%
create_bar(
  metric = "Meetings",
  text_just = 1.1,
  text_colour = "black",
  xlim = 20)
```

Return a summary table

```r
create_bar(sq_data,
  metric = "Collaboration_hours",
  hrvar = "LevelDesignation",
  return = "table")
```

create_bar_asis
Create a bar chart without aggregation for any metric

Description

This function creates a bar chart directly from the aggregated/summarised data. Unlike `create_bar()` which performs a person-level aggregation, there is no calculation for `create_bar_asis()` and the values are rendered as they are passed into the function.

Usage

```r
create_bar_asis(
  data,
  group_var,
  bar_var,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ylab = group_var,
  xlab = bar_var,
  percent = FALSE,
  bar_colour = "default",
  rounding = 1
)
```

Arguments

- **data**: Plotting data as a data frame.
- **group_var**: String containing name of variable for the group.
- **bar_var**: String containing name of variable representing the value of the bars.
- **title**: Title of the plot.
- **subtitle**: Subtitle of the plot.
- **caption**: Caption of the plot.
create_bar_asis

ylab Y-axis label for the plot (group axis)
xlab X-axis label of the plot (bar axis).
percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.
bar_colour String to specify colour to use for bars. In-built accepted values include "default" (default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted. You can also supply RGB values via rgb2hex().
rounding Numeric value to specify number of digits to show in data labels

Value
'

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), onezone_dist(), onezone_fizz(), onezone_freq(), onezone_line(), onezone_rank(), onezone_sum(), onezone_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples
Creating a custom bar plot without mean aggregation
library(dplyr)

sq_data %>%
group_by(Organization) %>%
summarise(across(.cols = Meeting_hours,
 .fns = ~sum(., na.rm = TRUE))) %>%
create_bar_asis(group_var = "Organization",
 bar_var = "Meeting_hours",
 title = "Total Meeting Hours over period",
 subtitle = "By Organization",
 caption = extract_date_range(sq_data, return = "text"),
library(dplyr)

Summarise Non-person-average median `Emails_sent`
med_df <-
 sq_data %>%
 group_by(Organization) %>%
 summarise(Emails_sent_median = median(Emails_sent))

med_df %>%
create_bar_asis(
 group_var = "Organization",
 bar_var = "Emails_sent_median",
 title = "Median Emails Sent by Organization",
 subtitle = "Person Averaging Not Applied",
 bar_colour = "darkblue",
 caption = extract_date_range(sq_data, return = "text")
)

create_boxplot
Box Plot for any metric

Description

Analyzes a selected metric and returns a box plot by default. Additional options available to return a table with distribution elements.

Usage

```r
create_boxplot(
  data,  
  metric,  
  hrvar = "Organization",  
  mingroup = 5,  
  return = "plot"
)
```

Arguments

- `data`
 A Standard Person Query dataset in the form of a data frame.

- `metric`
 Character string containing the name of the metric, e.g. "Collaboration_hours"

- `hrvar`
 String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
create_boxplot

mintgroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"

See Value for more information.

Details
This is a general purpose function that powers all the functions in the package that produce box plots.

Value
A different output is returned depending on the value passed to the return argument:
• "plot": 'ggplot' object. A box plot for the metric.
• "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples
Create a fizzy plot for Work Week Span by Level Designation
create_boxplot(sq_data,
mintgroup = "Workweek_span",
hvar = "LevelDesignation",
return = "plot")
Create a summary statistics table for Work Week Span by Organization
create_boxplot(sq_data,
 metric = "Workweek_span",
 hrvar = "Organization",
 return = "table")

Create a fizzy plot for Collaboration Hours by Level Designation
create_boxplot(sq_data,
 metric = "Collaboration_hours",
 hrvar = "LevelDesignation",
 return = "plot")

create_bubble

Create a bubble plot with two selected Viva Insights metrics (General Purpose), with size representing the number of employees in the group.

Description

Returns a bubble plot of two selected metrics, using size to map the number of employees.

Usage

create_bubble(
 data,
 metric_x,
 metric_y,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 bubble_size = c(1, 10)
)

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric_x**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **metric_y**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings: "plot" or "table"
- **bubble_size**: A numeric vector of length two to specify the size range of the bubbles
create_bubble

details

This is a general purpose function that powers all the functions in the package that produce bubble plots.

value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot for the metric.
- "table": data frame. A summary table for the metric.

see also

other visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

other flexible: create_bar_asis(), create_bar(), create_boxplot(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

examples

create_bubble(sq_data, "Internal_network_size", "External_network_size", "Organization")

create_bubble(sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot")
create_density

Create a density plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a faceted density plot by default. Additional options available to return the underlying frequency table.

Usage

create_density(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 ncol = NULL,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric String containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
ncol Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 • "data"
 • "frequency"
See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A faceted density plot for the metric.
 • "table": data frame. A summary table for the metric.
 • "data": data frame. Data with calculated person averages.
 • "frequency": list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.
create_dist

See Also
Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples

Return plot for whole organization
create_density(sq_data, metric = "Collaboration_hours", hrvar = NULL)

Return plot
create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization")

Return plot but coerce plot to two columns
create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2)

Return summary table
create_density(sq_data,
 metric = "Collaboration_hours",
 hrvar = "Organization",
 return = "table")

create_dist Horizontal 100 percent stacked bar plot for any metric

Description
Provides an analysis of the distribution of a selected metric. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

create_dist(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(15, 20, 25),
 dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"),
 unit = "hours",
 lbound = 0,
 ubound = 100,
 sort_by = NULL,
 labels = NULL
)
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: String containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.
- **cut**: A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
- **dist_colours**: A character vector of length four to specify colour codes for the stacked bars.
- **unit**: String to specify what unit to use. This defaults to "hours" but can accept any custom string. See cut_hour() for more details.
- **lbound**: Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0.
- **ubound**: Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100.
- **sort_by**: String to specify the bucket label to sort by. Defaults to NULL (no sorting).
- **labels**: Character vector to override labels for the created categorical variables. Must be a named vector - see examples.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
create_dt

Create interactive tables in HTML with 'download' buttons.

Description

Usage

create_dt(x, rounding = 1, freeze = 2, percent = FALSE)
create_fizz

Arguments

- **x**: Data frame to be passed through.
- **rounding**: Numeric vector to specify the number of decimal points to display.
- **freeze**: Number of columns from the left to 'freeze'. Defaults to 2, which includes the row number column.
- **percent**: Logical value specifying whether to display numeric columns as percentages.

Value

Returns an HTML widget displaying rectangular data.

See Also

Other Import and Export: `copy_df()`, `export()`, `import_to_fst()`, `import_wpa()`, `standardise_pq()`

create_fizz

Fizzy Drink / Jittered Scatter Plot for any metric

Description

Analyzes a selected metric and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```r
create_fizz(
  data,  # A Standard Person Query dataset in the form of a data frame.
  metric,  # Character string containing the name of the metric, e.g. "Collaboration_hours"
  hrvar = "Organization",  # String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
  mingroup = 5,  # Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
  return = "plot"  # String specifying what to return. This must be one of the following strings:
    #  • "plot"
    #  • "table"
    # See Value for more information.
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
See Value for more information.
create_fizz

Details

This is a general purpose function that powers all the functions in the package that produce 'fizzy drink' / jittered scatter plots.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrpcoatt_dist(), mgrpcoatt_hist(), mgrpcoatt_rank(), mgrpcoatt_sum(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples

Create a fizzy plot for Work Week Span by Level Designation
create_fizz(sq_data, metric = "Workweek_span", hrvar = "LevelDesignation", return = "plot")

Create a summary statistics table for Work Week Span by Organization
create_fizz(sq_data, metric = "Workweek_span", hrvar = "Organization", return = "table")

Create a fizzy plot for Collaboration Hours by Level Designation
create_fizz(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
create_hist

Create a histogram plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a faceted histogram by default. Additional options available to return the underlying frequency table.

Usage

```r
create_hist(
  data,  # A Standard Person Query dataset in the form of a data frame.
  metric,  # String containing the name of the metric, e.g. "Collaboration_hours"
  hrvar = "Organization",  # String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
  mingroup = 5,  # Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
  binwidth = 1,  # Numeric value for setting binwidth argument within ggplot2::geom_histogram(). Defaults to 1.
  ncol = NULL,  # Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
  return = "plot"  # String specifying what to return. This must be one of the following strings:
    - "plot"
    - "table"
    - "data"
    - "frequency"

  See Value for more information.
)```

**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: String containing the name of the metric, e.g. "Collaboration_hours".
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **binwidth**: Numeric value for setting binwidth argument within ggplot2::geom_histogram(). Defaults to 1.
- **ncol**: Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  - "data"
  - "frequency"

See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A faceted histogram for the metric.
- "table": data frame. A summary table for the metric.
- "data": data frame. Data with calculated person averages.
- "frequency": list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.

See Also

Other Flexible: `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `period_change()`

Examples

```r
Return plot for whole organization
create_hist(sq_data, metric = "Collaboration_hours", hrvar = NULL)

Return plot
create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization")

Return plot but coerce plot to two columns
create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2)

Return summary table
create_hist(sq_data,
 metric = "Collaboration_hours",
 hrvar = "Organization",
 return = "table")
```

create_inc

Create an incidence analysis reflecting proportion of population scoring above or below a threshold for a metric

Description

An incidence analysis is generated, with each value in the table reflecting the proportion of the population that is above or below a threshold for a specified metric. There is an option to only provide a single `hrvar` in which a bar plot is generated, or two `hrvar` values where an incidence table (heatmap) is generated.
Usage

create_inc(
  data,
  metric,
  hrvar,
  mingroup = 5,
  threshold,
  position,
  return = "plot"
)

create_incidence(
  data,
  metric,
  hrvar,
  mingroup = 5,
  threshold,
  position,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar Character vector of at most length 2 containing the name of the HR Variable by which to split metrics.
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
threshold Numeric value specifying the threshold.
position String containing the below valid values:
  • "above": show incidence of those equal to or above the threshold
  • "below": show incidence of those equal to or below the threshold
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
  • "plot": 'ggplot' object. A heat map.
  • "table": data frame. A summary table.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples

# Only a single HR attribute
create_inc(
  data = sq_data,
  metric = "After_hours_collaboration_hours",
  hrvar = "Organization",
  threshold = 4,
  position = "above"
)

# Two HR attributes
create.inc(
  data = sq_data,
  metric = "Collaboration_hours",
  hrvar = c("LevelDesignation", "Organization"),
  threshold = 20,
  position = "below"
)

create_ITSA

Estimate an effect of intervention on every Viva Insights metric in input file by applying single-group Interrupted Time-Series Analysis (ITSA)
**Description**

r lifecycle::badge('experimental')

This function implements ITSA method described in the paper ‘Conducting interrupted time-series analysis for single- and multiple-group comparisons’, Ariel Linden, The Stata Journal (2015), 15, Number 2, pp. 480-500

This function further requires the installation of `sandwich`, `portes`, and `lmtest` in order to work. These packages can be installed from CRAN using `install.packages()`.

**Usage**

```r
create_ITSA(
 data,
 before_start = min(as.Date(data$Date, "%m/%d/%Y")),
 before_end,
 after_start,
 after_end = max(as.Date(data$Date, "%m/%d/%Y")),
 ac_lags_max = 7,
 return = "table"
)
```

**Arguments**

- `data` Person Query as a dataframe including date column named `Date`. This function assumes the data format is MM/DD/YYYY as is standard in a Viva Insights query output.
- `before_start` Start date of 'before' time period in MM/DD/YYYY format as character type. Before time period is the period before the intervention (e.g. training program, re-org, shift to remote work) occurs and bounded by `before_start` and `before_end` parameters. Longer period increases likelihood of achieving more statistically significant results. Defaults to earliest date in dataset.
- `before_end` End date of 'before' time period in MM/DD/YYYY format as character type.
- `after_start` Start date of 'after' time period in MM/DD/YYYY format as character type. After time period is the period after the intervention occurs and bounded by `after_start` and `after_end` parameters. Longer period increases likelihood of achieving more statistically significant results. Defaults to date after `before_end`.
- `after_end` End date of 'after' time period in MM/DD/YYYY format as character type. Defaults to latest date in dataset.
- `ac_lags_max` maximum lag for autocorrelation test. Default is 7
- `return` String specifying what output to return. Defaults to "table". Valid return options include:
  - `plot`: return a list of plots.
  - `table`: return data.frame with estimated models' coefficients and their corresponding p-values You should look for significant p-values in `beta_2` to indicate an immediate treatment effect, and/or in `beta_3` to indicate a treatment effect over time.
Details

This function uses the additional package dependencies ‘sandwich’ and ‘lmtest’. Please install these separately from CRAN prior to running the function.

As of May 2022, the ‘portes’ package was archived from CRAN. The dependency has since been removed and dependent functions Ljungbox() incorporated into the wpa package.

Author(s)

Aleksey Ashikhmin alashi@microsoft.com

See Also

Other Flexible Input: period_change()

Examples

# Returns summary table
create_ITSA(
  data = sq_data,
  before_start = "11/03/2019",
  before_end = "12/15/2019",
  after_start = "12/29/2019",
  after_end = "1/26/2020",
  ac_lags_max = 7,
  return = "table")

# Returns list of plots
plot_list <-
create_ITSA(
  data = sq_data,
  before_start = "11/03/2019",
  before_end = "12/15/2019",
  after_start = "12/29/2019",
  after_end = "1/26/2020",
  ac_lags_max = 7,
  return = "plot")

# Extract a plot as an example
plot_list$Workweek_span

create_IV

Calculate Information Value for a selected outcome variable

Description

Specify an outcome variable and return IV outputs. All numeric variables in the dataset are used as predictor variables.
Usage

create_IV(  
data,  
predictors = NULL,  
outcome,  
bins = 5,  
siglevel = 0.05,  
exc_sig = FALSE,  
return = "plot"
)

Arguments

data A Person Query dataset in the form of a data frame.
predictors A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors.
outcome A string specifying a binary variable, i.e. can only contain the values 1 or 0.
bins Number of bins to use, defaults to 5.
siglevel Significance level to use in comparing populations for the outcomes, defaults to 0.05
exc_sig Logical value determining whether to exclude values where the p-value lies below what is set at siglevel. Defaults to FALSE, where p-value calculation does not happen altogether.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "summary"
  • "list"
  • "plot-WOE"
  • "IV"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
  • "plot": `ggplot` object. A bar plot showing the IV value of the top (maximum 12) variables.
  • "summary": data frame. A summary table for the metric.
  • "list": list. A list of outputs for all the input variables.
  • "plot-WOE": A list of `ggplot` objects that show the WOE for each predictor used in the model.
  • "IV" returns a list object which mirrors the return in `Information::create_infotables()`.

See Also

Other Variable Association: `IV_by_period()`, `IV_report()`, `plot_WOE()`
Other Information Value: `IV_by_period()`, `IV_report()`, `plot_WOE()`
Examples

# Return a summary table of IV
sq_data %>%
  dplyr::mutate(X = ifelse(Workweek_span > 40, 1, 0)) %>%
  create_IV(outcome = "X",
            predictors = c("Email_hours",
                            "Meeting_hours",
                            "Instant_Message_hours"),
            return = "plot")

# Return summary
sq_data %>%
  dplyr::mutate(X = ifelse(Collaboration_hours > 2, 1, 0)) %>%
  create_IV(outcome = "X",
            predictors = c("Email_hours", "Meeting_hours"),
            return = "summary")

Description

Provides a week by week view of a selected metric, visualised as line charts. By default returns a line chart for the defined metric, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

create_line(
  data, metric,
  hrvar = "Organization",
  mingroup = 5,
  ncol = NULL,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
create_line

 mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

 ncol Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).

 return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"

 See Value for more information.

Details

This is a general purpose function that powers all the functions in the package that produce faceted line plots.

Value

A different output is returned depending on the value passed to the return argument:

 • "plot": 'ggplot' object. A faceted line plot for the metric.
 • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(),
external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(),
keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(),
meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), oneZone_dist(),
oneZone_fizz(), oneZone_freq(), oneZone_line(), oneZone_rank(), oneZone_sum(), oneZone_trend(),
period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(),
workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(),
create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), period_change()

Other Time-series: IV_by_period(), create_line_asis(), create_period_scatter(), create_trend(),
period_change()
Examples

# Return plot of Email Hours
sq_data %>% create_line(metric = "Email_hours", return = "plot")

# Return plot of Collaboration Hours
sq_data %>% create_line(metric = "Collaboration_hours", return = "plot")

# Return plot but coerce plot to two columns
sq_data %>%
  create_line(
    metric = "Collaboration_hours",
    hrvar = "Organization",
    ncol = 2
  )

# Return plot of Work week span and cut by `LevelDesignation`
sq_data %>% create_line(metric = "Workweek_span", hrvar = "LevelDesignation")

create_line_asis
Create a line chart without aggregation for any metric

Description

This function creates a line chart directly from the aggregated / summarised data. Unlike create_line() which performs a person-level aggregation, there is no calculation for create_line_asis() and the values are rendered as they are passed into the function. The only requirement is that a date_var is provided for the x-axis.

Usage

create_line_asis(
  data, 
  date_var = "Date", 
  metric, 
  title = NULL, 
  subtitle = NULL, 
  caption = NULL, 
  ylab = date_var, 
  xlab = metric, 
  line_colour = rgb2hex(0, 120, 212)
)

Arguments

data Plotting data as a data frame.
date_var String containing name of variable for the horizontal axis.
create_line_asis

metric  String containing name of variable representing the line.
title   Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
ylab    Y-axis label for the plot (group axis)
xlab    X-axis label of the plot (bar axis).
line_colour String to specify colour to use for the line. Hex codes are accepted. You can also supply RGB values via rgb2hex().

Value
Returns a `ggplot` object representing a line plot.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Other Time-series: IV_by_period(), create_line(), create_period_scatter(), create_trend(), period_change()

Examples
library(dplyr)

# Median 'Emails_sent' grouped by 'Date'
# Without Person Averaging
med_df <-
  sq_data %>%
  group_by(Date) %>%
  summarise(Emails_sent_median = median(Emails_sent))
create_period_scatter %>%
create_line_asis(
  date_var = "Date",
  metric = "Emails_sent_median",
  title = "Median Emails Sent",
  subtitle = "Person Averaging Not Applied",
  caption = extract_date_range(sq_data, return = "text")
)

create_period_scatter  Period comparison scatter plot for any two metrics

Description

Returns two side-by-side scatter plots representing two selected metrics, using colour to map an HR attribute and size to represent number of employees. Returns a faceted scatter plot by default, with additional options to return a summary table.

Usage

create_period_scatter(
  data,
  hrvar = "Organization",
  metric_x = "Multitasking_meeting_hours",
  metric_y = "Meeting_hours",
  before_start = min(as.Date(data$Date, "%m/%d/%Y")),
  before_end = as.Date(before_start) + 1,
  after_start = max(as.Date(data$Date, "%m/%d/%Y")),
  after_end = as.Date(after_start) + 1,
  before_label = "Period 1",
  after_label = "Period 2",
  mingroup = 5,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
metric_x Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y Character string containing the name of the metric, e.g. "Collaboration_hours"
before_start Start date of "before" time period in YYYY-MM-DD
before_end End date of "before" time period in YYYY-MM-DD
create_period_scatter

after_start  Start date of "after" time period in YYYY-MM-DD
after_end    End date of "after" time period in YYYY-MM-DD
before_label String to specify a label for the "before" period. Defaults to "Period 1".
after_label String to specify a label for the "after" period. Defaults to "Period 2".
mimgroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details
This is a general purpose function that powers all the functions in the package that produce faceted scatter plots.

Value
Returns a `ggplot` object showing two scatter plots side by side representing the two periods.

See Also
Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Flexible: `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()` (period_change)

Other Time-series: `IV_by_period()`, `create_line_asis()`, `create_line()`, `create_trend()`, `period_change()`

Examples
```
Return plot
create_period_scatter(sq_data,
hrvar = "LevelDesignation",
before_start = "2019-11-03",
```
create_rank

Rank all groups across HR attributes on a selected Viva Insights metric

Description

This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.

Usage

create_rank(data, metric, hrvar = extract_hr(data, exclude_constants = TRUE), mingroup = 5, return = "table", mode = "simple", plot_mode = 1)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
  • "plot" (default)
  • "table"
See Value for more information.
mode String to specify calculation mode. Must be either:
  • "simple"
create_rank

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".

- 1: Top and bottom five groups across the data population are highlighted
- 2: Top and bottom groups per organizational attribute are highlighted

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.

Author(s)

Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_hist(), create_line_asis(), create_line(), create_period_scatter(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples

sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1)

# Plot mode 1 - show top and bottom five groups
create_rank
create_rank_combine

Create combination pairs of HR variables and run 'create_rank()'

Description

Create pairwise combinations of HR variables and compute an average of a specified advanced insights metric.

Usage

create_rank_combine(data, hrvar = extract_hr(data), metric, mingroup = 5)

Arguments

data A Standard Person Query dataset in the form of a data frame.
create_sankey

hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

metric  Character string containing the name of the metric, e.g. "Collaboration_hours"

mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

Details

This function is called when the mode argument in create_rank() is specified as "combine".

Value

Data frame containing the following variables:

- hrvar: placeholder column that denotes the output as "Combined".
- group: pairwise combinations of HR attributes with the HR attribute in square brackets followed by the value of the HR attribute.
- Name of the metric (as passed to metric)
- n

Examples

# Use a small sample for faster runtime
sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1)

create_rank_combine(
  data = sq_data_small,
  metric = "Email_hours"
)

create_sankey

Create a sankey chart from a two-column count table

Description

Create a 'networkD3' style sankey chart based on a long count table with two variables. The input data should have three columns, where each row is a unique group:

1. Variable 1
2. Variable 2
3. Count

Usage

create_sankey(data, var1, var2, count = "n")
create_sankey

Arguments

data Data frame of the long count table.
var1 String containing the name of the variable to be shown on the left.
var2 String containing the name of the variable to be shown on the right.
count String containing the name of the count variable.

Value

A 'sankeyNetwork' and 'htmlwidget' object containing a two-tier sankey plot. The output can be saved locally with htmlwidgets::saveWidget().

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), onezone_dist(), onezone_fizz(), onezone_freq(), onezone_line(), onezone_rank(), onezone_sum(), onezone_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), period_change()

Examples

sq_data %>%
  dplyr::count(Organization, FunctionType) %>%
  create_sankey(var1 = "Organization", var2 = "FunctionType")
create_scatter

Create a Scatter plot with two selected Viva Insights metrics (General Purpose)

Description

Returns a scatter plot of two selected metrics, using colour to map an HR attribute. Returns a scatter plot by default, with additional options to return a summary table.

Usage

```r
create_scatter(
 data,
 metric_x,
 metric_y,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric_x**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **metric_y**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

This is a general purpose function that powers all the functions in the package that produce scatter plots.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.
create_stacked

**See Also**

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_stacked(), create_tracking(), create_trend(), period_change()

**Examples**

create_scatter(sq_data, "Internal_network_size", "External_network_size", "Organization")

create_scatter(sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot")

---

**create_stacked**

*Horizontal stacked bar plot for any metric*

**Description**

Creates a sum total calculation using selected metrics, where the typical use case is to create different definitions of collaboration hours. Returns a stacked bar plot by default. Additional options available to return a summary table.

**Usage**

create_stacked()

data,
hrvar = "Organization",
metrics = c("Meeting_hours", "Email_hours"),
mingroup = 5,
return = "plot",
stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"),
percent = FALSE,
plot_title = "Collaboration Hours",
plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
legend_lab = NULL,
rank = "descending",
xlim = NULL,
text_just = 0.5,
text_colour = "#FFFFFF"
)

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **metrics**: A character vector to specify variables to be used in calculating the "Total" value, e.g. c("Meeting_hours", "Email_hours"). The order of the variable names supplied determine the order in which they appear on the stacked plot.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **stack_colours**: A character vector to specify the colour codes for the stacked bar charts.
- **percent**: Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.
- **plot_title**: String. Option to override plot title.
- **plot_subtitle**: String. Option to override plot subtitle.
- **legend_lab**: String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.
- **rank**: String specifying how to rank the bars. Valid inputs are:
  - "descending" - ranked highest to lowest from top to bottom (default).
  - "ascending" - ranked lowest to highest from top to bottom.
  - NULL - uses the original levels of the HR attribute.
- **xlim**: An option to set max value in x axis.
- **text_just**: [Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.5.
- **text_colour**: [Experimental] String to specify colour to use for the text labels. Defaults to "#FFFFFF".
create_stacked

**Value**

Returns a `ggplot` object by default, where `plot` is passed in `return`. When `table` is passed, a summary table is returned as a data frame.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrocoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Flexible: `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_tracking()`, `create_trend()`, `period_change()`

**Examples**

```r
sq_data %>%
 create_stacked(hrvar = "LevelDesignation",
 metrics = c("Meeting_hours", "Email_hours"),
 return = "plot")

sq_data %>%
 create_stacked(hrvar = "FunctionType",
 metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"),
 return = "plot",
 rank = "ascending")

sq_data %>%
 create_stacked(hrvar = "FunctionType",
 metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"),
 return = "table")
```
create_tracking

Create a line chart that tracks metrics over time with a 4-week rolling average

Description

[Experimental]
Create a two-series line chart that visualizes a set of metric over time for the selected population, with one of the series being a four-week rolling average.

Usage

create_tracking(
  data,  
metric,  
plot_title = us_to_space(metric),  
plot_subtitle = "Measure over time",  
percent = FALSE  
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours" percentage signs. Defaults to FALSE.
plot_title An option to override plot title.
plot_subtitle An option to override plot subtitle.
percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(),
create_trend

period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_trend(), period_change()

Examples

```r
sq_data %>%
 create_tracking(
 metric = "Collaboration_hours",
 percent = FALSE
)
```

create_trend **Heat mapped horizontal bar plot over time for any metric**

Description

Provides a week by week view of a selected Viva Insights metric. By default returns a week by week heatmap bar plot, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```r
create_trend(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 palette = c("steelblue4", "aliceblue", "white", "mistyrose1", "tomato1"),
 return = "plot",
 legend_title = "Hours"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
create_trend

palette Character vector containing colour codes, ranked from the lowest value to the highest value. This is passed directly to ggplot2::scale_fill_gradientn().

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

legend_title String to be used as the title of the legend. Defaults to "Hours".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), period_change()

Other Time-series: IV_by_period(), create_line_asis(), create_line(), create_period_scatter(), period_change()

Examples

create_trend(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

# custom colours
create_trend(
  sq_data,
  metric = "Collaboration_hours",
  hrvar = "LevelDesignation",
  palette = c("#FB6107", "#F3DE2C", "#7CB518", "#5C8001")
**cut_hour**

Convert a numeric variable for hours into categorical

**Description**

Supply a numeric variable, e.g. Collaboration_hours, and return a character vector.

**Usage**

```
cut_hour(metric, cuts, unit = "hours", lbound = 0, ubound = 100)
```

**Arguments**

- **metric**: A numeric variable representing hours.
- **cuts**: A numeric vector of minimum length 3 to represent the cut points required. The minimum and maximum values provided in the vector are inclusive.
- **unit**: String to specify the unit of the labels. Defaults to "hours".
- **lbound**: Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0.
- **ubound**: Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100.

**Details**

This is used within `create_dist()` for numeric to categorical conversion.

**Value**

Character vector representing a converted categorical variable, appended with the label of the unit. See examples for more information.

**See Also**

Other Support: camel_clean(), check_inputs(), combine_signals(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(), us_to_space(), wrap()
Examples

# Direct use
cut_hour(1:30, cuts = c(15, 20, 25))

# Use on a query
cut_hour(sq_data$Collaboration_hours, cuts = c(10, 15, 20))

---

dv_data  Sample Standard Person Query dataset for Data Validation

Description

A dataset generated from a Standard Person Query from advanced insights in Viva Insights. Note that this is largely interchangeable with a Ways of Working Assessment query, with the exception of some additional variables and the different variable names used for Collaboration_hours and Instant_Message_hours.

Usage

dv_data

Format

A data frame with 897 rows and 69 variables:

- PersonId
- Date
- Workweek_span
- Meetings_with_skip_level
- Meeting_hours_with_skip_level
- Generated_workload_email_hours
- Generated_workload_email_recipients
- Generated_workload_instant_messages_hours
- Generated_workload_instant_messages_recipients
- Generated_workload_call_hours
- Generated_workload_call_participants
- Generated_workload_calls_organized
- External_network_size
- Internal_network_size
- Networking_outside_company
- Networking_outside_organization
- After_hours_meeting_hours
Open_1_hour_block
Open_2_hour_blocks
Total_focus_hours
Low_quality_meeting_hours
Total_emails_sent_during_meeting
Meetings
Meeting_hours
Conflicting_meeting_hours
Multitasking_meeting_hours
Redundant_meeting_hours__lower_level_
Redundant_meeting_hours__organizational_
Time_in_self_organized_meetings
Meeting_hours_during_working_hours
Generated_workload_meeting_attendees
Generated_workload_meeting_hours
Generated_workload_meetings_organized
Manager_coaching_hours_1_on_1
Meetings_with_manager
Meeting_hours_with_manager
Meetings_with_manager_1_on_1
Meeting_hours_with_manager_1_on_1
After_hours_email_hours
Emails_sent
Email_hours
Working_hours_email_hours
After_hours_instant_messages
Instant_messages_sent
Instant_Message_hours
Working_hours_instant_messages
After_hours_collaboration_hours
Collaboration_hours
Collaboration_hours_external
Working_hours_collaboration_hours
After_hours_in_calls
Total_calls
Call_hours
Working_hours_in_calls
email_dist

Domain
FunctionType
LevelDesignation
Layer
Region
Organization
zId
attainment
TimeZone
HourlyRate
IsInternal
IsActive
HireDate
WorkingStartTimeSetInOutlook
WorkingEndTimeSetInOutlook ...

Value
data frame.

Source

https://workplaceanalytics-demo.office.com/en-us/Home

See Also

Other Data: em_data, g2g_data, mt_data, p2p_data_sim(), sq_data

---

email_dist  Distribution of Email Hours as a 100% stacked bar

Description

Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
email_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(5, 10, 15)
)
```
email_dist

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  
  See Value for more information.
- **cut**: A numeric vector of length three to specify the breaks for the distribution, e.g. `c(10, 15, 20)`

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `onezone_dist()`, `onezone_fizz()`, `onezone_freq()`, `onezone_line()`, `onezone_rank()`, `onezone_sum()`, `onezone_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Emails: `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`

Examples

```r
Return plot
email_dist(sq_data, hrvar = "Organization")

Return summary table
email_dist(sq_data, hrvar = "Organization", return = "table")
```
# Return result with a custom specified breaks
email_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))

description

Analyze weekly email hours distribution, and returns a ‘fizzy’ scatter plot by default. Additional options available to return a table with distribution elements.

Usage

email_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data
A Standard Person Query dataset in the form of a data frame.

hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return
String specifying what to return. This must be one of the following strings:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_line(), email_rank(), email_summary(), email_trend(),
Examples

```r
Return plot
email_fizz(sq_data, hrvar = "Organization", return = "plot")

Return summary table
email_fizz(sq_data, hrvar = "Organization", return = "table")
```

---

**email_line**

*Email Time Trend - Line Chart*

**Description**

Provides a week by week view of email time, visualised as line charts. By default returns a line chart for email hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

**Usage**

```r
eemail_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- **data**
  A Standard Person Query dataset in the form of a data frame.

- **hrvar**
  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- **mingroup**
  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- **return**
  String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  See Value for more information.
email_rank

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Emails: `email_dist()`, `email_fizz()`, `email_rank()`, `email_summary()`, `email_trend()`

Examples

```r
Return a line plot
e-mail_line(sq_data, hrvar = "LevelDesignation")

Return summary table
e-mail_line(sq_data, hrvar = "LevelDesignation", return = "table")
```

Description

This function scans a standard query output for groups with high levels of 'Weekly Email Collaboration'. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
email_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode**: String to specify calculation mode. Must be either:
  - "simple"
  - "combine"
- **plot_mode**: Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
  - 1: Top and bottom five groups across the data population are highlighted
  - 2: Top and bottom groups per organizational attribute are highlighted
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot" (default)
  - "table"

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Emails: email_dist(), email_fizz(), email_line(), email_summary(), email_trend()

Examples

```r
Return rank table
email_rank(
 data = sq_data,
 return = "table"
)

Return plot
email_rank(
 data = sq_data,
 return = "plot"
)
```

Description

Provides an overview analysis of weekly email hours. Returns a bar plot showing average weekly email hours by default. Additional options available to return a summary table.

Usage

```r
e-mail_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
e-mail_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
email_summary

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"
See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A bar plot for the metric.
  • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Emails: email_dist(), email_fizz(), email_line(), email_rank(), email_trend()

Examples

# Return a ggplot bar chart
eemail_summary(sq_data, hrvar = "LevelDesignation")

# Return a summary table
eemail_summary(sq_data, hrvar = "LevelDesignation", return = "table")
**email_trend**

**Email Hours Time Trend**

**Description**

Provides a week by week view of email time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

**Usage**

```r
email_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- `data` A Standard Person Query dataset in the form of a data frame.
- `hrvar` String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return` Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

**Details**

Uses the metric Email_hours.

**Value**

Returns a `ggplot` object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`,
Description

A sample dataset representing an Hourly Collaboration query. The data is grouped by week and contains columns for unscheduled calls, IMs sent, emails sent, and meetings. There are 24 columns per collaboration signal, representing each hour of the day.

Usage

em_data

Format

A data frame with 2000 rows and 105 variables:

PersonId
Date
Unscheduled_calls_23_24
Unscheduled_calls_22_23
Unscheduled_calls_21_22
Unscheduled_calls_20_21
Unscheduled_calls_19_20
Unscheduled_calls_18_19
Unscheduled_calls_17_18
Unscheduled_calls_16_17
Unscheduled_calls_15_16
Unscheduled_calls_14_15
Unscheduled_calls_13_14
Unscheduled_calls_12_13
Unscheduled_calls_11_12
Unscheduled_calls_10_11
Unscheduled_calls_09_10
Unscheduled_calls_08_09
Unscheduled_calls_07_08
export

Meetings_04_05
Meetings_03_04
Meetings_02_03
Meetings_01_02
Meetings_00_01
LevelDesignation
Organization
TimeZone
IsActive
WorkingStartTimeSetInOutlook
WorkingEndTimeSetInOutlook
WorkingDaysSetInOutlook ...

Value
data frame.

Source
https://workplaceanalytics-demo.office.com/en-us/Home

See Also
Other Data: dv_data, g2g_data, mt_data, p2p_data_sim(), sq_data

export

Export 'wpa' outputs to CSV, clipboard, or save as images

Description
A general use function to export 'wpa' outputs to CSV, clipboard, or save as images. By default, export() copies a data frame to the clipboard. If the input is a 'ggplot' object, the default behaviour is to export a PNG.

Usage

export(
  x,
  method = "clipboard",
  path = "wpa export",
  timestamp = TRUE,
  width = 12,
  height = 9
)

Arguments

- **x**: Data frame or 'ggplot' object to be passed through.
- **method**: Character string specifying the method of export. Valid inputs include:
  - "clipboard" (default if input is data frame)
  - "csv"
  - "png" (default if input is 'ggplot' object)
  - "svg"
  - "jpeg"
  - "pdf"
- **path**: If exporting a file, enter the path and the desired file name, *excluding the file extension*. For example, "Analysis/SQ Overview".
- **timestamp**: Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.
- **width** and **height**: Width and Height of the plot

Value

A different output is returned depending on the value passed to the **method** argument:

- "clipboard": no return - data frame is saved to clipboard.
- "csv": CSV file containing data frame is saved to specified path.
- "png": PNG file containing 'ggplot' object is saved to specified path.
- "svg": SVG file containing 'ggplot' object is saved to specified path.
- "jpeg": JPEG file containing 'ggplot' object is saved to specified path.
- "pdf": PDF file containing 'ggplot' object is saved to specified path.

Author(s)

Martin Chan martin.chan@microsoft.com

See Also

Other Import and Export: copy_df(), create_dt(), import_to_fst(), import_wpa(), standardise_pq()
Description

Analyze the distribution of External Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
external_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(5, 10, 15)
)
```

Arguments

data  A Standard Person Query dataset in the form of a data frame.
hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return  String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"
  See Value for more information.
cut  A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Details

Uses the metric External_collaboration_hours. See create_dist() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:
  • "plot": 'ggplot' object. A stacked bar plot for the metric.
  • "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other External Collaboration: external_fizz(), external_line(), external_sum()

Examples

# Return plot
external_dist(sq_data, hrvar = "Organization")

# Return summary table
external_dist(sq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
external_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))

---

**external_fizz**

Distribution of External Collaboration Hours (Fizzy Drink plot)

**Description**

Analyze weekly External Collaboration hours distribution, and returns a ‘fizzy’ scatter plot by default. Additional options available to return a table with distribution elements.

**Usage**

external_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

**Arguments**

data: A Standard Person Query dataset in the form of a data frame.

hrvar: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
**external_fizz**

**mingroup**
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

**return**
String specifying what to return. This must be one of the following strings:
- "plot"
- "table"

See Value for more information.

**Details**

Uses the metric `Collaboration_hours_external`. See `create_fizz()` for applying the same analysis to a different metric.

**Value**

A different output is returned depending on the value passed to the `return` argument:
- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualiation: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_freq()`, `one2one_fizz()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_sum()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other External Collaboration: `external_dist()`, `external_line()`, `external_sum()`

**Examples**

```r
Return plot
eexternal_fizz(sq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
eexternal_fizz(sq_data, hrvar = "Organization", return = "table")
```
Description

Provides a week by week view of External collaboration time, visualized as line chart. By default returns a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

`external_line(data, hrvar = "Organization", mingroup = 5, return = "plot")`

Arguments

data  A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

  - "plot"
  - "table"

See Value for more information.

Details

Uses the metric Collaboration_hours_external.

Value

A different output is returned depending on the value passed to the `return` argument:

  - "plot": `ggplot` object. A faceted line plot for the metric.
  - "table": data frame. A summary table for the metric.

See Also

create_line() for applying the same analysis to a different metric.

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking()
external_network_plot

create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other External Collaboration: external_dist(), external_fizz(), external_sum()

Examples

# Return a line plot
external_line(sq_data, hrvar = "LevelDesignation")

# Return summary table
external_line(sq_data, hrvar = "LevelDesignation", return = "table")

external_network_plot  Plot External Network Breadth and Size as a scatter plot

Description

Plot the external network metrics for a HR variable as a scatter plot, showing 'External Network Breadth' as the vertical axis and 'External Network Size' as the horizontal axis.

Usage

external_network_plot(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  bubble_size = c(1, 8)
)

Arguments

data  A Standard Person Query dataset in the form of a data frame.
hrvar  HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return  String specifying what to return. This must be one of the following strings: - "plot" - "table"
bubble_size  A numeric vector of length two to specify the size range of the bubbles
Details

Uses the metrics `External_network_size` and `Networking_outside_company`.

Value

'ggplot' object showing a bubble plot with external network size as the x-axis and external network breadth as the y-axis. The size of the bubbles represent the number of unique employees in each group.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()``, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Network: `g2g_data`, `internal_network_plot()`, `network_describe()`, `network_g2g()`, `network_leiden()`, `network_louvain()`, `network_p2p()`, `network_summary()`, `p2p_data_sim()`

Examples

```r
Return plot
sq_data %>% external_network_plot(return = "plot")
```

| external_rank | Rank groups with high External Collaboration Hours |

Description

This function scans a Standard Person Query for groups with high levels of External Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of External Collaboration.
Usage

```r
external_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode String to specify calculation mode. Must be either:
  - "simple"
  - "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
  - 1: Top and bottom five groups across the data population are highlighted
  - 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:
  - "plot" (default)
  - "table"

See Value for more information.

Details

Uses the metric Collaboration_hours_external. See `create_rank()` for applying the same analysis to a different metric.

Value

When 'table' is passed in `return`, a summary table is returned as a data frame.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()` , `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`. 
**external_sum**

Description

Provides an overview analysis of 'External Collaboration'. Returns a stacked bar plot of internal and external collaboration. Additional options available to return a summary table.

Usage

```r
external_sum(
 data,
 hrvar = "Organization",
 mingroup = 5,
 stack_colours = c("#1d327e", "#1d7e6a"),
 return = "plot"
)
```

```r
external_summary(
 data,
 hrvar = "Organization",
 mingroup = 5,
 stack_colours = c("#1d327e", "#1d7e6a"),
 return = "plot"
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
extract_date_range

stack_colours  A character vector to specify the colour codes for the stacked bar charts.
return        Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), onezone_dist(), onezone_fizz(), onezone_freq(), onezone_line(), onezone_rank(), onezone_sum(), onezone_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other External Collaboration: external_dist(), external_fizz(), external_line()

Examples

# Return a plot
external_sum(sq_data, hrvar = "LevelDesignation")

# Return summary table
external_sum(sq_data, hrvar = "LevelDesignation", return = "table")

Description

Return a data frame with the start and end date of the query data by default. There are options to return a descriptive string, which is used in the caption of plots in this package.

Usage

extract_date_range(data, return = "table")
extract_hr

Extract HR attribute variables

Description

This function uses a combination of variable class, number of unique values, and regular expression matching to extract HR / organisational attributes from a data frame.

Usage

extract_hr(data, max_unique = 50, exclude_constants = TRUE, return = "names")

Arguments

data
A data frame to be passed through.

max_unique
A numeric value representing the maximum number of unique values to accept for an HR attribute. Defaults to 50.

exclude_constants
Logical value to specify whether single-value HR attributes are to be excluded. Defaults to TRUE.

return
String specifying what to return. This must be one of the following strings:

• "names"
• "vars"

See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- "names": character vector identifying all the names of HR variables present in the data.
- "vars": data frame containing all the columns of HR variables present in the data.

See Also

Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `pairwise_count()`, `plot_WOE()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

Other Data Validation: `check_query()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`, `track_HR_change()`, `validation_report()

Examples

```r
sq_data %>% extract_hr(return = "names")

sq_data %>% extract_hr(return = "vars")
```

---

**flag_ch_ratio**

Flag unusual high collaboration hours to after-hours collaboration hours ratio

Description

This function flags persons who have an unusual ratio of collaboration hours to after-hours collaboration hours. Returns a character string by default.

Usage

```r
flag_ch_ratio(data, threshold = c(1, 30), return = "message")
```

Arguments

- **data**: A data frame containing a Person Query.
- **threshold**: Numeric value specifying the threshold for flagging. Defaults to 30.
- **return**: String to specify what to return. Options include:
  - "message"
  - "text"
  - "data"
flag_em_ratio

Value

A different output is returned depending on the value passed to the `return` argument:

- "message": message in the console containing diagnostic summary
- "text": string containing diagnostic summary
- "data": data frame. Person-level data with flags on unusually high or low ratios

Metrics used

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Data Validation: check_query(), extract_hr(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

flag_ch_ratio(sq_data)

data.frame(PersonId = c("Alice", "Bob"),
            Collaboration_hours = c(30, 0.5),
            After_hours_collaboration_hours = c(0.5, 30)) %>%
  flag_ch_ratio()

flag_em_ratio(data, threshold = 1, return = "text")

Description

This function flags persons who have an unusual ratio of email hours to emails sent. If the ratio between Email Hours and Emails Sent is greater than the threshold, then observations tied to a PersonId is flagged as unusual.

Usage

flag_em_ratio(data, threshold = 1, return = "text")
Arguments

- **data**: A data frame containing a Person Query.
- **threshold**: Numeric value specifying the threshold for flagging. Defaults to 1.
- **return**: String specifying what to return. This must be one of the following strings:
  - "text"
  - "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "text": string. A diagnostic message.
- "data": data frame. Person-level data with those flagged with unusual ratios.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_Nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`, `track_HR_change()`, `validation_report()`

Examples

```r
flag_em_ratio(sq_data)
```

---

**flag_extreme**

*Warn for extreme values by checking against a threshold*

Description

This is used as part of data validation to check if there are extreme values in the dataset.

Usage

```r
flag_extreme(
 data,
 metric,
 person = TRUE,
 threshold,
 mode = "above",
 return = "message"
)
```
Arguments

data A Standard Person Query dataset in the form of a data frame.
metric A character string specifying the metric to test.
person A logical value to specify whether to calculate person-averages. Defaults to TRUE (person-averages calculated).
threshold Numeric value specifying the threshold for flagging.
mode String determining mode to use for identifying extreme values.

• "above": checks whether value is greater than the threshold (default)
• "equal": checks whether value is equal to the threshold
• "below": checks whether value is below the threshold

return String specifying what to return. This must be one of the following strings:

• "text"
• "message"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "text": string. A diagnostic message.
• "message": message on console. A diagnostic message.
• "table": data frame. A person-level table with PersonId and the extreme values of the selected metric.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

# The threshold values are intentionally set low to trigger messages.
flag_extreme(sq_data, "Email_hours", threshold = 15)

# Return a summary table
flag_extreme(sq_data, "Email_hours", threshold = 15, return = "table")

# Person-week level
flag_extreme(sq_data, "Email_hours", person = FALSE, threshold = 15)

# Check for values equal to threshold
flag_outlooktime

flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "equal", threshold = 0)

# Check for values below threshold
flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "below", threshold = 5)

---

flag_outlooktime  Flag unusual outlook time settings for work day start and end time

Description

This function flags unusual outlook calendar settings for start and end time of work day.

Usage

flag_outlooktime(data, threshold = c(4, 15), return = "message")

Arguments

data  A data frame containing a Person Query.
threshold  A numeric vector of length two, specifying the hour threshold for flagging. Defaults to c(4, 15).
return  String specifying what to return. This must be one of the following strings: 
  - "text" (default)
  - "message"
  - "data"

Value

A different output is returned depending on the value passed to the return argument:

  - "text": string. A diagnostic message.
  - "message": message on console. A diagnostic message.
  - "data": data frame. Data where flag is present.

See Value for more information.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(),
flag_extreme(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(),
identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(),
identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(),
identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(),
subject_validate(), track_HR_change(), validation_report()
Examples

```r
Demo with `dv_data`
flag_outlooktime(dv_data)

Example where Outlook Start and End times are imputed
spq_df <- sq_data
spq_df$WorkingStartTimeSetInOutlook <- "6:30"
spq_df$WorkingEndTimeSetInOutlook <- "23:30"

Return a message
flag_outlooktime(spq_df, threshold = c(5, 13))

Return data
flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
```

---

**flex_index**

*Compute a Flexibility Index based on the Hourly Collaboration Query*

**Description**

[Experimental]
Pass an Hourly Collaboration query and compute a Flexibility Index for the entire population. The Flexibility Index is a quantitative measure of the freedom for employees to work at a time of their choice.

**Usage**

```r
flex_index(
 data, # Hourly Collaboration query to be passed through as data frame.
 hrvar = NULL, # A string specifying the HR attribute to cut the data by. Defaults to NULL. This only affects the function when "table" is returned.
 signals = c("email", "IM"),
 active_threshold = 0,
 start_hour = "0900",
 end_hour = "1700",
 return = "plot",
 plot_method = "common",
 mode = "binary"
)
```

**Arguments**

- `data`
- `hrvar`
signals  Character vector to specify which collaboration metrics to use:
  • a combination of signals, such as `c("email", "IM")` (default)
  • "email" for emails only
  • "IM" for Teams messages only
  • "unscheduled_calls" for Unscheduled Calls only
  • "meetings" for Meetings only

active_threshold  A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0.

start_hour  A character vector specifying starting hours, e.g. "0900"

end_hour  A character vector specifying end hours, e.g. "1700"

return  String specifying what to return. This must be one of the following strings:
  • "plot"
  • "data"
  • "table"

See Value for more information.

plot_method  Character string for determining which plot to return.
  • "sample" plots a sample of ten working pattern
  • "common" plots the ten most common working patterns
  • "time" plots the Flexibility Index for the group over time

mode  String specifying aggregation method for plot. Only applicable when return = "plot". Valid options include:
  • "binary": convert hourly activity into binary blocks. In the plot, each block would display as solid.
  • "prop": calculate proportion of signals in each hour over total signals across 24 hours, then average across all work weeks. In the plot, each block would display as a heatmap.

Details

The Flexibility Index is a metric that has been developed to quantify and measure flexibility using behavioural data from Viva Insights. Flexibility here refers to the freedom of employees to adopt a working arrangement of their own choice, and more specifically refers to time flexibility (whenever I want) as opposed to geographical flexibility (wherever I want).

The Flexibility Index is a score between 0 and 1, and is calculated based on three component measures:

• ChangeHours: this represents the freedom to define work start and end time. Teams that embrace flexibility allow members to start and end their workday at different times.

• TakeBreaks: this represents the freedom define one’s own schedule. In teams that embrace flexibility, some members will choose to organize / split their day in different ways (e.g. take a long lunch-break, disconnect in the afternoon and reconnect in the evening, etc.).
ControlHours: this represents the freedom to switch off. Members who choose alternative arrangements should be able to maintain a workload that is broadly equivalent to those that follow standard arrangements.

The **Flexibility Index** returns with one single score for each person-week, plus the **three** sub-component binary variables (TakeBreaks, ChangeHours, ControlHours). At the person-week level, each score can only have the values 0, 0.33, 0.66, and 1. The Flexibility Index should only be interpreted as a **group** of person-weeks, e.g. the average Flexibility Index of a team of 6 over time, where the possible values would range from 0 to 1.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A random of ten working patterns are displayed, with diagnostic data and the Flexibility Index shown on the plot.
- "data": data frame. The original input data appended with the Flexibility Index and the component scores. Can be used with `plot_flex_index()` to recreate visuals found in `flex_index()`.
- "table": data frame. A summary table for the metric.

**Context**

The central feature of flexible working arrangements is that it is the employee rather the employer who chooses the working arrangement. **Observed flexibility** serves as a proxy to assess whether a flexible working arrangement are in place. The Flexibility Index is an attempt to create such a proxy for quantifying and measuring flexibility, using behavioural data from Viva Insights.

**Recurring disconnection time**

The key component of TakeBreaks in the Flexibility Index is best interpreted as 'recurring disconnection time'. This denotes an hourly block where there is consistently no activity occurring throughout the week. Note that this applies a stricter criterion compared to the common definition of a break, which is simply a time interval where no active work is being done, and thus the more specific terminology 'recurring disconnection time' is preferred.

**Returning the raw data**

The raw data containing the computed Flexibility Index can be returned with the following:

```r
em_data %>%
 flex_index(return = "data")
```

**See Also**

Other Working Patterns: `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`
Examples

# Create a sample small dataset
orgs <- c("Customer Service", "Financial Planning", "Biz Dev")
em_data <- em_data[em_data$Organization %in% orgs, ]

# Examples of how to test the plotting options individually
# Sample of 10 work patterns
em_data %>%
  flex_index(return = "plot", plot_method = "sample")

# 10 most common work patterns
em_data %>%
  flex_index(return = "plot", plot_method = "common")

# Plot Flexibility Index over time
em_data %>%
  flex_index(return = "plot", plot_method = "time")

# Return a summary table with the computed Flexibility Index
em_data %>%
  flex_index(hrvar = "Organization", return = "table")

---

**g2g_data**

Sample Group-to-Group dataset

### Description

A demo dataset representing a Group-to-Group Query. The grouping organizational attribute used here is `Organization`, where the variable have been prefixed with `TimeInvestors_` and `Collaborators_` to represent the direction of collaboration.

### Usage

g2g_data

### Format

A data frame with 3517 rows and 7 variables:

- `TimeInvestors_Organization`
- `Collaborators_Organization`
- `Date`
- `Meetings`
- `Meeting_hours`
- `Email_hours`
- `Collaboration_hours` ...
generate_report

Value
data frame.

Source
https://workplaceanalytics-demo.office.com/en-us/Home

See Also
Other Data: dv_data, em_data, mt_data, p2p_data_sim(), sq_data
Other Network: external_network_plot(), internal_network_plot(), network_describe(),
network_g2g(), network_leiden(), network_louvain(), network_p2p(), network_summary(),
p2p_data_sim()

generate_report Generate HTML report with list inputs

Description
This is a support function using a list-pmap workflow to create a HTML document, using RMark-
down as the engine.

Usage

generate_report(
  title = "My minimal HTML generator",
  filename = "minimal_html",
  outputs = output_list,
  titles,
  subheaders,
  echos,
  levels,
  theme = "united",
  preamble = ""
)

Arguments
title Character string to specify the title of the chunk.
filename File name to be used in the exported HTML.
outputs A list of outputs to be added to the HTML report. Note that outputs, titles,
echos, and levels must have the same length
titles A list/vector of character strings to specify the title of the chunks.
subheaders A list/vector of character strings to specify the subheaders for each chunk.
echos A list/vector of logical values to specify whether to display code.
levels  A list/vector of numeric value to specify the header level of the chunk.
theme   Character vector to specify theme to be used for the report. E.g. "united", "default".
preamble A preamble to appear at the beginning of the report, passed as a text string.

Value
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Creating a custom report
Below is an example on how to set up a custom report.
The first step is to define the content that will go into a report and assign the outputs to a list.

# Step 1: Define Content
goal_list <-
  list(sq_data %>% workloads_summary(return = "plot"),
       sq_data %>% workloads_summary(return = "table")) %>%
  purrr::map_if(is.data.frame, create_dt)

The next step is to add a list of titles for each of the objects on the list:

# Step 2: Add Corresponding Titles
title_list <- c("Workloads Summary - Plot", "Workloads Summary - Table")
n_title <- length(title_list)

The final step is to run generate_report(). This can all be wrapped within a function such that the function can be used to generate a HTML report.

# Step 3: Generate Report
generate_report(title = "My First Report",
                 filename = "My First Report",
                 outputs = output_list,
                 titles = title_list,
                 subheaders = rep("", n_title),
                 echos = rep(FALSE, n_title)

Author(s)
Martin Chan martin.chan@microsoft.com

See Also
Other Reports: IV_report(), capacity_report(), coaching_report(), collaboration_report(),
connectivity_report(), meeting_tm_report(), read_preamble(), subject_validate_report(),
validation_report(), workpatterns_report()
generate_report2  Generate HTML report based on existing RMarkdown documents

Description

This is a support function that accepts parameters and creates a HTML document based on an RMarkdown template. This is an alternative to generate_report() which instead creates an RMarkdown document from scratch using individual code chunks.

Usage

generate_report2(
    output_format = rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo"),
    output_file = "report.html",
    output_dir = getwd(),
    report_title = "Report",
    rmd_dir = system.file("rmd_template/minimal.rmd", package = "wpa"),
    ...
)

Arguments

- output_format: output format in rmarkdown::render(). Default is rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo").
- output_file: output file name in rmarkdown::render(). Default is "report.html".
- output_dir: output directory for report in rmarkdown::render(). Default is user's current directory.
- report_title: report title. Default is "Report".
- rmd_dir: string specifying the path to the directory containing the RMarkdown template files.
- ... other arguments to be passed to params. For instance, pass hrvar if the RMarkdown document requires a 'hrvar' parameter.

Note

The implementation of this function was inspired by the 'DataExplorer' package by boxuancui, with credits due to the original author.
GetResiduals

Extract Residuals from ARIMA, VAR, or any Simulated Fitted Time Series Model

Description

This utility function is useful to use in the portmanteau functions, BoxPierce, MahdiMcLeod, Hosking, LiMcLeod, LjungBox, and portest. GetResiduals() function takes a fitted time-series object with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), "varest", or "list". and returns the residuals and the order from the fitted object.

This method and the bottom documentation is taken directly from the original 'portes' package.

Usage

GetResiduals(obj)

Arguments

obj

a fitted time-series model with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), "varest", or "list".

Value

List of order of fitted time series model and residuals from this model.

Author(s)

Esam Mahdi and A.I. McLeod.

Examples

fit <- arima(Nile, c(1, 0, 1))
GetResiduals(fit)

heat_colours

Generate a vector of n contiguous colours, as a red-yellow-green palette.

Description

Takes a numeric value n and returns a character vector of colour HEX codes corresponding to the heat map palette.
Usage

heat_colours(n, alpha, rev = FALSE)

heat_colors(n, alpha, rev = FALSE)

Arguments

- **n**: the number of colors (>= 1) to be in the palette.
- **alpha**: an alpha-transparency level in the range of 0 to 1 (0 means transparent and 1 means opaque)
- **rev**: logical indicating whether the ordering of the colors should be reversed.

Value

A character vector containing the HEX codes and the same length as n is returned.

See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(), us_to_space(), wrap()

Examples

```r
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA)
barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
```

hrvar_count

Create a count of distinct people in a specified HR variable

Description

This function enables you to create a count of the distinct people by the specified HR attribute. The default behaviour is to return a bar chart as typically seen in 'Analysis Scope'.

Usage

hrvar_count(data, hrvar = "Organization", return = "plot")

analysis_scope(data, hrvar = "Organization", return = "plot")
hrvar_count

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object containing a bar plot.
- "table": data frame containing a count table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_barasis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_lineasis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrpertal_dist(), mgrpertal_matrix(), onezone_dist(), onezone_freq(), onezone_line(), onezone_rank(), onezone_sum(), onezone_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_churnweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

# Return a bar plot
hrvar_count(sq_data, hrvar = "LevelDesignation")

# Return a summary table
hrvar_count_all

hrvar_count_all Create count of distinct fields and percentage of employees with missing values for all HR variables

Description

[Experimental]
This function enables you to create a summary table to validate organizational data. This table will provide a summary of the data found in the Viva Insights Data sources page. This function will return a summary table with the count of distinct fields per HR attribute and the percentage of employees with missing values for that attribute. See hrvar_count() function for more detail on the specific HR attribute of interest.

Usage

hrvar_count_all(
  data,
  n_var = 50,
  return = "message",
  threshold = 100,
  maxna = 20
)

Arguments

data
  A Standard Person Query dataset in the form of a data frame.
n_var
  number of HR variables to include in report as rows. Default is set to 50 HR variables.
return
  String to specify what to return
threshold
  The max number of unique values allowed for any attribute. Default is 100.
maxna
  The max percentage of NAs allowable for any column. Default is 20.

Value

Returns an error message by default, where 'text' is passed in return.

- 'table': data frame. A summary table listing the number of distinct fields and percentage of missing values for the specified number of HR attributes will be returned.
- 'message': outputs a message indicating which values are beyond the specified thresholds.
See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

# Return a summary table of all HR attributes
hrvar_count_all(sq_data, return = "table")

Description

This function provides a week by week view of the count of the distinct people by the specified HR attribute. The default behaviour is to return a week by week heatmap bar plot.

Usage

hrvar_trend(data, hrvar = "Organization", return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object containing a bar plot.
- "table": data frame containing a count table.
hr_trend

Employee count over time

Description

Returns a line chart showing the change in employee count over time. Part of a data validation process to check for unusual license growth / declines over time.

Usage

hr_trend(data, return = "plot")
Arguments

- `data` A Standard Person Query dataset in the form of a data frame.
- `return` String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A line plot showing employee count over time.
- "table": data frame containing a summary table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`.

Examples

```r
Return plot
hr_trend(dv_data)

Return summary table
hr_trend(dv_data, return = "table")
```
identify_churn

Identify employees who have churned from the dataset

Description

This function identifies and counts the number of employees who have churned from the dataset by measuring whether an employee who is present in the first \( n \) (\( n_1 \)) weeks of the data is present in the last \( n \) (\( n_2 \)) weeks of the data.

Usage

\[
\text{identify_churn(data, } n_1 = 6, \ n_2 = 6, \ \text{return} = "message", \ \text{flip} = \text{FALSE})
\]

Arguments

data \hspace{1cm} \text{A Person Query as a data frame. Must contain a PersonId.}

\( n_1 \) \hspace{1cm} \text{A numeric value specifying the number of weeks at the beginning of the period that defines the measured employee set. Defaults to 6.}

\( n_2 \) \hspace{1cm} \text{A numeric value specifying the number of weeks at the end of the period to calculate whether employees have churned from the data. Defaults to 6.}

return \hspace{1cm} \text{String specifying what to return. This must be one of the following strings:}

- "message" (default)
- "text"
- "data"

See Value for more information.

flip \hspace{1cm} \text{Logical, defaults to FALSE. This determines whether to reverse the logic of identifying the non-overlapping set. If set to TRUE, this effectively identifies new-joiners, or those who were not present in the first } n \text{ weeks of the data but were present in the final } n \text{ weeks.}

Details

An additional use case of this function is the ability to identify "new-joiners" by using the argument flip.

If an employee is present in the first \( n \) weeks of the data but not present in the last \( n \) weeks of the data, the function considers the employee as churned. As the measurement period is defined by the number of weeks from the start and the end of the passed data frame, you may consider filtering the dates accordingly before running this function.

Another assumption that is in place is that any employee whose PersonId is not available in the data has churned. Note that there may be other reasons why an employee's PersonId may not be present, e.g. maternity/paternity leave, Viva Insights license has been removed, shift to a low-collaboration role (to the extent that he/she becomes inactive).
Value

A different output is returned depending on the value passed to the `return` argument:

- "message": Message on console. A diagnostic message.
- "text": String. A diagnostic message.
- "data": Character vector containing the PersonId of employees who have been identified as churned.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`, `track_HR_change()`, `validation_report()`

Examples

```r
sq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
```

### Description

**[Experimental]**

Takes a vector of dates and identify whether the frequency is 'daily', 'weekly', or 'monthly'. The primary use case for this function is to provide an accurate description of the query type used and for raising errors should a wrong date grouping be used in the data input.

Usage

```r
identify_datefreq(x)
```

Arguments

- `x` Vector containing a series of dates.
Details

Date frequency detection works as follows:

- If at least three days of the week are present (e.g., Monday, Wednesday, Thursday) in the series, then the series is classified as 'daily'
- If the total number of months in the series is equal to the length, then the series is classified as 'monthly'
- If the total number of sundays in the series is equal to the length of the series, then the series is classified as 'weekly'

Value

String describing the detected date frequency, i.e.:
- 'daily'
- 'weekly'
- 'monthly'

Limitations

One of the assumptions made behind the classification is that weeks are denoted with Sundays, hence the count of sundays to measure the number of weeks. In this case, weeks where a Sunday is missing would result in an 'unable to classify' error.

Another assumption made is that dates are evenly distributed, i.e. that the gap between dates are equal. If dates are unevenly distributed, e.g. only two days of the week are available for a given week, then the algorithm will fail to identify the frequency as 'daily'.

Examples

```r
start_date <- as.Date("2022/06/26")
end_date <- as.Date("2022/11/27")

Daily
day_seq <-
 seq.Date(
 from = start_date,
 to = end_date,
 by = "day"
)

identify_datefreq(day_seq)

Weekly
week_seq <-
 seq.Date(
 from = start_date,
 to = end_date,
 by = "week"
)
```
Identification of holiday weeks

```r
identify_datefreq(week_seq)

Monthly
month_seq <-
seq.Date(
 from = start_date,
 to = end_date,
 by = "month"
)
identify_datefreq(month_seq)
```

**Description**

This function scans a standard query output for weeks where collaboration hours is far outside the mean. Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed. By default, missing values are excluded.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

**Usage**

```r
identify_holidayweeks(data, sd = 1, return = "message")
```

**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **sd**: The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
- **return**: String specifying what to return. This must be one of the following strings:
  - "message" (default)
  - "data"
  - "data_cleaned"
  - "data_dirty"
  - "plot"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "message": message on console. a message is printed identifying holiday weeks.
• "data": data frame. A dataset with outlier weeks flagged in a new column is returned as a dataframe.
• "data_cleaned": data frame. A dataset with outlier weeks removed is returned.
• "data_dirty": data frame. A dataset with only outlier weeks is returned.
• "plot": ggplot object. A line plot of Collaboration Hours with holiday weeks highlighted.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

# Return a message by default
identify_holidayweeks(sq_data)

# Return plot
identify_holidayweeks(sq_data, return = "plot")

identify_inactiveweeks

Identify Inactive Weeks

Description

This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset. Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

Usage

identify_inactiveweeks(data, sd = 2, return = "text")
identify_nkw

Arguments

data A Standard Person Query dataset in the form of a data frame.

sd The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.

return String specifying what to return. This must be one of the following strings:

• "text"
• "data_cleaned"
• "data_dirty"

See Value for more information.

Value

Returns an error message by default, where 'text' is returned. When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe. When 'data_dirty' is passed, a dataset with outlier weeks is returned as a dataframe.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

identify_nkw Identify Non-Knowledge workers in a Person Query using Collaboration Hours

Description

This function scans a standard query output to identify employees with consistently low collaboration signals. Returns the % of non-knowledge workers identified by Organization, and optionally an edited data frame with non-knowledge workers removed, or the full data frame with the kw/nkw flag added.

Usage

identify_nkw(data, collab_threshold = 5, return = "data_summary")
Arguments

data: A Standard Person Query dataset in the form of a data frame.
collab_threshold: Positive numeric value representing the collaboration hours threshold that should be exceeded as an average for the entire analysis period for the employee to be categorized as a knowledge worker ("kw"). Default is set to 5 collaboration hours. Any versions after v1.4.3, this uses a "greater than or equal to" logic (>=), in which case persons with exactly 5 collaboration hours will pass.

return: String specifying what to return. This must be one of the following strings:
- "text"
- "data_with_flag"
- "data_clean"
- "data_summary"

See Value for more information.

Value
A different output is returned depending on the value passed to the return argument:
- "text": string. Returns a diagnostic message.
- "data_with_flag": data frame. Original input data with an additional column containing the kw/nkw flag.
- "data_clean": data frame. Data frame with non-knowledge workers excluded.
- "data_summary": data frame. A summary table by organization listing the number and % of non-knowledge workers.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

identify_outlier  Identify metric outliers over a date interval

Description
This function takes in a selected metric and uses z-score (number of standard deviations) to identify outliers across time. There are applications in this for identifying weeks with abnormally low collaboration activity, e.g. holidays. Time as a grouping variable can be overridden with the group_var argument.
**Usage**

```r
identify_outlier(data, group_var = "Date", metric = "Collaboration_hours")
```

**Arguments**

- `data`: A Standard Person Query dataset in the form of a data frame.
- `group_var`: A string with the name of the grouping variable. Defaults to `Date`.
- `metric`: Character string containing the name of the metric, e.g. "Collaboration_hours"

**Value**

Returns a data frame with `Date` (if grouping variable is not set), the metric, and the corresponding z-score.

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`.

**Examples**

```r
identify_outlier(sq_data, metric = "Collaboration_hours")
```

---

**identify_privacythreshold**

*Identify groups under privacy threshold*

**Description**

This function scans a standard query output for groups with of employees under the privacy threshold. The method consists in reviewing each individual HR attribute, and count the distinct people within each group.

**Usage**

```r
identify_privacythreshold(
 data, # A Standard Person Query dataset in the form of a data frame.
 hrvar = extract_hr(data), # A string with the name of the grouping variable. Defaults to Date.
 mingroup = 5, # Character string containing the name of the metric, e.g. "Collaboration_hours"
 return = "table"
)
```
identify_privacythreshold

Arguments

data          A Standard Person Query dataset in the form of a data frame.
hrvar         A list of HR Variables to consider in the scan. Defaults to all HR attributes identified.
m ingroup     Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return        String specifying what to return. This must be one of the following strings:
               • "table"
               • "text"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "table": data frame. A summary table of groups that fall below the privacy threshold.
• "text": string. A diagnostic message.

Returns a ggplot object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(),
flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(),
identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(),
identify_outlier(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(),
remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(),
track_HR_change(), validation_report()

Examples

# Return a summary table
dv_data %>% identify_privacythreshold(return = "table")

# Return a diagnostic message
dv_data %>% identify_privacythreshold(return = "text")
**identify_query**

Identify the query type of the passed data frame

### Description

Pass an advanced insights query dataset and return the identified query type as a string. This function uses variable name string matching to 'guess' the query type of the data frame.

### Usage

```r
identify_query(data, threshold = 2)
```

### Arguments

- **data**: An advanced insights query dataset in the form of a data frame. If the data is not identified as a valid dataset, the function will return an error.
- **threshold**: Debugging use only. Increase to raise the 'strictness' of the guessing algorithm. Defaults to 2.

### Value

String. A diagnostic message is returned.

### See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts_wp()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`, `track_HR_change()`, `validation_report()`

### Examples

```r
identify_query(sq_data) # Standard query
identify_query(mt_data) # Meeting query
identify_query(em_data) # Hourly collaboration query
Not run:
identify_query(iris) # Will return an error
identify_query(mtcars) # Will return an error
End(Not run)
```
identify_shifts

Identify shifts based on outlook time settings for work day start and end time

Description

This function uses outlook calendar settings for start and end time of work day to identify work shifts. The relevant variables are WorkingStartTimeSetInOutlook and WorkingEndTimeSetInOutlook.

Usage

identify_shifts(data, return = "plot")

Arguments

data A data frame containing data from the Hourly Collaboration query.
return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"
- "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": ggplot object. A bar plot for the weekly count of shifts.
- "table": data frame. A summary table for the count of shifts.
- "data": data frame. Input data appended with the Shifts columns.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Other Working Patterns: flex_index(), identify_shifts_wp(), plot_flex_index(), workpatterns_area(), workpatterns_classify_bw(), workpatterns_classify_pav(), workpatterns_classify(), workpatterns_hclust(), workpatterns_rank(), workpatterns_report()
identify_shifts_wp

Examples

# Return plot
dv_data %>% identify_shifts()

# Return summary table
dv_data %>% identify_shifts(return = "table")

identify_shifts_wp  Identify shifts based on binary activity

Description

This function uses the Hourly Collaboration query and computes binary activity to identify the 'behavioural' work shift. This is a distinct method to identify_shifts(), which instead uses outlook calendar settings for start and end time of work day to identify work shifts. The two methods can be compared to gauge the accuracy of existing Outlook settings.

Usage

identify_shifts_wp(
  data,
  signals = c("email", "IM"),
  active_threshold = 1,
  start_hour = 9,
  end_hour = 17,
  percent = FALSE,
  n = 10,
  return = "plot"
)

Arguments

data  A data frame containing data from the Hourly Collaboration query.
signals  Character vector to specify which collaboration metrics to use:
  • a combination of signals, such as c("email", "IM") (default)
  • "email" for emails only
  • "IM" for Teams messages only
  • "unscheduled_calls" for Unscheduled Calls only
  • "meetings" for Meetings only
active_threshold  A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0.
start_hour  A character vector specifying starting hours, e.g. "0900". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "0900" should be supplied here.
identify_shifts_wp

end_hour A character vector specifying starting hours, e.g. "1700". Note that this currently only supports **hourly** increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "1700" should be supplied here.

percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

n Numeric value specifying number of shifts to show. Defaults to 10. This parameter is only used when return is set to "plot".

return String specifying what to return. This must be one of the following strings:
- "plot"
- "table"
- "data"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the **return** argument:

- "plot": ggplot object. A bar plot for the weekly count of shifts.
- "table": data frame. A summary table for the count of shifts.
- "data": data frame. Input data appended with the following columns:
  - Start
  - End
  - DaySpan
  - Shifts

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts()`, `identify_tenure()`, `remove_outliers()`, `standardise_pq()`, `subject_validate_report()`, `subject_validate()`, `track_HR_change()`, `validation_report()`

Other Working Patterns: `flex_index()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()` , `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()

**Examples**

```r
Return plot
dt %>% identify_shifts_wp()

Return plot - showing percentages
dt %>% identify_shifts_wp(percent = TRUE)

Return table
dt %>% identify_shifts_wp(return = "table")
```
identify_tenure

Tenure calculation based on different input dates, returns data summary table or histogram

Description

This function calculates employee tenure based on different input dates. identify_tenure uses the latest Date available if user selects "Date", but also have flexibility to select a specific date, e.g. "1/1/2020".

Usage

```r
identify_tenure(
 data,
 end_date = "Date",
 beg_date = "HireDate",
 maxten = 40,
 return = "message"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.
end_date A string specifying the name of the date variable representing the latest date. Defaults to "Date".
beg_date A string specifying the name of the date variable representing the hire date. Defaults to "HireDate".
maxten A numeric value representing the maximum tenure. If the tenure exceeds this threshold, it would be accounted for in the flag message.
return String specifying what to return. This must be one of the following strings:
  • "message"
  • "text"
  • "plot"
  • "data_cleaned"
  • "data_dirty"
  • "data"
  See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
  • "message": message on console with a diagnostic message.
  • "text": string containing a diagnostic message.
• "plot": 'ggplot' object. A line plot showing tenure.
• "data_cleaned": data frame filtered only by rows with tenure values lying within the threshold.
• "data_dirty": data frame filtered only by rows with tenure values lying outside the threshold.
• "data": data frame with the PersonId and a calculated variable called TenureYear is returned.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

library(dplyr)
# Add HireDate to sq_data
sq_data2 <-
  sq_data %>%
    mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y"))

identify_tenure(sq_data2)

---

import_to_fst Read a Workplace Analytics query in '.csv' using and create a '.fst' file in the same directory for faster reading

Description

Uses import_wpa() to read a Workplace Analytics query in '.csv' and convert this into the serialized '.csv' format which is much faster to read. The 'fst' package must be installed, or an error message is returned.

Usage

import_to_fst(path, ...)

Arguments

path String containing the path to the Workplace Analytics query to be imported. The input file must be a CSV file, and the file extension must be explicitly entered, e.g. "/files/standard query.csv". The converted FST file will be saved in the same directory with a different file extension.

... Additional arguments to pass to import_wpa().
import_wpa

Details

The fst package provides a way to serialize data frames in R which makes loading data much faster
than CSV. import_to_fst() converts a CSV file into a FST file in the specified directory.

Once this FST file is created, it can be read into R using fst::read_fst(). Since import_to_fst()
only does conversion but not loading, it should normally only be run once at the beginning of each
piece of analysis, and fst::read_fst() should take over the job of data loading at the start of your
analysis script.

Internally, import_to_fst() uses import_wpa(), and additional arguments to import_wpa() can
be passed with ....

Value

There is no return value. A file with '.fst' extension is written to the same directory where the '.csv'
file is read in.

See Also

Other Import and Export: copy_df(), create_dt(), export(), import_wpa(), standardise_pq()

import_wpa Import a Workplace Analytics Query

Description

Import a Workplace Analytics Query from a local CSV File, with variable classifications optimised
for other 'wpa' functions.

Usage

import_wpa(x, standardise = FALSE, encoding = "UTF-8")

Arguments

x String containing the path to the Workplace Analytics query to be imported. The
input file must be a CSV file, and the file extension must be explicitly entered,
e.g. "/files/standard query.csv"

standardise logical. If TRUE, import_wpa() runs standardise_pq() to make a Collaboration
Assessment query’s columns name standard and consistent with a Standard
Person Query. Note that this will have no effect if the query being imported is
not a Ways of Working Assessment query. Defaults as FALSE.

encoding String to specify encoding to be used within data.table::fread(). See data.table::fread()
documentation for more information. Defaults to 'UTF-8'.

Details

import_wpa() uses data.table::fread() to import CSV files for speed, and by default stringsAsFactors
is set to FALSE. A data frame is returned by the function (not a data.table).
internal_network_plot

Value

A tibble is returned.

See Also

Other Import and Export: copy_df(), create_dt(), export(), import_to_fst(), standardise_pq()

---

**internal_network_plot**  *Plot Internal Network Breadth and Size as a scatter plot*

**Description**

Plot the internal network metrics for a HR variable as a scatter plot, showing Internal Network Breadth as the vertical axis and Internal Network Size as the horizontal axis.

**Usage**

```r
internal_network_plot(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 bubble_size = c(1, 8)
)
```

**Arguments**

- `data`  A Standard Person Query dataset in the form of a data frame.
- `hrvar`  HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- `mingroup`  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return`  String specifying what to return. This must be one of the following strings: - “plot” - “table”
- `bubble_size`  A numeric vector of length two to specify the size range of the bubbles

**Details**

Uses the metrics Internal_network_size and Networking_outside_organization.

**Value**

A `ggplot` object showing a bubble plot with internal network size as the x-axis and internal network breadth as the y-axis. The size of the bubbles represent the number of unique employees in each group.
is_date_format

Identify whether string is a date format

Description

This function uses regular expression to determine whether a string is of the format "mdy", separated by "-", "/", or ".", returning a logical vector.

Usage

is_date_format(string)

Arguments

string Character string to test whether is a date format.

Value

logical value indicating whether the string is a date format.
See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(), us_to_space(), wrap()

Examples

is_date_format("1/5/2020")

----------

IV_by_period

Identify the WPA metrics that have the biggest change between two periods.

Description

[Experimental]

This function uses the Information Value algorithm to predict which Workplace Analytics metrics are most explained by the change in dates.

Usage

IV_by_period(
  data,
  before_start = min(as.Date(data$Date, "%m/%d/%Y")),
  before_end, 
  after_start = as.Date(before_end) + 1,
  after_end = max(as.Date(data$Date, "%m/%d/%Y")),
  mybins = 10,
  return = "table"
)

Arguments

data: Person Query as a dataframe including date column named "Date" This function assumes the data format is MM/DD/YYYY as is standard in a Workplace Analytics query output.

before_start: Start date of "before" time period in YYYY-MM-DD. Defaults to earliest date in dataset.

before_end: End date of "before" time period in YYYY-MM-DD

after_start: Start date of "after" time period in YYYY-MM-DD

after_end: End date of "after" time period in YYYY-MM-DD. Defaults to day after before_end.

mybins: Number of bins to cut the data into for Information Value analysis. Defaults to 10.

return: String specifying what to return. The current only valid option is "table".
Value
data frame containing all the variables and the corresponding Information Value.

Author(s)
Mark Powers mark.powers@microsoft.com

See Also
Other Variable Association: IV_report(), create_IV(), plot_WOE()
Other Information Value: IV_report(), create_IV(), plot_WOE()
Other Time-series: create_line_asis(), create_line(), create_period_scatter(), create_trend(), period_change()

Examples
# Returns a data frame
sq_data %>%
  IV_by_period(
    before_start = "2019-11-03",
    before_end = "2019-11-09",
    after_start = "2019-11-10",
    after_end = "2019-11-16"
  )

Description
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a full Information Value analysis, a data exploration technique that helps determine which columns in a data set have predictive power or influence on the value of a specified dependent variable.

Usage
IV_report(
data, predictions = NULL, outcome, bins = 5, max_var = 9, path = "IV report", timestamp = TRUE)
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **predictors**: A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors.
- **outcome**: A string specifying a binary variable, i.e. can only contain the values 1 or 0.
- **bins**: Number of bins to use in `Information::create_infotables()`, defaults to 10.
- **max_var**: Numeric value to represent the maximum number of variables to show on plots.
- **path**: Pass the file path and the desired file name, *excluding the file extension*. For example, "IV report".
- **timestamp**: Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Creating a report

Below is an example on how to run the report.

```r
library(dplyr)

sq_data %>%
 mutate(CH_binary = ifelse(Collaboration_hours > 12, 1, 0)) %>% # Simulate binary variable
 IV_report(outcome = "CH_binary",
 predictors = c("Email_hours", "Workweek_span"))
```

See Also

Other Reports: `capacity_report()`, `coaching_report()`, `collaboration_report()`, `connectivity_report()`, `generate_report()`, `meeting_tm_report()`, `read_preamble()`, `subject_validate_report()`, `validation_report()`, `workpatterns_report()`

Other Variable Association: `IV_by_period()`, `create_IV()`, `plot_WOE()`

Other Information Value: `IV_by_period()`, `create_IV()`, `plot_WOE()`
**jitter_metrics**  
_Jitter metrics in a data frame_

### Description
Convenience wrapper around `jitter()` to add a layer of anonymity to a query. This can be used in combination with `anonymise()` to produce a demo dataset from real data.

### Usage
```
jitter_metrics(data, cols = NULL, ...)
```

### Arguments
- **data**  
  Data frame containing a query.
- **cols**  
  Character vector containing the metrics to jitter. When set to NULL (default), all numeric columns in the data frame are jittered.
- **...**  
  Additional arguments to pass to `jitter()`.

### See Also
- `anonymise`

### Examples
```
jittered <- jitter_metrics(sq_data, cols = "Collaboration_hours")
head(data.frame(
 original = sq_data$Collaboration_hours,
 jittered = jittered$Collaboration_hours
))
```

---

**keymetrics_scan**  
_Run a summary of Key Metrics from the Standard Person Query data_

### Description
Returns a heatmapped table by default, with options to return a table.
Usage

keymetrics_scan(
data,
hrvar = "Organization",
mingroup = 5,
metrics = c("Workweek_span", "Collaboration_hours",
"After_hours_collaboration_hours", "Meetings", "Meeting_hours",
"After_hours_meeting_hours", "Low_quality_meeting_hours",
"Meeting_hours_with_manager_1_on_1", "Meeting_hours_with_manager", "Emails_sent",
"Email_hours", "After_hours_email_hours", "Generated_workload_email_hours",
"Total_focus_hours", "Internal_network_size", "Networking_outside_organization",
"External_network_size", "Networking_outside_company"),
return = "plot",
low = rgb2hex(7, 111, 161),
mid = rgb2hex(241, 204, 158),
high = rgb2hex(216, 24, 42),
textsize = 2
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
metrics A character vector containing the variable names to calculate averages of.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
low String specifying colour code to use for low-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
mid String specifying colour code to use for mid-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
high String specifying colour code to use for high-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
textsize A numeric value specifying the text size to show in the plot.

Value

Returns a ggplot object by default, when 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
keymetrics_scan_asis

Run a summary of Key Metrics without aggregation

Description

Return a heatmapped table directly from the aggregated/summarised data. Unlike keymetrics_scan() which performs a person-level aggregation, there is no calculation for keymetrics_scan_asis() and the values are rendered as they are passed into the function.

Usage

keymetrics_scan_asis(
  data,
  row_var,
  col_var,
  group_var = col_var,
  value_var = "value",
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ylab = row_var,
  xlab = "Metrics",
)
rounding = 1,
low = rgb2hex(7, 111, 161),
mid = rgb2hex(241, 204, 158),
high = rgb2hex(216, 24, 42),
textsize = 2)

Arguments

data data frame containing data to plot. It is recommended to provide data in a 'long'
table format where one grouping column forms the rows, a second column forms
the columns, and a third numeric columns forms the
row_var String containing name of the grouping variable that will form the rows of the
heatmapped table.
col_var String containing name of the grouping variable that will form the columns of
the heatmapped table.
group_var String containing name of the grouping variable by which heatmapping would
apply. Defaults to col_var.
value_var String containing name of the value variable that will form the values of the
heatmapped table. Defaults to "value".
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
ylab Y-axis label for the plot (group axis)
xlab X-axis label of the plot (bar axis).
rounding Numeric value to specify number of digits to show in data labels
low String specifying colour code to use for low-value metrics. Arguments are
passed directly to ggplot2::scale_fill_gradient2().
mid String specifying colour code to use for mid-value metrics. Arguments are
passed directly to ggplot2::scale_fill_gradient2().
high String specifying colour code to use for high-value metrics. Arguments are
passed directly to ggplot2::scale_fill_gradient2().
textsize A numeric value specifying the text size to show in the plot.

Value

ggplot object for a heatmap table.

Examples

library(dplyr)

# Compute summary table
out_df <-
LjungBox

Ljung and Box Portmanteau Test

Description

The Ljung-Box (1978) modified portmanteau test. In the multivariate time series, this test statistic is asymptotically equal to Hosking.

This method and the bottom documentation is taken directly from the original 'portes' package.

Usage

LjungBox(
  obj,
  lags = seq(5, 30, 5),
  order = 0,
  season = 1,
  squared.residuals = FALSE
)
Arguments

obj a univariate or multivariate series with class "numeric", "matrix", "ts", or ("mts" "ts"). It can be also an object of fitted time-series model with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), or "varest". obj may also an object with class "list" (see details and following examples).

lags vector of lag auto-cross correlation coefficients used for Hosking test.

order Default is zero for testing the randomness of a given sequence with class "numeric", "matrix", "ts", or ("mts" "ts"). In general order equals to the number of estimated parameters in the fitted model. If obj is an object with class "ar", "arima0", "Arima", "varest", ("ARIMA forecast ARIMA Arima"), or "list" then no need to enter the value of order as it will be automatically determined. For obj with other classes, the order is needed for degrees of freedom of asymptotic chi-square distribution.

season seasonal periodicity for testing seasonality. Default is 1 for testing the non seasonality cases.

squared.residuals if TRUE then apply the test on the squared values. This checks for Autoregressive Conditional Heteroscedastic, ARCH, effects. When squared.residuals = FALSE, then apply the test on the usual residuals.

Details

However the portmanteau test statistic can be applied directly on the output objects from the built in R functions ar(), ar.ols(), ar.burg(), ar.yw(), ar.mle(), arima(), arima0(), Arima(), auto.arima(), lm(), glm(), and VAR(), it works with output objects from any fitted model. In this case, users should write their own function to fit any model they want, where they may use the built in R functions FitAR(), garch(), garchFit(), fracdiff(), tar(), etc. The object obj represents the output of this function. This output must be a list with at least two outcomes: the fitted residual and the order of the fitted model (list(res = ..., order = ...)). See the following example with the function FitModel().

Note: In stats R, the function Box.test was built to compute the Box and Pierce (1970) and Ljung and Box (1978) test statistics only in the univariate case where we can not use more than one single lag value at a time. The functions BoxPierce and LjungBox are more accurate than Box.test function and can be used in the univariate or multivariate time series at vector of different lag values as well as they can be applied on an output object from a fitted model described in the description of the function BoxPierce.

Value

The Ljung and Box test statistic with the associated p-values for different lags based on the asymptotic chi-square distribution with k^2(lags-order) degrees of freedom.

Author(s)

Esam Mahdi and A.I. McLeod
map_IV

Calculate Weight of Evidence (WOE) and Information Value (IV) between multiple predictors and a single outcome variable, returning a list of statistics.

Description

This is a wrapper around calculate_IV() to loop through multiple predictors and calculate their Weight of Evidence (WOE) and Information Value (IV) with respect to an outcome variable.

Usage

map_IV(data, predictors = NULL, outcome, bins = 10)

Arguments

data | Data frame containing the data.
predictors | Character vector containing the names of the predictor variables. If NULL (default) is supplied, all numeric variables in the data will be used.
outcome | String containing the name of the outcome variable.
bins | Numeric value representing the number of bins to use. Defaults to 10.

Details

The approach used mirrors the one used in Information::create_infotables().

Value

A list of data frames is returned as an output. The first layer of the list contains Tables and Summary:

- Tables is a list of data frames containing the WOE and cumulative sum IV for each predictor.
- Summary is a single data frame containing the IV for all predictors.

References


Examples

x <- rnorm(100)
LjungBox(x) # univariate test

x <- cbind(rnorm(100),rnorm(100))
LjungBox(x) # multivariate test
maxmin  

Max-Min Scaling Function

Description

This function allows you to scale vectors or an entire data frame using the max-min scaling method. A numeric vector is always returned.

Usage

maxmin(x)

Arguments

x  
Pass a vector or the required columns of a data frame through this argument.

Details

This is used within keymetrics_scan() to enable row-wise heatmapping. Originally implemented in https://github.com/martinctc/surveytoolbox.

Value

Returns a numeric vector with the input rescaled.

See Also

Other Support: camel_clean().check_inputs().combine_signals().cut_hour().extract_date_range().extract_hr().heat_colours().is_date_format().p_test().pairwise_count().plot_WOE().read_preamble().rgb2hex().totals_bind().totals_col().totals_reorder().tstamp().us_to_space().wrap()

Examples

numbers <- c(15, 40, 10, 2)
maxmin(numbers)
Description

Calculate the distribution of meeting types by number of attendees and duration. This is a wrapper around `meetingtype_dist_mt()` and `meetingtype_dist_ca()`, depending on whether a Meeting Query or a Ways of Working Assessment Query is passed as an input.

Usage

```r
meetingtype_dist(data, hrvar = NULL, mingroup = 5, return = "plot")
```

Arguments

- **data**: Data frame. If a meeting query, must contain the variables `Attendee` and `DurationHours`.
- **hrvar**: Character string to specify the HR attribute to split the data by. Note that this is only applicable if a Ways of Working Assessment query is passed to the function. If a Meeting Query is passed instead, this argument is ignored.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5. Only applicable when using a Ways of Working Assessment query.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A matrix of meeting types with duration and the number of attendees. If using a Ways of Working Assessment query with `meetingtype_dist_ca()` and an HR attribute with more than one unique value is passed to `hrvar`, a stacked bar plot is returned.
- "table": data frame. A summary table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_summary()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`,
### Description

Calculate the hour distribution of internal meeting types, using a Ways of Working Assessment Query with core Workplace Analytics variables as an input.

### Usage

`meetingtype_dist_ca(data, hrvar = NULL, mingroup = 5, return = "plot")`

### Arguments

- **data**
  - Meeting Query data frame. Must contain the variables `Attendee` and `DurationHours`
- **hrvar**
  - Character string to specify the HR attribute to split the data by.
- **mingroup**
  - Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**
  - String specifying what to return. This must be one of the following strings:
    - "plot"
    - "table"
  - See Value for more information.

### Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A matrix of meeting types with duration and the number of attendees. If using a Ways of Working Assessment query with `meetingtype_dist_ca()` and an HR attribute with more than one unique value is passed to `hrvar`, a stacked bar plot is returned.
- "table": data frame. A summary table.
### See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist()`, `meetingtype_dist_mt()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Meetings: `meeting_dist()`, `meeting_extract()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_skim()`, `meeting_summary()`, `meeting_tm_report()`, `meeting_trend()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`

---

### Description

Calculate the hour distribution of internal meeting types, using a Meeting Query with core Workplace Analytics variables as an input.

### Usage

```r
meetingtype_dist_mt(data, return = "plot")
```

### Arguments

- **data**
  - Meeting Query data frame. Must contain the variables `Attendee` and `DurationHours`

- **return**
  - String specifying what to return. This must be one of the following strings:
    - "plot"
    - "table"

See Value for more information.

### Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A matrix of meeting types with duration and the number of attendees. If using a Ways of Working Assessment query with `meetingtype_dist_ca()` and an HR attribute with more than one unique value is passed to `hrvar`, a stacked bar plot is returned.
- "table": data frame. A summary table.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist(), meetingtype_summary()
- Workshop\_meeting\_hours
- All\_hands\_meeting\_hours
- Status\_update\_meeting\_hours
- Decision\_making\_meeting\_hours
- One\_on\_one\_meeting\_hours

**hrvar**

HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"

**mingroup**

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

**return**

String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A horizontal bar plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: `afterhours\_dist()`, `afterhours\_fizz()`, `afterhours\_line()`, `afterhours\_rank()`, `afterhours\_summary()`, `afterhours\_trend()`, `collaboration\_area()`, `collaboration\_dist()`, `collaboration\_fizz()`, `collaboration\_line()`, `collaboration\_rank()`, `collaboration\_sum()`, `collaboration\_trend()`, `create\_bar\_asis()`, `create\_bar()`, `create\_boxplot()`, `create\_bubble()`, `create\_dist()`, `create\_fizz()`, `create\_inc()`, `create\_line\_asis()`, `create\_line()`, `create\_period\_scatter()`, `create\_rank()`, `create\_sankey()`, `create\_scatter()`, `create\_stacked()`, `create\_tracking()`, `create\_trend()`, `email\_dist()`, `email\_fizz()`, `email\_line()`, `email\_rank()`, `email\_summary()`, `email\_trend()`, `external\_dist()`, `external\_fizz()`, `external\_line()`, `external\_network\_plot()`, `external\_rank()`, `external\_sum()`, `hr\_trend()`, `hrvar\_count()`, `hrvar\_trend()`, `internal\_network\_plot()`, `keymetrics\_scan()`, `meeting\_dist()`, `meeting\_fizz()`, `meeting\_line()`, `meeting\_quality()`, `meeting\_rank()`, `meeting\_summary()`, `meeting\_trend()`, `meetingtype\_dist\_ca()`, `meetingtype\_dist\_mt()`, `meetingtype\_dist()` , `mgrcoatt\_dist()`, `mgrrel\_matrix()`, `onezone\_dist()`, `onezone\_fizz()`, `onezone\_freq()`, `onezone\_line()`, `onezone\_rank()`, `onezone\_sum()`, `onezone\_trend()`, `period\_change()`, `workloads\_dist()`, `workloads\_fizz()`, `workloads\_line()`, `workloads\_rank()`, `workloads\_summary()`, `workloads\_trend()`, `workpatterns\_area()`, `workpatterns\_rank()`

Other Meetings: `meeting\_dist()`, `meeting\_extract()`, `meeting\_fizz()`, `meeting\_line()`, `meeting\_quality()`, `meeting\_rank()`, `meeting\_skim()`, `meeting\_summary()`, `meeting\_tm\_report()`, `meeting\_trend()`, `meetingtype\_dist\_ca()`, `meetingtype\_dist\_mt()`, `meetingtype\_dist()`
**meeting_dist**

*Distribution of Meeting Hours as a 100% stacked bar*

**Description**

Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

**Usage**

```
meeting_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(5, 10, 15)
)
```

**Arguments**

- **data** A Standard Person Query dataset in the form of a data frame.
- **hrvar** String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return** String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  See Value for more information.
- **cut** A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_summary(), collaboration_trend(), create_bar(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_summary(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

# Return plot
meeting_dist(sq_data, hrvar = "Organization")

# Return summary table
meeting_dist(sq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
meeting_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))

---

**meeting_extract**

*Extract top low-engagement meetings from the Meeting Query*

**Description**

Pass a Standard Meeting Query and extract the top low engagement meetings.

**Usage**

```r
meeting_extract(data,
 recurring_only = TRUE,
 top_n = 30,
 fte_month = 180,
 fte_week = 40,
)```
return = "table"
)

Arguments

data Data frame containing a Standard Meeting Query to pass through.
recurring_only Logical value indicating whether to only filter by recurring meetings.
top_n Numeric value for the top number of results to return in the output.
fte_month Numeric value for the assumed number of employee hours per month for conversion calculations. Defaults to 180.
fte_week Numeric value for the assumed number of employee hours per week for conversion calculations. Defaults to 180.
return String specifying what to return. This must be one of the following strings:
 • "table"
 • "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

 • "table": data frame. A summary table containing the top \(n \) low engagement meetings
 • "data": data frame. Contains the full computed metrics related to the top \(n \) low engagement meetings

See Also

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

meeting_extract(mt_data,
 recurring_only = FALSE,
 top_n = 10,
 return = "table")
Description

Analyze weekly meeting hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```r
meeting_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- `data` A Standard Person Query dataset in the form of a data frame.
- `hrvar` String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return` String specifying what to return. This must be one of the following strings:
 - "plot" • "table"

 See Value for more information.

Details

Uses the metric `Meeting_hours`.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_scatter()`,
meeting_line

Description

Provides a week by week view of meeting time, visualised as line charts. By default returns a line chart for meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
meeting_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- `data`
 A Standard Person Query dataset in the form of a data frame.

- `hrvar`
 String containing the name of the HR Variable by which to split metrics. Default to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- `mingroup`
 Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- `return`
 String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.
meeting_quality

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrocoatt_dist(), mgrorel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

Return a line plot
meeting_line(sq_data, hrvar = "LevelDesignation")

Return summary table
meeting_line(sq_data, hrvar = "LevelDesignation", return = "table")

Run a meeting habits / meeting quality analysis

Return an analysis of Meeting Quality with a bubble plot, using a Standard Person Query as an input.
meeting_quality

Usage

```r
meeting_quality(
  data,
  hrvar = "Organization",
  metric_x = "Low_quality_meeting_hours",
  mingroup = 5,
  return = "plot"
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **metric_x**: String specifying which variable to show in the x-axis when returning a plot. Must be one of the following:
 - "Low_quality_meeting_hours" (default)
 - "After_hours_meeting_hours"
 - "Conflicting_meeting_hours"
 - "Multitasking_meeting_hours"
 - Any meeting hour variable that can be divided by Meeting_hours
 If the provided metric name is not found in the data, the function will use the first matched metric from the above list.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings: - "plot" - "table"

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bubble plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(),
meeting_rank

Meeting Hours Ranking

Description

This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage

```r
meeting_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Examples

```r
# Return plot
meeting_quality(sq_data, return = "plot")

# Return plot - showing multi-tasking %
meeting_quality(sq_data,
  metric_x = "Multitasking_meeting_hours",
  return = "plot")

# Return summary table
meeting_quality(sq_data, return = "table")
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode**: String to specify calculation mode. Must be either:
 - "simple"
 - "combine"
- **plot_mode**: Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
 - 1: Top and bottom five groups across the data population are highlighted
 - 2: Top and bottom groups per organizational attribute are highlighted
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot" (default)
 - "table"

 See Value for more information.

Details

Uses the metric `Meeting_hours`. See `create_rank()` for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the **return** argument:

- "plot": `ggplot` object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if **mode** is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`.
meeting_skim

Produce a skim summary of meeting hours

Description

This function returns a skim summary in the console when provided a standard query in the input.

Usage

```r
meeting_skim(data, return = "message")
```

Arguments

- `data` A standard person query data in the form of a data frame.
- `return` String specifying what to return. This must be one of the following strings:
 - "message"
 - "text"
 - "table"

 See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- "message": message in console.
- "text": string.
- "table": data frame.

See Also

Other Meetings: `meeting_dist()`, `meeting_extract()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_tm_report()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`
`meetingtype_summary()`

Examples

```r
meeting_skim(sq_data)
```

Description

Provides an overview analysis of weekly meeting hours. Returns a bar plot showing average weekly meeting hours by default. Additional options available to return a summary table.

Usage

```r
meeting_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
meeting_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

Return a ggplot bar chart
meeting_summary(sq_data, hrvar = "LevelDesignation")

Return a summary table
meeting_summary(sq_data, hrvar = "LevelDesignation", return = "table")

meeting_tm_report

Generate a Meeting Text Mining report in HTML

Description

Create a text mining report in HTML based on Meeting Subject Lines
Usage

meeting_tm_report(
 data,
 path = "meeting text mining report",
 stopwords = NULL,
 timestamp = TRUE,
 keep = 100,
 seed = 100
)

Arguments

data A Meeting Query dataset in the form of a data frame.
path Pass the file path and the desired file name, excluding the file extension. For example, "meeting text mining report".
stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.
keep A numeric vector specifying maximum number of words to keep.
seed A numeric vector to set seed for random generation.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Reports: IV_report(), capacity_report(), coaching_report(), collaboration_report(), connectivity_report(), generate_report(), read_preamble(), subject_validate_report(), validation_report(), workpatterns_report()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Other Text-mining: pairwise_count(), subject_validate_report(), subject_validate(), tm_clean(), tm_cooc(), tm_freq(), tm_wordcloud()

meeting_trend Meeting Hours Time Trend

Description

Provides a week by week view of meeting time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
Usage

```r
meeting_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric `Meeting_hours`.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Meetings: `meeting_dist()`, `meeting_extract()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_skim()`, `meeting_summary()`, `meeting_tm_report()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`
mgrcoatt_dist

Manager meeting coattendance distribution

Description

Analyze degree of attendance between employees and their managers. Returns a stacked bar plot of
different buckets of coattendance. Additional options available to return a table with distribution
elements.

Usage

mgrcoatt_dist(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

 • "plot": ggplot object. A stacked bar plot showing the distribution of manager co-attendance
time.
 • "table": data frame. A summary table for manager co-attendance time.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
e-mail_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(),
external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(),
keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
mgrrel_matrix

meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Managerial Relations: mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Examples

Return plot
mgrcoatt_dist(sq_data, hrvar = "Organization", return = "plot")

Return summary table
mgrcoatt_dist(sq_data, hrvar = "Organization", return = "table")

mgrrel_matrix

Manager Relationship 2x2 Matrix

Description

Generate the Manager-Relationship 2x2 matrix, returning a ‘ggplot’ object by default. Additional options available to return a "wide" or "long" summary table.

Usage

mgrrel_matrix(
data,
hrvar = NULL,
mingroup = 5,
return = "plot",
plot_colors = c("#fe7f4f", "#b4d5dd", "#facebc", "#fcf0eb"),
threshold = 15)

Arguments

data Standard Person Query data to pass through. Accepts a data frame.
hrvar HR Variable by which to split metrics. Accepts a character vector, e.g. "Organization". Defaults to NULL.
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
• "data"
 See Value for more information.

plot_colors Pass a character vector of length 4 containing HEX codes to specify colors to use in plotting.

threshold Specify a numeric value to determine threshold (in minutes) for 1:1 manager hours. Defaults to 15.

Value
A different output is returned depending on the value passed to the return argument:

• "plot": ggplot object. When NULL is passed to hrvar, a two-by-two grid where the size of the grid represents total percentage of employees is returned. Otherwise, a horizontal stacked bar plot is returned.
• "table": data frame. A summary table is returned.
• "data": data frame. A long table grouped at the PersonId level with the following columns:
 – PersonId
 – HR variable supplied to hrvar
 – CoattendanceRate
 – Meeting_hours_with_manager_1_on_1
 – mgr1on1
 – Type

Author(s)
Lucas Hogner lucas.hogner@microsoft.com

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_summary(), mgrcoatt_dist(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Managerial Relations: mgrcoatt_dist(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Examples

```r
# Return matrix
mgrrel_matrix(sq_data)

# Return stacked bar plot
mgrrel_matrix(sq_data, hrvar = "Organization")

## Visualize coaching style types
# Ensure dplyr is loaded
library(dplyr)

# Extract PersonId and Coaching Type
match_df <-
  sq_data %>%
  mgrrel_matrix(return = "data") %>%
  select(PersonId, Type)

# Join and visualize baseline
sq_data %>%
  left_join(match_df, by = "PersonId") %>%
  keymetrics_scan(hrvar = "Type",
                 return = "plot")
```

mt_data
Sample Meeting Query dataset

Description

A dataset generated from a Meeting Query from Workplace Analytics.

Usage

```r
mt_data
```

Format

A data frame with 2001 rows and 30 variables:

- **MeetingId**
- **StartDate**
- **StartTimeUTC**
- **EndDate**
- **EndTimeUTC**
- **Attendee_meeting_hours**
- **Attendees**
- **Organizer_Domain**
mt_data

Organizer_FunctionType
Organizer_LevelDesignation
Organizer_Layer
Organizer_Region
Organizer_Organization
Organizer_zId
Organizer_attainment
Organizer_TimeZone
Organizer_HourlyRate
Organizer_IsInternal
Organizer_PersonId
IsCancelled
DurationHours
IsRecurring
Subject
TotalAccept
TotalNoResponse
TotalDecline
TotalNoEmailsDuringMeeting
TotalNoDoubleBooked
TotalNoAttendees
MeetingResources
Attendees_with_conflicting_meetings
Invitees
Emails_sent_during_meetings
Attendees_multitasking
Redundant_attendees
Total_meeting_cost
Total_redundant_hours ...

Value
data frame.

Source
https://workplaceanalytics-demo.office.com/en-us/Home

See Also
Other Data: dv_data, em_data, g2g_data, p2p_data_sim(), sq_data
network_describe

Uncover HR attributes which best represent a population for a Person to Person query

Description

[Experimental]

Returns a data frame that gives a percentage of the group combinations that best represent the population provided. Uses a person to person query. This is used internally within network_p2p().

Usage

```r
network_describe(
  data,
  hrvar = c("Organization", "LevelDesignation", "FunctionType")
)
```

Arguments

- `data`: Data frame containing a vertex table output from network_p2p().
- `hrvar`: Character vector of length 3 containing the HR attributes to be used. Defaults to c("Organization", "LevelDesignation", "FunctionType").

Value

Data frame. A summary table giving the percentage of group combinations that best represent the provided data.

Author(s)

Tannaz Sattari Tabrizi Tannaz.Sattari@microsoft.com

See Also

Other Network: external_network_plot(), g2g_data, internal_network_plot(), network_g2g(), network_leiden(), network_louvain(), network_p2p(), network_summary(), p2p_data_sim()

Examples

```r
# Simulate a P2P edge list
sim_data <- p2p_data_sim()

# Perform Louvain Community Detection and return vertices
lc_df <- sim_data %>%
  network_p2p(
    display = "louvain",
    return = "data"
  )
```
Join org data from input edge list
joined_df <- lc_df %>%
dplyr::left_join(
 sim_data %>%
 dplyr::select(TieOrigin_PersonId, TieOrigin_Organization, TieOrigin_LevelDesignation, TieOrigin_City),
 by = c("name" = "TieOrigin_PersonId"))

Describe cluster 2
joined_df %>%
 # dplyr::filter(cluster == "2") %>%
 network_describe(
 hvar = c("Organization", "LevelDesignation", "City"
)
) %>%
dplyr::glimpse()

network_g2g

Create a network plot with the group-to-group query

Description

Pass a data frame containing a group-to-group query and return a network plot. Automatically handles "Collaborators_within_group" and "Other_collaborators" within query data.

Usage

```
network_g2g(
data,
time_investor = NULL,
collaborator = NULL,
metric = "Collaboration_hours",
algorithm = "fr",
node_colour = "lightblue",
exc_threshold = 0.1,
org_count = NULL,
subtitle = "Collaboration Across Organizations",
return = "plot"
)
```
g2g_network(
data,
time_investor = NULL,
collaborator = NULL,
metric = "Collaboration_hours",
algorithm = "fr",
node_colour = "lightblue",
exc_threshold = 0.1,
org_count = NULL,
subtitle = "Collaboration Across Organizations",
return = "plot"
)

Arguments

data Data frame containing a G2G query.
time_investor String containing the variable name for the Time Investor column.
collaborator String containing the variable name for the Collaborator column.
metric String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed algorithm of Fruchterman and Reingold. See https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html for a full list of options.
algorithm String containing the variable name for metric. Defaults to Collaboration_hours.
node_colour String or named vector to specify the colour to be used for displaying nodes. Defaults to "lightblue".
 • If "vary" is supplied, a different colour is shown for each node at random.
 • If a named vector is supplied, the names must match the values of the variable provided for the time_investor and collaborator columns. See example section for details.
exc_threshold Numeric value between 0 and 1 specifying the exclusion threshold to apply. Defaults to 0.1, which means that the plot will only display collaboration above 10% of a node’s total collaboration. This argument has no impact on "data" or "table" return.
org_count Optional data frame to provide the size of each organization in the collaborator attribute. The data frame should contain only two columns:
 • Name of the collaborator attribute excluding any prefixes, e.g. "Organization". Must be of character or factor type.
 • "n". Must be of numeric type. Defaults to NULL, where node sizes will be fixed.
subtitle String to override default plot subtitle.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 • "network"
 • "data"
See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- **"plot"**: 'ggplot' object. A group-to-group network plot.
- **"table"**: data frame. An interactive matrix of the network.
- **"network"**: 'igraph' object used for creating the network plot.
- **"data"**: data frame. A long table of the underlying data.

See Also

Other Network: `external_network_plot()`, `g2g_data.internal_network_plot()`, `network.describe()`, `network.leiden()`, `network.louvain()`, `network.p2p()`, `network.summary()`, `p2p_data_sim()`

Examples

```r
# Return a network plot
g2g_data %>% network_g2g()

# Return a network plot - Meeting hours and 5% threshold
g2g_data %>%
  network_g2g(time_investor = "TimeInvestors_Organization",
               collaborator = "Collaborators_Organization",
               metric = "Meeting_hours",
               exc_threshold = 0.05)

# Return a network plot - custom-specific colours
# Get labels of orgs and assign random colours
org_str <- unique(g2g_data$TimeInvestors_Organization)
col_str <-
sample(
  x = c("red", "green", "blue"),
  size = length(org_str),
  replace = TRUE
)

# Create and supply a named vector to `node_colour`
names(col_str) <- org_str
g2g_data %>%
  network_g2g(node_colour = col_str)

# Return a network plot with circle layout
# Vary node colours and add org sizes
org_tb <- hrvar_count(
  sq_data,            # org sizes
  hrvar = "Organization",
  return = "table"
)
```
Implement the Leiden community detection on a Person to Person network query

Description

Experimental

Take a P2P network query and implement the Leiden community detection method. To run this function, you will require all the pre-requisites of the `leiden` package installed, which includes Python and `reticulate`.

Usage

```r
network_leiden(
  data,
  hrvar = "Organization",
  bg_fill = "#000000",
  font_col = "#FFFFFF",
  algorithm = "mds",
  path = "network_p2p_leiden",
  node_alpha = 0.8,
  res = 0.5,
  seed = 1,
  desc_hrvar = c("Organization", "LevelDesignation", "FunctionType"),
  return = "plot-leiden",
  size_threshold = 5000
)
```

Arguments

- **data**: Data frame containing a person-to-person query.
- **hrvar**: String containing the label for the HR attribute.
- **bg_fill**: String to specify background fill colour.
- **font_col**: String to specify font and link colour.
algorithm String to specify the node placement algorithm to be used. Defaults to "mds" for the deterministic multi-dimensional scaling of nodes. See https://rdrr.io/cran/ggraph/man/layout_tbl_graph igraph.html for a full list of options.

path File path for saving the PDF output. Defaults to a timestamped path based on current parameters.

node_alpha A numeric value between 0 and 1 to specify the transparency of the nodes. Defaults to 0.7.

res Resolution parameter to be passed to leiden::leiden(). Defaults to 0.5.

seed Seed for the random number generator passed to either set.seed() when the Louvain algorithm is used, or leiden::leiden() when the Leiden algorithm is used, to ensure consistency. Only applicable when display is set to "louvain" or "leiden".

desc_hrvar Character vector of length 3 containing the HR attributes to use when returning the "describe" output. See network_describe().

return String specifying what output to return. Defaults to "plot-leiden". Valid return options include:

- 'plot-leiden': return a network plot coloured by leiden communities, saving a PDF to path.
- 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
- 'plot-sankey': return a sankey plot combining communities and HR attribute.
- 'table': return a vertex summary table with counts in communities and HR attribute.
- 'data': return a vertex data file that matches vertices with communities and HR attributes.
- 'describe': return a list of data frames which describe each of the identified communities. The first data frame is a summary table of all the communities.
- 'network': return 'igraph' object.

size_threshold Numeric value representing the maximum number of edges before network_leiden() switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000. Set as 0 to coerce to a fast plotting method every time, and Inf to always use the default plotting method (with 'ggraph').

Value

See return.

Simulating and running Leiden Community Detection

Below is an example on how to simulate a network and run the function.

```r
# Simulate a small person-to-person dataset
p2p_data <- p2p_data_sim(size = 50)
```
Return leiden, console, plot
p2p_data %>%
 network_leiden(path = NULL,
 return = "plot")
```

See Also

Other Network: `external_network_plot()`, `g2g_data`, `internal_network_plot()`, `network_describe()`, `network_g2g()`, `network_louvain()`, `network_p2p()`, `network_summary()`, `p2p_data_sim()`

---

**network_louvain**  
Implement the Louvain community detection on a Person to Person network query

---

Description

[Experimental]

Take a P2P network query and implement the Louvain community detection method. The `igraph` implementation of the Louvain method is used.

Usage

```r
network_louvain(
data,
hrvar = "Organization",
bg_fill = "#000000",
font_col = "#FFFFFF",
node_alpha = 0.8,
algorithm = "mds",
path = "network_p2p_louvain",
desc_hrvar = c("Organization", "LevelDesignation", "FunctionType"),
return = "plot-louvain",
size_threshold = 5000
)
```

Arguments

- **data**  
  Data frame containing a person-to-person query.
- **hrvar**  
  String containing the label for the HR attribute.
- **bg_fill**  
  String to specify background fill colour.
- **font_col**  
  String to specify font and link colour.
- **node_alpha**  
  A numeric value between 0 and 1 to specify the transparency of the nodes. Defaults to 0.7.
network_louvain

algorithm  String to specify the node placement algorithm to be used. Defaults to "mds" for the deterministic multi-dimensional scaling of nodes. See https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html for a full list of options.

path  File path for saving the PDF output. Defaults to a timestamped path based on current parameters.

desc_hrvar  Character vector of length 3 containing the HR attributes to use when returning the "describe" output. See network_describe().

return  String specifying what output to return. Defaults to "plot-louvain". Valid return options include:

- 'plot-louvain': return a network plot coloured by Louvain communities, saving a PDF to path.
- 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
- 'plot-sankey': return a sankey plot combining communities and HR attribute.
- 'table': return a vertex summary table with counts in communities and HR attribute.
- 'data': return a vertex data file that matches vertices with communities and HR attributes.
- 'describe': return a list of data frames which describe each of the identified communities. The first data frame is a summary table of all the communities.
- 'network': return 'igraph' object.

size_threshold  Numeric value representing the maximum number of edges before network_leiden() switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000. Set as 0 to coerce to a fast plotting method every time, and Inf to always use the default plotting method (with 'ggraph').

Value

See return.

See Also

Other Network: external_network_plot(), g2g_data, internal_network_plot(), network_describe(), network_g2g(), network_leiden(), network_p2p(), network_summary(), p2p_data_sim()

Examples

# Simulate a small person-to-person dataset
p2p_data <- p2p_data_sim(size = 50)

# Return louvain, console, plot
p2p_data %>%
  network_louvain(path = NULL,
                  return = "plot")
Create a network plot with the person-to-person query

Description

[Experimental]

Analyse a person-to-person (P2P) network query, with multiple visualisation and analysis output options. Pass a data frame containing a person-to-person query and return a network visualization. Options are available for community detection using either the Louvain or the Leiden algorithms.

Usage

```r
network_p2p(
 data,
 hrvar = "Organization",
 display = "hrvar",
 return = "plot",
 path = paste0("network_p2p_", display),
 desc_hrvar = c("Organization", "LevelDesignation", "FunctionType"),
 bg_fill = "#FFFFFF",
 font_col = "grey20",
 legend_pos = "bottom",
 palette = "rainbow",
 node_alpha = 0.7,
 edge_alpha = 1,
 res = 0.5,
 seed = 1,
 algorithm = "mds",
 size_threshold = 5000,
 weight = "StrongTieScore"
)
```

Arguments

- **data**: Data frame containing a person-to-person query.
- **hrvar**: String containing the label for the HR attribute.
- **display**: String determining what output to return. Valid values include:
  - "hrvar" (default): compute analysis or visuals without computing communities.
  - "louvain": compute analysis or visuals with community detection, using the Louvain algorithm.
  - "leiden": compute analysis or visuals with community detection, using the Leiden algorithm. This requires all the pre-requisites of the **leiden** package installed, which includes Python and **reticulate**.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>return</code></td>
<td>String specifying what output to return. This must be one of the following strings:</td>
</tr>
<tr>
<td></td>
<td>• 'plot' (default)</td>
</tr>
<tr>
<td></td>
<td>• 'sankey'</td>
</tr>
<tr>
<td></td>
<td>• 'table'</td>
</tr>
<tr>
<td></td>
<td>• 'data'</td>
</tr>
<tr>
<td></td>
<td>• 'describe'</td>
</tr>
<tr>
<td></td>
<td>• 'network'</td>
</tr>
<tr>
<td></td>
<td>See Value for more information.</td>
</tr>
<tr>
<td><code>path</code></td>
<td>File path for saving the PDF output. Defaults to a timestamped path based on current parameters.</td>
</tr>
<tr>
<td><code>desc_hrvar</code></td>
<td>Character vector of length 3 containing the HR attributes to use when returning the &quot;describe&quot; output. See network_describe().</td>
</tr>
<tr>
<td><code>bg_fill</code></td>
<td>String to specify background fill colour.</td>
</tr>
<tr>
<td><code>font_col</code></td>
<td>String to specify font and link colour.</td>
</tr>
<tr>
<td><code>legend_pos</code></td>
<td>String to specify position of legend. Defaults to &quot;bottom&quot;. See ggplot2::theme(). This is applicable for both the 'ggraph' and the fast plotting method. Valid inputs include:</td>
</tr>
<tr>
<td></td>
<td>• &quot;bottom&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;top&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;left&quot;-&quot;right&quot;</td>
</tr>
<tr>
<td><code>palette</code></td>
<td>Function for generating a colour palette with a single argument n. Uses &quot;rainbow&quot; by default.</td>
</tr>
<tr>
<td><code>node_alpha</code></td>
<td>A numeric value between 0 and 1 to specify the transparency of the nodes. Defaults to 0.7.</td>
</tr>
<tr>
<td><code>edge_alpha</code></td>
<td>A numeric value between 0 and 1 to specify the transparency of the edges (only for 'ggraph' mode). Defaults to 1.</td>
</tr>
<tr>
<td><code>res</code></td>
<td>Resolution parameter to be passed to leiden::leiden(). Defaults to 0.5.</td>
</tr>
<tr>
<td><code>seed</code></td>
<td>Seed for the random number generator passed to either set.seed() when the Louvain algorithm is used, or leiden::leiden() when the Leiden algorithm is used, to ensure consistency. Only applicable when display is set to &quot;louvain&quot; or &quot;leiden&quot;.</td>
</tr>
<tr>
<td><code>algorithm</code></td>
<td>String to specify the node placement algorithm to be used. Defaults to &quot;mds&quot; for the deterministic multi-dimensional scaling of nodes. See <a href="https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html">https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html</a> for a full list of options.</td>
</tr>
<tr>
<td><code>size_threshold</code></td>
<td>Numeric value representing the maximum number of edges before network_leiden() switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000. Set as 0 to coerce to a fast plotting method every time, and Inf to always use the default plotting method (with 'ggraph').</td>
</tr>
<tr>
<td><code>weight</code></td>
<td>String to specify which column to use as weights for the network. Defaults to &quot;StrongTieScore&quot;. To create a graph without weights, supply NULL to this argument.</td>
</tr>
</tbody>
</table>
Value

A different output is returned depending on the value passed to the return argument:

- 'plot': return a network plot.
- 'sankey': return a sankey plot combining communities and HR attribute. This is only valid if a community detection method is selected at display.
- 'table': return a vertex summary table with counts in communities and HR attribute.
- 'data': return a vertex data file that matches vertices with communities and HR attributes.
- 'describe': return a list of data frames which describe each of the identified communities. The first data frame is a summary table of all the communities. This is only valid if a community detection method is selected at display.
- 'network': return 'igraph' object.

Running Leiden communities

Running Leiden communities requires python dependencies installed. You can run the following:

```r
Return a network plot to console, coloured by Leiden communities
data <- p2p_data_sim
p2p_data %>%
 network_p2p(display = "leiden",
 path = NULL,
 return = "plot")
```

When installing the 'leiden' package, you may be required to install the Python libraries 'python-igraph' and 'leidenalg'. You can install them with:

```r
reticulate::py_install("python-igraph")
reticulate::py_install("leidenalg")
```

See Also

Other Network: `external_network_plot()`, `g2g_data`, `internal_network_plot()`, `network_describe()`, `network_g2g()`, `network_leiden()`, `network_louvain()`, `network_summary()`, `p2p_data_sim()`

Examples

```r
Simulate a small person-to-person dataset
data <- p2p_data_sim(size = 50)

Return a network plot to console, coloured by hrvar
data %>%
 network_p2p(display = "hrvar",
 path = NULL,
 return = "plot")

Return a network plot to console, coloured by Louvain communities
p2p_data %>%
 network_p2p(display = "louvain",
 path = NULL,
 return = "plot")
```
# Return a network plot to console
# Coloured by Leiden communities
# Using Fruchterman-Reingold force-directed layout algorithm
# Force the use of fast plotting method
p2p_data %>%
  network_p2p(display = "hrvar",
               path = NULL,
               return = "plot",
               algorithm = "lgl",
               size_threshold = 0)

# Return a data frame matching HR variable and communities to nodes
# Using Louvain communities
p2p_data %>%
  network_p2p(display = "louvain",
               return = "data",
               algorithm = "fr")

**network_summary**  
*Summarise node centrality statistics with an igraph object*

**Description**
Pass an igraph object to the function and obtain centrality statistics for each node in the object as a data frame. This function works as a wrapper of the centralization functions in `igraph`.

**Usage**
```
network_summary(graph, hrvar = NULL, return = "table")
```

**Arguments**
- **graph**: `igraph` object that can be returned from `network_g2g()` or `network_p2p()` when the `return` argument is set to "network".
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to NULL.
- **return**: String specifying what output to return. Valid inputs include:
  - "table"
  - "network"
  - "plot"

See `Value` for more information.
**Value**

By default, a data frame containing centrality statistics. Available statistics include:

- **betweenness**: number of shortest paths going through a node.
- **closeness**: number of steps required to access every other node from a given node.
- **degree**: number of connections linked to a node.
- **eigenvector**: a measure of the influence a node has on a network. Please refer to the igraph package documentation for the detailed technical definition.

When "network" is passed to "return", an 'igraph' object is returned with additional node attributes containing centrality scores.

When "plot" is passed to "return", a summary table is returned showing the average centrality scores by HR attribute. This is currently available if there is a valid HR attribute.

**See Also**

Other Network: `external_network_plot()`, `g2g_data`, `internal_network_plot()`, `network_describe()`, `network_g2g()`, `network_leiden()`, `network_louvain()`, `network_p2p()`, `p2p_data_sim()`

**Examples**

```r
Simulate a p2p network
p2p_data <- p2p_data_sim()
g <- network_p2p(data = p2p_data, return = "network")

Return summary table
network_summary(graph = g, return = "table")

Return network with node centrality statistics
network_summary(graph = g, return = "network")

Return summary plot
network_summary(graph = g, return = "plot", hrvar = "Organization")

Simulate a g2g network and return table
g2 <- g2g_data %>% network_g2g(return = "network")
network_summary(graph = g2, return = "table")
```

---

**Description**

Analyze Manager 1:1 Time distribution. Returns a stacked bar plot of different buckets of 1:1 time. Additional options available to return a table with distribution elements.
Usage

one2one_dist(
data,
hrvar = "Organization",
mimgroup = 5,
dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"),
return = "plot",
cut = c(5, 15, 30)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).
mimgroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.
dist_colours A character vector of length four to specify colour codes for the stacked bars.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g.
c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A stacked bar plot for the metric.
 • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(),
external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(),
keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(),
**one2one_fizz**

one2one_fizz() returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

**Examples**

```r
Return plot
one2one_fizz(data, hrvar = "Organization", return = "plot")

Return summary table
one2one_fizz(data, hrvar = "Organization", return = "table")
```

**Distribution of Manager 1:1 Time (Fizzy Drink plot)**

**Description**

Analyze weekly Manager 1:1 Time distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

**Usage**

```r
one2one_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"  
  - "table"
  
  See Value for more information.

**Value**

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Managerial Relations: `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Examples

```r
Return plot
one2one_fizz(sq_data, hrvar = "Organization", return = "plot")

Return a summary table
one2one_fizz(sq_data, hrvar = "Organization", return = "table")
```

---

**one2one_freq**

| Frequency of Manager 1:1 Meetings as bar or 100% stacked bar chart |

**Description**

**[Experimental]**

This function calculates the average number of weeks (cadence) between of 1:1 meetings between an employee and their manager. Returns a distribution plot for typical cadence of 1:1 meetings. Additional options available to return a bar plot, tables, or a data frame with a cadence of 1 on 1 meetings metric.

**Usage**

```r
one2one_freq(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
)```
mode = "dist",
 sort_by = "Quarterly or less\n(>10 weeks)"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hvvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
mode String specifying what method to use. This must be one of the following strings:
 • "dist"
 • "sum"
sort_by String to specify the bucket label to sort by. Defaults to NULL (no sorting).

Value

A different output is returned depending on the value passed to the return argument:

• "plot": ‘ggplot’ object. A stacked bar plot for the metric.
• "table": data frame. A summary table for the metric.

Distribution view

For this view, there are four categories of cadence:

• Weekly (once per week)
• Twice monthly or more (up to 3 weeks)
• Monthly (3 - 6 weeks)
• Every two months (6 - 10 weeks)
• Quarterly or less (> 10 weeks)

In the occasion there are zero 1:1 meetings with managers, this is included into the last category, i.e. ‘Quarterly or less’. Note that when mode is set to “sum”, these rows are simply excluded from the calculation.
One2one line

Manager 1:1 Time Trend - Line Chart

Description

Provides a week by week view of 1:1 time with managers, visualised as line charts. By default returns a line chart for 1:1 meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
one2one_line

Usage

one2one_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
- "plot"
- "table"

See Value for more information.

Details

Uses the metric Meeting_hours_with_manager_1_on_1.

Value

A different output is returned depending on the value passed to the return argument:
- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrp_rel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Managerial Relations: mgrcoatt_dist(), mgrp_rel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_rank(), one2one_sum(), one2one_trend()
Examples

Return a line plot
one2one_line(sq_data, hrvar = "LevelDesignation")

Return summary table
one2one_line(sq_data, hrvar = "LevelDesignation", return = "table")

one2one_rank Manager 1:1 Time Ranking

Description

This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by manager 1:1 time.

Usage

```r
one2one_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
mode String to specify calculation mode. Must be either:
 • "simple"
 • "combine"
plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
 • 1: Top and bottom five groups across the data population are highlighted
 • 2: Top and bottom groups per organizational attribute are highlighted
return String specifying what to return. This must be one of the following strings:
 • "plot" (default)
 • "table"
See Value for more information.
Details

Uses the metric `Meeting_hours_with_manager_1_on_1`. See `create_rank()` for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if `mode` is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_summary()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_summary()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`

Other Managerial Relations: `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_sum()`, `one2one_trend()`

Examples

```r
# Return rank table
one2one_rank(
  data = sq_data,
  return = "table"
)

# Return plot
one2one_rank(
  data = sq_data,
  return = "plot"
)
```
Description

Provides an overview analysis of Manager 1:1 Time. Returns a bar plot showing average weekly minutes of Manager 1:1 Time by default. Additional options available to return a summary table.

Usage

one2one_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

one2one_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot" : `ggplot` object. A bar plot for the metric.
• "table" : data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(),
Examples

Return a ggplot bar chart
one2one_sum(sq_data, hrvar = "LevelDesignation")

Return a summary table
one2one_sum(sq_data, hrvar = "LevelDesignation", return = "table")

one2one_trend Manager 1:1 Time Trend

Description

Provides a week by week view of scheduled manager 1:1 Time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

one2one_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Meeting_hours_with_manager_1_on_1.
Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Managerial Relations: mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum()

p2p_data_sim

Simulate a person-to-person query using a Watts-Strogatz model

Description

Generate an person-to-person query / edgelist based on the graph according to the Watts-Strogatz small-world network model. Organizational data fields are also simulated for Organization, LevelDesignation, and City.

Usage

```r
p2p_data_sim(dim = 1, size = 300, nei = 5, p = 0.05)
```

Arguments

- `dim` Integer constant, the dimension of the starting lattice.
- `size` Integer constant, the size of the lattice along each dimension.
- `nei` Integer constant, the neighborhood within which the vertices of the lattice will be connected.
- `p` Real constant between zero and one, the rewiring probability.
Details

This is a wrapper around igraph::watts.strogatz.game(). See igraph documentation for details on methodology. Loop edges and multiple edges are disabled. Size of the network can be changing the arguments size and nei.

Value

data frame with the same column structure as a person-to-person flexible query. This has an edgelist structure and can be used directly as an input to network_p2p().

See Also

Other Data: dv_data, em_data, g2g_data, mt_data, sq_data

Other Network: external_network_plot(), g2g_data, internal_network_plot(), network_describe(), network_g2g(), network_leiden(), network_louvain(), network_p2p(), network_summary()

Examples

Simulate a p2p dataset with 800 edges
p2p_data_sim(size = 200, nei = 4)

pad2

Create the two-digit zero-padded format

Description

Create the two-digit zero-padded format

Usage

pad2(x)

Arguments

x numeric value or vector with maximum two characters.

Value

Numeric value containing two-digit zero-padded values.
pairwise_count

Perform a pairwise count of words by id

Description
This is a 'data.table' implementation that mimics the output of `pairwise_count()` from 'widyr' to reduce package dependency. This is used internally within `tm_cooc()`.

Usage
`pairwise_count(data, id = "line", word = "word")`

Arguments
- `data`: Data frame output from `tm_clean()`.
- `id`: String to represent the id variable. Defaults to "line".
- `word`: String to represent the word variable. Defaults to "word".

Value
data frame with the following columns representing a pairwise count:

- "item1"
- "item2"
- "n"

See Also
Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `plot_WOE()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

Other Text-mining: `meeting_tm_report()`, `subject_validate_report()`, `subject_validate()`, `tm_clean()`, `tm_cooc()`, `tm_freq()`, `tm_wordcloud()`

Examples
```r
td <- data.frame(line = c(1, 1, 2, 2),
                 word = c("work", "meeting", "catch", "up"))
pairwise_count(td, id = "line", word = "word")
```
Plot the distribution of percentage change between periods of a Viva Insights metric by the number of employees.

Description

This function also presents the p-value for the null hypothesis that the variable has not changed, using a Wilcoxon signed-rank test.

Usage

```r
period_change(
  data,
  compvar,
  before_start = min(as.Date(data$Date, "%m/%d/%Y")),
  before_end,
  after_start = as.Date(before_end) + 1,
  after_end = max(as.Date(data$Date, "%m/%d/%Y")),
  return = "count"
)
```

Arguments

data Person Query as a dataframe including date column named "Date". This function assumes the data format is MM/DD/YYYY as is standard in a Viva Insights query output.

compvar comparison variable to compare person change before and after. For example, "Collaboration_hours"

before_start Start date of "before" time period in YYYY-MM-DD

before_end End date of "before" time period in YYYY-MM-DD

after_start Start date of "after" time period in YYYY-MM-DD

after_end End date of "after" time period in YYYY-MM-DD

return Character vector specifying whether to return plot as Count or Percentage of Employees. Valid inputs include:

- "count" (default)
- "percentage"
- "table"

Value

ggplot object showing a bar plot (histogram) of change for two time intervals.

Author(s)

Mark Powers mark.powers@microsoft.com
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Time-series: IV_by_period(), create_line_asis(), create_line(), create_period_scatter(), create_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Other Flexible Input: create_ITSA()

Examples

Run plot
period_change(sq_data, compvar = "Workweek_span", before_end = "2019-11-16")

Run plot with more specific arguments
period_change(sq_data,
 compvar = "Workweek_span",
 before_start = "2019-11-03",
 before_end = "2019-11-16",
 after_start = "2019-12-03",
 after_end = "2019-12-16",
 return = "percentage")

 personas_hclust Create hierarchical clusters of selected metrics using a Person query

Description

[Questioning]

Apply hierarchical clustering to selected metrics. Person averages are computed prior to clustering. The hierarchical clustering uses cosine distance and the ward.D method of agglomeration.
Usage

 personas_hclust(data, metrics, k = 4, return = "plot")

Arguments

data A data frame containing PersonId and selected metrics for clustering.
metrics Character vector containing names of metrics to use for clustering. See examples section.
k Numeric vector to specify the k number of clusters to cut by.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "data"
 • "table"
 • "hclust"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A heatmap plot comparing the key metric averages of the clusters as per keymetrics_scan().
 • "data": data frame. Raw data with clusters appended
 • "table": data frame. Summary table for identified clusters
 • "hclust": 'hclust' object. hierarchical model generated by the function.

Author(s)

Ainize Cidoncha ainize.cidoncha@microsoft.com

See Also

Other Clustering: workpatterns_classify(), workpatterns_hclust()

Examples

Return plot
personas_hclust(sq_data,
metrics = c("Collaboration_hours", "Workweek_span"),
k = 4)

Return summary table
personas_hclust(sq_data,
metrics = c("Collaboration_hours", "Workweek_span"),
k = 4,
return = "table")
Return data with clusters appended
 personas_hclust(sq_data,
 metrics = c("Collaboration_hours", "Workweek_span"),
 k = 4,
 return = "data"
)

plot_flex_index
Plot a Sample of Working Patterns using Flexibility Index output

Description

This is a helper function for plotting visualizations for the Flexibility Index using the data output from `flex_index()`. This is used within `flex_index()` itself as an internal function.

Usage

```r
plot_flex_index(
  data,
  sig_label = "Signals_sent_",
  method = "sample",
  start_hour = 9,
  end_hour = 17,
  mode = "binary"
)
```

Arguments

- `data`
 Data frame. Direct data output from `flex_index()`.
- `sig_label`
 Character string for identifying signal labels.
- `method`
 Character string for determining which plot to return. Options include "sample", "common", and "time". "sample" plots a sample of ten working patterns; "common" plots the ten most common working patterns; "time" plots the Flexibility Index for the group over time.
- `start_hour`
 See `flex_index()`.
- `end_hour`
 See `flex_index()`.
- `mode`
 See `flex_index()`.

Value

`ggplot` object. See `method`.
See Also

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`

Examples

```r
# Pre-calculate Flexibility Index
fi_output <- flex_index(em_data, return = "data")

# Examples of how to test the plotting options individually
# Sample of 10 work patterns
plot_flex_index(fi_output, method = "sample")

# 10 most common work patterns
plot_flex_index(fi_output, method = "common")

# Plot Flexibility Index over time
plot_flex_index(fi_output, method = "time")
```

plot_hourly_pat
Internal function for plotting the hourly activity patterns.

Description

This is used within `plot_flex_index()` and `workpatterns_rank()`.

Usage

```r
plot_hourly_pat(
  data,
  start_hour,
  end_hour,
  legend,
  legend_label,
  legend_text = "Observed activity",
  rows,
  title,
  subtitle,
  caption,
  ylab = paste("Top", rows, " activity patterns")
)
```
Arguments

- **data**
 Data frame containing three columns:
 - patternRank
 - Hours
 - Freq
- **start_hour**
 Numeric value to specify expected start hour.
- **end_hour**
 Numeric value to specify expected end hour.
- **legend**
 Data frame containing the columns:
 - patternRank
 - Any column to be used in the grey label box, supplied to `legend_label`
- **legend_label**
 String specifying column to display in the grey label box
- **legend_text**
 String to be used in the bottom legend label.
- **rows**
 Number of rows to show in plot.
- **title**
 String to specify plot title.
- **subtitle**
 String to specify plot subtitle.
- **caption**
 String to specify plot caption.
- **ylab**
 String to specify plot y-axis label.

plot_WOE

Plot WOE graphs with an IV object

Description

Internal function within `create_IV()` that plots WOE graphs using an IV object. Can also be used for plotting individual WOE graphs.

Usage

```r
plot_WOE(IV, predictor)
```

Arguments

- **IV**
 IV object created with 'Information'.
- **predictor**
 String with the name of the predictor variable.

Value

'ggplot' object. Bar plot with 'WOE' as the y-axis and bins of the predictor variable as the horizontal axis.
p_test

Calculate the p-value of the null hypothesis that two outcomes are from
the same dataset

Description

Specify an outcome variable and return p-test outputs. All numeric variables in the dataset are used
as predictor variables.

Usage

p_test(data, outcome, behavior, paired = FALSE)

Arguments

data A Person Query dataset in the form of a data frame.
outcome A string specifying the name of a binary variable, i.e. can only contain the values
1 or 0. Used to group the two distributions.
behavior A character vector specifying the column to be used as the behavior to test.
paired Specify whether the dataset is paired or not. Defaults to TRUE.

Details

This function is a wrapper around wilcox.test() from 'stats'.

Value

Returns a numeric value representing the p-value outcome of the test.

Author(s)

Mark Powers mark.powers@microsoft.com

See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(),
exttract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(),
read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(),
us_to_space(), wrap()
Examples

```r
# Simulate a binary variable X
# Returns a single p-value
library(dplyr)
sq_data %>%
  mutate(X = ifelse(Email_hours > 6, 1, 0)) %>%
p_test(outcome = "X", behavior = "External_network_size")
```

Description

Read in a preamble to be used within each individual reporting function. Reads from the Markdown file installed with the package.

Usage

```r
read_preamble(path)
```

Arguments

- `path` Text string containing the path for the appropriate Markdown file.

Value

String containing the text read in from the specified Markdown file.

See Also

Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `pairwise_count()`, `plot_WOE()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

remove_outliers

Description

[Experimental]

This function takes in a selected metric and uses z-score (number of standard deviations) to identify and remove outlier weeks for individuals across time. There are applications in this for removing weeks with abnormally low collaboration activity, e.g. holidays. Retains metrics with z > -2.

Function is based on identify_outlier(), but implements a more elaborate approach as the outliers are identified and removed with respect to each individual, as opposed to the group. Note that remove_outliers() has a longer runtime compared to identify_outlier().

Usage

remove_outliers(data, metric = "Collaboration_hours")

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"

Details

For mature functions to remove common outliers, please see the following:

- identify_holidayweeks()
- identify_nkw()
- identify_inactiveweeks

Value

Returns a new data frame, "cleaned_data" with all metrics, having removed the person-weeks that are below 2 standard deviations of each individual’s collaboration activity.

Author(s)

Mark Powers mark.powers@microsoft.com

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()
rgb2hex
Convert rgb to HEX code

Description
Convert rgb to HEX code

Usage
```r
color <- rgb2hex(r, g, b)
```

Arguments
- `r, g, b` Values that correspond to the three RGB parameters

Value
Returns a string containing a HEX code.

See Also
Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `pairwise_count()`, `plot_WOE()`, `read_preamble()`, `totals_bind()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

sq_data
Sample Standard Person Query dataset

Description
A dataset generated from a Standard Person Query from Workplace Analytics.

Usage
```r
sq_data
```

Format
A data frame with 13442 rows and 66 variables:

- **PersonId**
- **Date**
- **Workweek_span** Time between the person’s first sent email or meeting attended and the last email or meeting for each day of the work week.
Meetings_with_skip_level
Meeting_hours_with_skip_level
Generated_workload_email_hours
Generated_workload_email_recipients
Generated_workload_instant_messages_hours
Generated_workload_instant_messages_recipients
Generated_workload_call_hours
Generated_workload_call_participants
Generated_workload_calls_organized
External_network_size
Internal_network_size
Networking_outside_company
Networking_outside_organization
After_hours_meeting_hours
Open_1_hour_block
Open_2_hour_blocks
Total_focus_hours
Low_quality_meeting_hours
Total_emails_sent_during_meeting
Meetings
Meeting_hours
Conflicting_meeting_hours
Multitasking_meeting_hours
Redundant_meeting_hours__lower_level_
Redundant_meeting_hours__organizational_
Time_in_self_organized_meetings
Meeting_hours_during_working_hours
Generated_workload_meeting_attendees
Generated_workload_meeting_hours
Generated_workload_meetings_organized
Manager_coaching_hours_1_on_1
Meetings_with_manager
Meeting_hours_with_manager
Meetings_with_manager_1_on_1
Meeting_hours_with_manager_1_on_1
After_hours_email_hours
Emails_sent
Email_hours Number of hours the person spent sending and receiving emails.

Working_hours_email_hours

After_hours_instant_messages

Instant_messages_sent

Instant_Message_hours

Working_hours_instant_messages

After_hours_collaboration_hours

Collaboration_hours

Collaboration_hours_external

Working_hours_collaboration_hours

After_hours_in_calls

Total_calls

Call_hours

Working_hours_in_calls

Domain

FunctionType

LevelDesignation

Layer

Region

Organization

zId

attainment

TimeZone

HourlyRate

IsInternal

IsActive ...

Value

data frame.

Source

See Also

Other Data: *dv_data, em_data, g2g_data, mt_data, p2p_data_sim()*
standardise_pq

Standardise variable names to a Standard Person Query

Description

This function standardises the variable names to a Standard Person Query, where the standard use case is to pass a Ways of Working Assessment Query to the function.

Usage

```r
standardise_pq(data)
standardize_pq(data)
```

Arguments

data A Ways of Working Assessment query to pass through as a data frame.

Details

The following standardisation steps are taken:

- Collaboration_hrs -> Collaboration_hours
- Instant_message_hours -> Instant_Message_hours

Value

data frame containing the formatted query passed to the function.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()` , `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_query()`, `identify_shifts_wp()`, `identify_shifts()` , `identify_tenure()`, `remove_outliers()`, `subject_validate_report()`, `subject_validate()` , `track_HR_change()`, `validation_report()`

Other Import and Export: `copy_df()`, `create_dt()`, `export()`, `import_to_fst()`, `import_wpa()`
subject_classify

Create a new logical variable that classifies meetings by patterns in subject lines

Description

Take a meeting query with subject lines and create a new TRUE/FALSE column which classifies meetings by a provided set of patterns in the subject lines.

Usage

subject_classify(
 data,
 var_name = "class",
 keywords = NULL,
 pattern = NULL,
 ignore_case = FALSE,
 return = "data"
)

Arguments

data A Meeting Query dataset in the form of a data frame.
var_name String containing the name of the new column to be created.
keywords Character vector containing the keywords to match.
pattern String to use for regular expression matching instead of keywords. When both keywords and pattern are supplied, pattern takes priority and is used instead.
ignore_case Logical value to determine whether to ignore case when performing pattern matching.
return String specifying what output to return.

Examples

class_df <-
 mt_data %>%
 subject_classify(
 var_name = "IsSales",
 keywords = c("sales", "marketing")
)

class_df %>% dplyr::count(IsSales)

Return a table directly
mt_data %>% subject_classify(pattern = "annual", return = "table")
subject_scan

Count top words in subject lines grouped by a custom attribute

Description

[Experimental]

This function generates a matrix of the top occurring words in meetings, grouped by a specified attribute such as organisational attribute, day of the week, or hours of the day.

Usage

subject_scan(
 data,
 hrvar,
 mode = NULL,
 top_n = 10,
 token = "words",
 return = "plot",
 weight = NULL,
 stopwords = NULL,
 ...
)

tm_scan(
 data,
 hrvar,
 mode = NULL,
 top_n = 10,
 token = "words",
 return = "plot",
 weight = NULL,
 stopwords = NULL,
 ...
)

Arguments

data A Meeting Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Note that the prefix 'Organizer_' or equivalent will be required.

mode String specifying what variable to use for grouping subject words. Valid values include:
 • "hours"
 • "days"
subject_scan

- `NULL` (defaults to `hrvar`) When the value passed to `mode` is not `NULL`, the value passed to `hrvar` will be discarded and instead be over-written by setting specified in `mode`.

- `top_n` Numeric value specifying the top number of words to show.

- `token` A character vector accepting either "words" or "ngrams", determining type of tokenisation to return.

- `return` String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 - "data"

See Value for more information.

- `weight` String specifying the column name of a numeric variable for weighting data, such as "Invitees". The column must contain positive integers. Defaults to `NULL`, where no weighting is applied.

- `stopwords` A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

- `...` Additional parameters to pass to `tm_clean()`.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A heatmapped grid.
- "table": data frame. A summary table for the metric.
- "data": data frame.

Examples

```r
# return a heatmap table for words
mt_data %>% subject_scan(hrvar = "Organizer_Organization")

# return a heatmap table for ngrams
mt_data %>%
  subject_scan(
    hrvar = "Organizer_Organization",
    token = "ngrams",
    n = 2)

# return raw table format
mt_data %>% subject_scan(hrvar = "Organizer_Organization", return = "table")

# grouped by hours
mt_data %>% subject_scan(mode = "hours")

# grouped by days
mt_data %>% subject_scan(mode = "days")
```
subject_validate

Scan meeting subject and highlight items for review

Description

This function scans a meeting query and highlights meetings with subjects that include common exclusion terms. It is intended to be used by an analyst to validate raw data before conducting additional analysis. Returns a summary in the console by default. Additional option to return the underlying data with a flag of items for review.

Usage

subject_validate(data, return = "text")

Arguments

data: A meeting query in the form of a data frame.
return: A string specifying what to return. Returns a message in the console by default, where 'text' is passed in return. When 'table' is passed, a summary table with common terms found is printed. When 'data' is passed, a the original data with an additional flag column is returned as a data frame.

Value

Returns a message in the console by default, where 'text' is passed in return. When 'table' is passed, a summary table with common terms found is printed. When 'data' is passed, a the original data with an additional flag column is returned as a data frame.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), track_HR_change(), validation_report()

Other Text-mining: meeting_tm_report(), pairwise_count(), subject_validate_report(), tm_clean(), tm_cooc(), tm_freq(), tm_wordcloud()
subject_validate_report

Generate Meeting Text Mining report in HTML for Common Exclusion Terms

Description

This function creates a text mining report in HTML based on Meeting Subject Lines for data validation. It scans a meeting query and highlights meetings with subjects that include common exclusion terms. It is intended to be used by an analyst to validate raw data before conducting additional analysis. Returns a HTML report by default.

Usage

subject_validate_report(
 data,
 path = "Subject Lines Validation Report",
 timestamp = TRUE,
 keep = 100,
 seed = 100
)

Arguments

data A Meeting Query dataset in the form of a data frame.
path Pass the file path and the desired file name, excluding the file extension. For example, "meeting text mining report".
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.
keep A numeric vector specifying maximum number of words to keep.
seed A numeric vector to set seed for random generation.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate(), track_HR_change(), validation_report()
theme_wpa

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `subject_validate()`, `tm_clean()`, `tm_cooc()`, `tm_freq()`, `tm_wordcloud()`

Other Reports: `IV_report()`, `capacity_report()`, `coaching_report()`, `collaboration_report()`, `connectivity_report()`, `generate_report()`, `meeting_tm_report()`, `read_preamble()`, `validation_report()`, `workpatterns_report()`

theme_wpa

Main theme for 'wpa' visualisations

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A theme function applied to 'ggplot' visualisations in 'wpa'. Install and load 'extrafont' to use custom fonts for plotting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>theme_wpa(font_size = 12, font_family = "Segoe UI")</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>font_size</td>
</tr>
<tr>
<td>font_family</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns a ggplot object with the applied theme.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Themes: <code>theme_wpa_basic()</code></td>
</tr>
</tbody>
</table>
theme_wpa_basic
Basic theme for 'wpa' visualisations

Description

A theme function applied to 'ggplot' visualisations in 'wpa'. Based on theme_wpa() but has no font requirements.

Usage

```r
theme_wpa_basic(font_size = 12)
```

Arguments

- `font_size`
 Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12.

Value

Returns a ggplot object with the applied theme.

See Also

Other Themes: `theme_wpa()`

tm_clean
Clean subject line text prior to analysis

Description

This function processes the Subject column in a Meeting Query by applying tokenisation using `tidytext::unnest_tokens()`, and removing any stopwords supplied in a data frame (using the argument `stopwords`). This is a sub-function that feeds into `tm_freq()`, `tm_cooc()`, and `tm_wordcloud()`. The default is to return a data frame with tokenised counts of words or ngrams.

Usage

```r
tm_clean(data, token = "words", stopwords = NULL, ...)
```

Arguments

- `data`
 A Meeting Query dataset in the form of a data frame.

- `token`
 A character vector accepting either "words" or "ngrams", determining type of tokenisation to return.

- `stopwords`
 A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

- `...`
 Additional parameters to pass to `tidytext::unnest_tokens()`.
tm_cooc

Value

data frame with two columns:

- line
- word

See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `subject_validate_report()`, `subject_validate()`, `tm_cooc()`, `tm_freq()`, `tm_wordcloud()`

Examples

```r
# words
tm_clean(mt_data)

# ngrams
tm_clean(mt_data, token = "ngrams")
```

tm_cooc

Analyse word co-occurrence in subject lines and return a network plot

Description

This function generates a word co-occurrence network plot, with options to return a table. This function is used within `meeting_tm_report()`.

Usage

```r
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
```

Arguments

- `data` A Meeting Query dataset in the form of a data frame.
- `stopwords` A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- `seed` A numeric vector to set seed for random generation.
- `return` String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 See Value for more information.
- `lmult` A multiplier to adjust the line width in the output plot. Defaults to 0.05.
Details

This function uses tm_clean() as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the stopwords argument.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' and 'ggraph' object. A network plot.
- "table": data frame. A summary table.

Author(s)

Carlos Morales carlos.morales@microsoft.com

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), subject_validate_report(), subject_validate(), tm_clean(), tm_freq(), tm_wordcloud()

Examples

```r
# Demo using a subset of `mt_data`
mt_data %>%
  dplyr::slice(1:20) %>%
  tm_cooc(lmult = 0.01)
```

tm_freq

Perform a Word or Ngram Frequency Analysis and return a Circular Bar Plot

Description

Generate a circular bar plot with frequency of words / ngrams. This function is used within meeting_tm_report().

Usage

```r
tm_freq(data, token = "words", stopwords = NULL, keep = 100, return = "plot")
```
Arguments

data A Meeting Query dataset in the form of a data frame.
token A character vector accepting either "words" or "ngram", determining type of tokenisation to return.
stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
keep A numeric vector specifying maximum number of words to keep.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
See Value for more information.

Details

This function uses `tm_clean()` as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the `stopwords` argument.

Value

A different output is returned depending on the value passed to the `return` argument:
 • "plot": 'ggplot' object. A circular bar plot.
 • "table": data frame. A summary table.

See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `subject_validate_report()`, `subject_validate()`, `tm_clean()`, `tm_cooc()`, `tm_wordcloud()`

Examples

```r
tm_freq(mt_data, token = "words")
tm_freq(mt_data, token = "ngrams")
```

Generate a wordcloud with meeting subject lines

Description

Generate a wordcloud with the meeting query. This is a sub-function that feeds into `meeting_tm_report()`.
Usage

```r
tm_wordcloud(
  data, 
  stopwords = NULL, 
  seed = 100, 
  keep = 100, 
  return = "plot", 
  ...
)
```

Arguments

data A Meeting Query dataset in the form of a data frame.

stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

seed A numeric vector to set seed for random generation.

keep A numeric vector specifying maximum number of words to keep.

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

... Additional parameters to be passed to ggwordcloud::geom_text_wordcloud()

Details

Uses the 'ggwordcloud' package for the underlying implementation, thus returning a 'ggplot' object. Additional layers can be added onto the plot using a ggplot + syntax. The recommendation is not to return over 100 words in a word cloud.

This function uses tm_clean() as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the stopwords argument.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object containing a word cloud.
- "table": data frame returning the data used to generate the word cloud.

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), subject_validate_report(), subject_validate(), tm_clean(), tm_cooc(), tm_freq()
Example

```
    tm_wordcloud(mt_data, keep = 30)
    # Removing stopwords
    tm_wordcloud(mt_data, keep = 30, stopwords = c("weekly", "update"))
```

totals_bind

Row-bind an identical data frame for computing grouped totals

Description

Row-bind an identical data frame and impute a specific column with the `target_value`, which defaults as "Total". The purpose of this is to enable to creation of summary tables with a calculated "Total" row. See example below on usage.

Usage

```
totals_bind(data, target_col, target_value = "Total")
```

Arguments

- `data` - data frame
- `target_col` - Character value of the column in which to impute "Total". This is usually the intended grouping column.
- `target_value` - Character value to impute in the new data frame to row-bind. Defaults to "Total".

Value

data frame with twice the number of rows of the input data frame, where half of those rows will have the `target_col` column imputed with the value from `target_value`.

See Also

Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `pairwise_count()`, `plot_WOE()`, `read_preamble()`, `rgb2hex()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

Examples

```
    sq_data %>%
    totals_bind(target_col = "LevelDesignation", target_value = "Total") %>%
    collab_sum(hrvar = "LevelDesignation", return = "table")
```
totals_col

Fabricate a 'Total' HR variable

Description

Create a 'Total' column of character type comprising exactly of one unique value. This is a convenience function for returning a no-HR attribute view when NULL is supplied to the `hrvar` argument in functions.

Usage

```r
totals_col(data, total_value = "Total")
```

Arguments

- `data` : data frame
- `total_value` : Character value defining the name and the value of the "Total" column. Defaults to "Total". An error is returned if an existing variable has the same name as the supplied value.

Value

data frame containing an additional 'Total' column on top of the input data frame.

See Also

Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()` , `pairwise_count()`, `plot_WOE()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_reorder()`, `tstamp()`, `us_to_space()`, `wrap()`

Examples

```r
# Create a visual without HR attribute breaks
sq_data %>%
  totals_col() %>%
  collab_fizz(hrvar = "Total")
```
Reorder a value to the top of the summary table

Description

For a given data frame, reorder a row to the first row of that data frame through matching a value of a variable. The intended usage of this function is to be used for reordering the "Total" row, and not with "flat" data. This can be used in conjunction with totals_bind(), which is used to create a "Total" row in the data.

Usage

totals_reorder(data, target_col, target_value = "Total")

Arguments

data Summary table in the form of a data frame.
target_col Character value of the column in which to reorder
target_value Character value of the value in target_col to match

Value

data frame with the 'Total' row reordered to the bottom.

See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

sq_data %>%
 totals_bind(target_col = "LevelDesignation",
 target_value = "Total") %>%
 collab_sum(hrvar = "LevelDesignation",
 return = "table") %>%
 totals_reorder(target_col = "group", target_value = "Total")
track_HR_change

Sankey chart of organizational movement between HR attributes and missing values (outside company move) (Data Overview)

Description

Creates a list of everyone at a specified start date and a specified end date then aggregates up people who have moved between organizations between this to points of time and visualizes the move through a sankey chart.

Through this chart you can see:

• The HR attribute/orgs that have the highest move out
• The HR attribute/orgs that have the highest move in
• The number of people that do not have that HR attribute or if they are no longer in the system

Usage

```r
track_HR_change(
  data,
  start_date = min(data$Date),
  end_date = max(data$Date),
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  NA_replacement = "Out of Company"
)
```

Arguments

- **data** A Person Query dataset in the form of a data frame.
- **start_date** A start date to compare changes. See end_date.
- **end_date** An end date to compare changes. See start_date.
- **hrvar** HR Variable by which to compare changes between, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return** Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **NA_replacement** Character replacement for NA defaults to "out of company"

Value

Returns a 'NetworkD3' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.
tstamp

Author(s)
Tannaz Sattari Tabrizi Tannaz.Sattari@microsoft.com

See Also
Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), validation_report()

Examples

dv_data %>% track_HR_change()

tstamp

Generate a time stamp

Description

This function generates a time stamp of the format 'ymmd_hhmmss'. This is a support function and is not intended for direct use.

Usage

tstamp()

Value

String containing the timestamp in the format 'ymmd_hhmmss'.

See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), us_to_space(), wrap()
us_to_space

Replace underscore with space

Description

Convenience function to convert underscores to space

Usage

us_to_space(x)

Arguments

x
String to replace all occurrences of _ with a single space

Value

Character vector containing the modified string.

See Also

Other Support: camel_clean(), check_inputs(), combine_signals(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), p_test(), pairwise_count(), plot_WOE(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), totals_reorder(), tstamp(), wrap()

Examples

us_to_space("Meeting_hours_with_manager_1_on_1")

validation_report

Generate a Data Validation report in HTML

Description

The function generates an interactive HTML report using Standard Person Query data as an input. The report contains checks on Workplace Analytics query outputs to provide diagnostic information for the Analyst prior to analysis.

An additional Standard Meeting Query can be provided to perform meeting subject line related checks. This is optional and the validation report can be run without it.
validation_report

Usage

validation_report(
 data,
 meeting_data = NULL,
 hrvar = "Organization",
 path = "validation report",
 hrvar_threshold = 150,
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
meeting_data An optional Meeting Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "Organization"
path Pass the file path and the desired file name, excluding the file extension.
hrvar_threshold Numeric value determining the maximum number of unique values to be allowed to qualify as a HR variable. This is passed directly to the threshold argument within hrvar_count_all()
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Details

For your input to data or meeting_data, please use the function wpa::import_wpa() to import your csv query files into R. This function will standardize format and prepare the data as input for this report.

If you are passing a Ways of Working Assessment query instead of a Standard Person query to the data argument, please also use standardise_pq() to make the variable names consistent with a Standard Person Query.

Since v1.6.2, the variable Call_hours is no longer a pre-requisite to run this report. A note is returned in-line instead of an error if the variable is not available.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Checking functions within validation_report()

- check_query()
- flag_ch_ratio()
- hrvar_count_all()
- identify_privacythreshold()
wellbeing_report

- identify_nkw()
- identify_holidayweeks()
- subject_validate()
- identify_tenure()
- flag_outlooktime()
- identify_shifts()
- track_HR_change()

You can browse each individual function for details on calculations.

Creating a report

Below is an example on how to run the report.

```
validation_report(dv_data, 
    meeting_data = mt_data, 
    hrvar = "Organization")
```

See Also

Other Reports: IV_report(), capacity_report(), coaching_report(), collaboration_report(),
connectivity_report(), generate_report(), meeting_tm_report(), read_preamble(), subject_validate_report(),
workpatterns_report()

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(),
flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(),
identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(),
identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(),
identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(),
subject_validate(), track_HR_change()
Usage

```r
wellbeing_report(
    wbq,
    hcq,
    hrvar = "Organization",
    mingroup = 5,
    start_hour = "0900",
    end_hour = "1700",
    path = "wellbeing_report"
)
```

Arguments

- **wbq**: Data frame. A custom Wellbeing Query dataset based on the Person Query. If certain metrics are missing from the Wellbeing / Person Query, the relevant visual will show up with an indicative message.

- **hcq**: Data frame. An Hourly Collaboration Query dataset.

- **hrvar**: String specifying HR attribute to cut by archetypes. Defaults to Organization.

- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- **start_hour**: A character vector specifying starting hours, e.g. "0900". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "0900" should be supplied here.

- **end_hour**: A character vector specifying starting hours, e.g. "1700". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "1700" should be supplied here.

- **path**: Pass the file path and the desired file name, excluding the file extension. Defaults to "wellbeing_report".

Required metrics

A full list of the required metrics are as follows:

- Urgent_meeting_hours
- IMs_sent_other_level
- IMs_sent_same_level
- Emails_sent_other_level
- Emails_sent_same_level
- Emails_sent
- IMs_sent
- Meeting_hours_intimate_group
- Meeting_hours_1on1
- Urgent_email_hours
- Unscheduled_call_hours
• Meeting_hours
• Instant_Message_hours
• Email_hours
• Total_focus_hours
• Weekend_IMs_sent
• Weekend_emails_sent
• After_hours_collaboration_hours
• After_hours_meeting_hours
• After_hours_instant_messages
• After_hours_in_unscheduled_calls
• After_hours_email_hours
• Collaboration_hours
• Workweek_span

workloads_dist

Distribution of Work Week Span as a 100% stacked bar

Description
Analyze Work Week Span distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage
workloads_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(15, 30, 45)
)

Arguments
data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
workloads_fizz

- "table"
 See Value for more information.

cut
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value
A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Workweek Span: workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend()

Examples

 # Return plot
 workloads_dist(sq_data, hrvar = "Organization", return = "plot")

 # Return a summary table
 workloads_dist(sq_data, hrvar = "Organization", return = "table")

Distribution of Work Week Span (Fizzy Drink plot)

Description
Analyze Work Week Span distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
workloads_fizz

Usage

workloads_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_barasis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_lineasis(), create_line(), create_periodscatter(), create_rank(), create_sankey(), create_scatter(), create_stack(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Workweek Span: workloads_dist(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend()
Examples

```r
# Return plot
workloads_fizz(sq_data, hrvar = "Organization", return = "plot")

# Return summary table
workloads_fizz(sq_data, hrvar = "Organization", return = "table")
```

Description

Provides a week by week view of `Work Week Span`, visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
workloads_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- `data`: A Standard Person Query dataset in the form of a data frame.
- `hrvar`: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup`: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return`: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot" : `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Workweek Span: workloads_dist(), workloads_fizz(), workloads_rank(), workloads_summary(), workloads_trend()

Examples

Return a line plot
workloads_line(sq_data, hrvar = "LevelDesignation")

Return summary table
workloads_line(sq_data, hrvar = "LevelDesignation", return = "table")

workloads_rank

Rank all groups across HR attributes for Work Week Span

Description

This function scans a standard query output for groups with high levels of Work Week Span. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by work week span.

Usage

workloads_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "table"
)
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode**: String to specify calculation mode. Must be either:
 - "simple"
 - "combine"
- **plot_mode**: Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`.
 - 1: Top and bottom five groups across the data population are highlighted
 - 2: Top and bottom groups per organizational attribute are highlighted
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot" (default)
 - "table"

 See `Value` for more information.

Details

Uses the metric `Workweek_span`. See `create_rank()` for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if `mode` is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`,
workloads_summary

Examples

```r
# Return rank table
workloads_rank(
  data = sq_data,
  return = "table"
)

# Return plot
workloads_rank(
  data = sq_data,
  return = "plot"
)
```

Description

Provides an overview analysis of 'Work Week Span'. Returns a bar plot showing average weekly utilization hours by default. Additional options available to return a summary table.

Usage

```r
workloads_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

workloads_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.
workloads_trend

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_trend()`, `workpatterns_area()`, `workpatterns_rank()`, `workweeks_dist()`

Other Workweek Span: `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_trend()`

Examples

```r
# Return a ggplot bar chart
workloads_summary(sq_data, hrvar = "LevelDesignation")

# Return a summary table
workloads_summary(sq_data, hrvar = "LevelDesignation", return = "table")
```

Description

Provides a week by week view of Work Week Span. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```r
workloads_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
workloads_trend

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Workweek_span.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrprel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workpatterns_area(), workpatterns_rank()

Other Workweek Span: workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary()

Examples

Run plot
workloads_trend(sq_data)

Run table
workloads_trend(sq_data, hrvar = "LevelDesignation", return = "table")
Create an area plot of emails and IMs by hour of the day

Description
Uses the Hourly Collaboration query to produce an area plot of Emails sent and IMs sent attended by hour of the day.

Usage

```r
workpatterns_area(
  data,
  hrvar = "Organization",
  mingroup = 5,
  signals = c("email", "IM"),
  return = "plot",
  values = "percent",
  start_hour = "0900",
  end_hour = "1700"
)
```

Arguments

- **data**: A data frame containing data from the Hourly Collaboration query.
- **hrvar**: HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation".
- **mingroup**: Numeric value setting the privacy threshold / minimum group size, defaults to 5.
- **signals**: Character vector to specify which collaboration metrics to use:
 - a combination of signals, such as c("email", "IM") (default)
 - "email" for emails only
 - "IM" for Teams messages only
 - "unscheduled_calls" for Unscheduled Calls only
 - "meetings" for Meetings only
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 See Value for more information.
- **values**: Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
 - "percent": percentage of signals divided by total signals (default)
 - "abs": absolute count of signals
- **start_hour**: A character vector specifying starting hours, e.g. "0900"
- **end_hour**: A character vector specifying starting hours, e.g. "1700"
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. An overlapping area plot (default).
- "table": data frame. A summary table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `createBubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()`, `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_rank()`

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`

Examples

```r
# Create a sample small dataset
orgs <- c("Customer Service", "Financial Planning", "Biz Dev")
em_data <- em_data[em_data$Organization %in% orgs, ]

# Return visualization of percentage distribution
workpatterns_area(em_data, return = "plot", values = "percent")

# Return visualization of absolute values
workpatterns_area(em_data, return = "plot", values = "abs")

# Return summary table
workpatterns_area(em_data, return = "table")
```
workpatterns_classify Classify working pattern personas using a rule based algorithm

Description

[Experimental]
Apply a rule based algorithm to emails or instant messages sent by hour of day. Uses a binary week-based ('bw') method by default, with options to use the the person-average volume-based ('pav') method.

Usage

workpatterns_classify(
 data,
 hrvar = "Organization",
 values = "percent",
 signals = c("email", "IM"),
 start_hour = "0900",
 end_hour = "1700",
 exp_hours = NULL,
 mingroup = 5,
 active_threshold = 0,
 method = "bw",
 return = "plot"
)

Arguments

data A data frame containing data from the Hourly Collaboration query.
hrvar A string specifying the HR attribute to cut the data by. Defaults to NULL. This only affects the function when "table" is returned, and is only applicable for method = "bw".
values Only valid if using pav method. Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are "percent" (default) and "abs".
signals Character vector to specify which collaboration metrics to use:
 • "email" (default) for emails only
 • "IM" for Teams messages only
 • "unscheduled_calls" for Unscheduled Calls only
 • "meetings" for Meetings only
 • or a combination of signals, such as c("email", "IM")
start_hour A character vector specifying starting hours, e.g. "0900". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "0900" should be supplied here.
end_hour
A character vector specifying starting hours, e.g. "1700". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "1700" should be supplied here.

exp_hours
Numeric value representing the number of hours the population is expected to be active for throughout the workday. By default, this uses the difference between end_hour and start_hour. Only applicable with the 'bw' method.

mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

active_threshold
A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0. Only applicable for the binary-week method.

method
String to pass through specifying which method to use for classification. By default, a binary week-based (bw) method is used, with options to use the the person-average volume-based (pav) method.

return
String specifying what to return. This must be one of the following strings:
- "plot": ggplot object. With the bw method, this returns a grid showing the distribution of archetypes by 'breaks' and number of active hours (default). With the pav method, this returns a faceted bar plot which shows the percentage of signals sent in each hour, with each facet representing an archetype.
- "data": data frame. The raw data with the classified archetypes.

See Value for more information.

Details

The working patterns archetypes are a set of segments created based on the aggregated hourly activity of employees. A motivation of creating these archetypes is to capture the diversity in working patterns, where for instance employees may choose to take multiple or extended breaks throughout the day, or choose to start or end earlier/later than their standard working hours. Two methods have been developed to capture the different working patterns.

This function is a wrapper around workpatterns_classify_bw() and workpatterns_classify_pav(), and calls each function depending on what is supplied to the method argument. Both methods implement a rule-based classification of either person-weeks or persons that pull apart different working patterns.

See individual sections below for details on the two different implementations.

Value

Character vector to specify what to return. Valid options include:

- "plot": ggplot object. With the bw method, this returns a grid showing the distribution of archetypes by 'breaks' and number of active hours (default). With the pav method, this returns a faceted bar plot which shows the percentage of signals sent in each hour, with each facet representing an archetype.
- "data": data frame. The raw data with the classified archetypes.
• "table": data frame. A summary table of the archetypes.
• "plot-area": ggplot object. With the bw method, this returns an area plot of the percentages of archetypes shown over time. With the pav method, this returns an area chart which shows the percentage of signals sent in each hour, with each line representing an archetype.
• "plot-hrvar": ggplot object. A bar plot showing the count of archetypes, faceted by the supplied HR attribute. This is only available for the bw method.
• "plot-dist": returns a heatmap plot of signal distribution by hour and archetypes. This is only available for the bw method.

Binary Week method

This method classifies each **person-week** into one of the eight archetypes:

- **0 Low Activity (< 3 hours on)**: fewer than 3 hours of active hours
- **1.1 Standard continuous (expected schedule)**: active hours equal to expected hours, with all activity confined within the expected start and end time
- **1.2 Standard continuous (shifted schedule)**: active hours equal to expected hours, with activity occurring beyond either the expected start or end time.
- **2.1 Standard flexible (expected schedule)**: active hours less than or equal to expected hours, with all activity confined within the expected start and end time
- **2.2 Standard flexible (shifted schedule)**: active hours less than or equal to expected hours, with activity occurring beyond either the expected start or end time.
- **3 Long flexible workday**: number of active hours exceed expected hours, with breaks occurring throughout
- **4 Long continuous workday**: number of active hours exceed expected hours, with activity happening in a continuous block (no breaks)
- **5 Always on (13h+)**: number of active hours greater than or equal to 13

Standard here denotes the behaviour of not exhibiting total number of active hours which exceed the expected total number of hours, as supplied by `exp_hours`. *Continuous* refers to the behaviour of *not* taking breaks, i.e. no inactive hours between the first and last active hours of the day, where *flexible* refers to the contrary.

This is the recommended method over pav for several reasons:

1. bw ignores *volume effects*, where activity volume can still bias the results towards the 'standard working hours'.
2. It captures the intuition that each individual can have 'light' and 'heavy' weeks with respect to workload.

The notion of 'breaks' in the 'binary-week' method is best understood as 'recurring disconnection time'. This denotes an hourly block where there is consistently no activity occurring throughout the week. Note that this applies a stricter criterion compared to the common definition of a break, which is simply a time interval where no active work is being done, and thus the more specific terminology 'recurring disconnection time' is preferred.

In the standard plot output, the archetypes have been abbreviated to show the following:

- **Low Activity** - archetype 0
• **Standard** - archetypes 1.1 and 1.2
• **Flexible** - archetypes 2.1 and 2.2
• **Long continuous** - archetype 4
• **Long flexible** - archetype 3
• **Always On** - archetype 5

Person Average method

This method classifies each **person** (based on unique PersonId) into one of the six archetypes:

• **Absent**: Fewer than 10 signals over the week.
• **Extended Hours - Morning**: 15%+ of collaboration before start hours and less than 70% within standard hours, and less than 15% of collaboration after end hours
• **Extended Hours - Evening**: Less than 15% of collaboration before start hours and less than 70% within standard hours, and 15%+ of collaboration after end hours
• **Overnight workers**: less than 30% of collaboration happens within standard hours
• **Standard Hours**: over 70% of collaboration within standard hours
• **Always On**: over 15% of collaboration happens before starting hour and end hour (both conditions must satisfy) and less than 70% of collaboration within standard hours

Flexibility Index

The Working Patterns archetypes as calculated using the binary-week method shares many similarities with the Flexibility Index (see `flex_index()`):

• Both are computed directly from the Hourly Collaboration Flexible Query.
• Both apply the same binary conversion of activity on the signals from the Hourly Collaboration Flexible Query.

Author(s)

Ainize Cidoncha ainize.cidoncha@microsoft.com
Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com

See Also

Other Clustering: ` personas_hclust()`, `workpatterns_hclust()`

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`
Examples

```r
# Returns a plot by default
table_data %>% workpatterns_classify(method = "bw")

# Return an area plot
# With custom expected hours
table_data %>%
  workpatterns_classify(
    method = "bw",
    return = "plot-area",
    exp_hours = 7
  )

table_data %>% workpatterns_classify(method = "bw", return = "table")
table_data %>% workpatterns_classify(method = "pav")
table_data %>% workpatterns_classify(method = "pav", return = "plot-area")
```

workpatterns_classify_bw

Classify working pattern week archetypes using a rule-based algorithm, using the binary week-based ('bw') method.

Description

[Experimental]

Apply a rule based algorithm to emails sent by hour of day, using the binary week-based ('bw') method.

Usage

```r
workpatterns_classify_bw(
    data,
    hrvar = NULL,
    signals = c("email", "IM"),
    start_hour = "0900",
    end_hour = "1700",
    mingroup = 5,
    exp_hours = NULL,
    active_threshold = 0,
    return = "plot"
)
```
Arguments

data: A data frame containing email by hours data.

hrvar: A string specifying the HR attribute to cut the data by. Defaults to NULL. This only affects the function when "table" is returned.

signals: Character vector to specify which collaboration metrics to use:
- a combination of signals, such as c("email", "IM") (default)
- "email" for emails only
- "IM" for Teams messages only
- "unscheduled_calls" for Unscheduled Calls only
- "meetings" for Meetings only

start_hour: A character vector specifying starting hours, e.g. "0900". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "0900" should be supplied here.

end_hour: A character vector specifying starting hours, e.g. "1700". Note that this currently only supports hourly increments. If the official hours specifying checking in and 9 AM and checking out at 5 PM, then "1700" should be supplied here.

mingroup: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

exp_hours: Numeric value representing the number of hours the population is expected to be active for throughout the workday. By default, this uses the difference between end_hour and start_hour.

active_threshold: A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0.

return: Character vector to specify what to return. Valid options include:
- "plot": returns a grid showing the distribution of archetypes by 'breaks' and number of active hours (default)
- "plot-dist": returns a heatmap plot of signal distribution by hour and archetypes
- "data": returns the raw data with the classified archetypes
- "table": returns a summary table of the archetypes
- "plot-area": returns an area plot of the percentages of archetypes shown over time
- "plot-hrvar": returns a bar plot showing the count of archetypes, faceted by the supplied HR attribute.

Value

A different output is returned depending on the value passed to the return argument:
- "plot": returns a summary grid plot of the classified archetypes (default). A 'ggplot' object.
- "data": returns a data frame of the raw data with the classified archetypes
- "table": returns a data frame of summary table of the archetypes
workpatterns_classify_pav

Classification of working patterns using a rule-based algorithm, using the person-average volume-based ('pav') method.

Description

[Experimental]

Apply a rule-based algorithm to emails or instant messages sent by hour of day. This uses a person-average volume-based ('pav') method.

Usage

```r
workpatterns_classify_pav(
  data,
  values = "percent",
  signals = c("email", "IM"),
  start_hour = "0900",
  end_hour = "1700",
  return = "plot"
)
```

Arguments

- **data**: A data frame containing data from the Hourly Collaboration query.
- **values**: Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
 - "percent": percentage of signals divided by total signals (default)
 - "abs": absolute count of signals
- **signals**: Character vector to specify which collaboration metrics to use:

See Also

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`
workpatterns_hclust

Create a hierarchical clustering of email or IMs by hour of day

Description

[Experimental]

Apply hierarchical clustering to emails sent by hour of day. The hierarchical clustering uses cosine distance and the ward.D method of agglomeration.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": returns a bar plot of signal distribution by hour and archetypes (default). A 'ggplot' object.
- "data": returns a data frame of the raw data with the classified archetypes.
- "table": returns a data frame of a summary table of the archetypes.
- "plot-area": returns an overlapping area plot. A 'ggplot' object.

Author(s)

Ainize Cidoncha ainize.cidoncha@microsoft.com

See Also

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`, `workpatterns_report()`
Usage

workpatterns_hclust(
 data,
 k = 4,
 return = "plot",
 values = "percent",
 signals = "email",
 start_hour = "0900",
 end_hour = "1700"
)

Arguments

data A data frame containing data from the Hourly Collaboration query.
k Numeric vector to specify the k number of clusters to cut by.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "data"
 • "table"
 • "plot-area"
 • "hclust"
 • "dist"
See Value for more information.
values Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
 • "percent": percentage of signals divided by total signals (default)
 • "abs": absolute count of signals
signals Character vector to specify which collaboration metrics to use:
 • "email" (default) for emails only
 • "IM" for Teams messages only
 • "unscheduled_calls" for Unscheduled Calls only
 • "meetings" for Meetings only
 • or a combination of signals, such as c("email", "IM")
start_hour A character vector specifying starting hours, e.g. "0900"
end_hour A character vector specifying starting hours, e.g. "1700"

Details

The hierarchical clustering is applied on the person-average volume-based (pav) level. In other words, the clustering is applied on a dataset where the collaboration hours are averaged by person and calculated as % of total daily collaboration.
Value
A different output is returned depending on the value passed to the return argument:

- "plot": ggplot object of a bar plot (default)
- "data": data frame containing raw data with the clusters
- "table": data frame containing a summary table. Percentages of signals are shown, e.g. x% of signals are sent by y hour of the day.
- "plot-area": ggplot object. An overlapping area plot
- "hclust": hclust object for the hierarchical model
- "dist": distance matrix used to build the clustering model

See Also
Other Clustering: personas_hclust(), workpatterns_classify()
Other Working Patterns: flex_index(), identify_shifts_wp(), identify_shifts(), plot_flex_index(), workpatterns_area(), workpatterns_classify_bw(), workpatterns_classify_pav(), workpatterns_classify(), workpatterns_rank(), workpatterns_report()

Examples
Run clusters, returning plot
workpatterns_hclust(em_data, k = 5, return = "plot")

Run clusters, return raw data
workpatterns_hclust(em_data, k = 4, return = "data") %>% head()

Run clusters for instant messages only, return hclust object
workpatterns_hclust(em_data, k = 4, return = "hclust", signals = c("IM"))

workpatterns_rank Create a rank table of working patterns

Description
Takes in an Hourly Collaboration query and returns a count table of working patterns, ranked from the most common to the least.
workpatterns_rank

Usage

```
workpatterns_rank(
  data,  
  signals = c("email", "IM"),  
  start_hour = "0900",  
  end_hour = "1700",  
  top = 10,  
  mode = "binary",  
  return = "plot"
)
```

Arguments

- **data** A data frame containing hourly collaboration data.
- **signals** Character vector to specify which collaboration metrics to use:
 - "email" (default) for emails only
 - "IM" for Teams messages only
 - "unscheduled_calls" for Unscheduled Calls only
 - "meetings" for Meetings only
 - or a combination of signals, such as c("email", "IM")
- **start_hour** A character vector specifying starting hours, e.g. "0900"
- **end_hour** A character vector specifying starting hours, e.g. "1700"
- **top** numeric value specifying how many top working patterns to display in plot, e.g. "10"
- **mode** string specifying aggregation method for plot. Valid options include:
 - "binary": convert hourly activity into binary blocks. In the plot, each block would display as solid.
 - "prop": calculate proportion of signals in each hour over total signals across 24 hours, then average across all work weeks. In the plot, each block would display as a heatmap.
- **return** String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": ggplot object. A plot with the y-axis showing the top ten working patterns and the x-axis representing each hour of the day.
- "table": data frame. A summary table for the top working patterns.
See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_network_plot()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `internal_network_plot()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_quality()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `meetingtype_dist_ca()`, `meetingtype_dist_mt()`, `meetingtype_dist()` , `meetingtype_summary()`, `mgrcoatt_dist()`, `mgrrel_matrix()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `period_change()`, `workloads_dist()`, `workloads_fizz()`, `workloads_line()`, `workloads_rank()`, `workloads_summary()`, `workloads_trend()`, `workpatterns_area()`

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_report()`

Examples

```r
# Plot by default
workpatterns_rank(
  data = em_data,
  signals = c(
    "email",
    "IM",
    "unscheduled_calls",
    "meetings"
  )
)

# Plot with prop / heatmap mode
workpatterns_rank(
  data = em_data,
  mode = "prop"
)
```

Description

[Experimental]

This function takes a Hourly Collaboration query and generates a HTML report on working patterns archetypes. Archetypes are created using the binary-week method.
Usage

```r
workpatterns_report(
  data,
  hrvar = "Organization",
  signals = c("email", "IM"),
  start_hour = "0900",
  end_hour = "1700",
  exp_hours = NULL,
  path = "workpatterns report",
  timestamp = TRUE
)
```

Arguments

data A Hourly Collaboration Query dataset in the form of a data frame.
hrvar String specifying HR attribute to cut by archetypes. Defaults to Organization.
signals See `workpatterns_classify()`.
start_hour See `workpatterns_classify()`.
end_hour See `workpatterns_classify()`.
exp_hours See `workpatterns_classify()`.
path Pass the file path and the desired file name, *excluding the file extension*. For example, "scope report".
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

See Also

Other Reports: `IV_report()`, `capacity_report()`, `coaching_report()`, `collaboration_report()`, `connectivity_report()`, `generate_report()`, `meeting_tm_report()`, `read_preamble()`, `subject_validate_report()`, `validation_report()`

Other Working Patterns: `flex_index()`, `identify_shifts_wp()`, `identify_shifts()`, `plot_flex_index()`, `workpatterns_area()`, `workpatterns_classify_bw()`, `workpatterns_classify_pav()`, `workpatterns_classify()`, `workpatterns_hclust()`, `workpatterns_rank()`
wrap

Add a character at the start and end of a character string

Description

This function adds a character at the start and end of a character string, where the default behaviour is to add a double quote.

Usage

```r
wrap(string, wrapper = "\"")
```

Arguments

- `string`: Character string to be wrapped around
- `wrapper`: Character to wrap around string

Value

Character vector containing the modified string.

See Also

Other Support: `camel_clean()`, `check_inputs()`, `combine_signals()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `p_test()`, `pairwise_count()`, `plot_WOE()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `totals_reorder()`, `tstamp()`, `us_to_space()`

wrap_text

Wrap text based on character threshold

Description

Wrap text in visualizations according to a preset character threshold. The next space in the string is replaced with \n, which will render as next line in plots and messages.

Usage

```r
wrap_text(x, threshold = 15)
```

Arguments

- `x`: String to wrap text
- `threshold`: Numeric, defaults to 15. Number of character units by which the next space would be replaced with \n to move text to next line.
Examples

wrapped <- wrap_text(
 "The total entropy of an isolated system can never decrease."
)
message(wrapped)
Index

* **After-hours Collaboration**
 - afterhours_dist, 6
 - afterhours_fizz, 7
 - afterhours_line, 9
 - afterhours_rank, 10
 - afterhours_summary, 12
 - afterhours_trend, 13
 - external_rank, 98

* **Clustering**
 - personas_hclust, 202
 - workpatterns_classify, 245
 - workpatterns_hclust, 252

* **Collaboration**
 - collaboration_area, 21
 - collaboration_dist, 22
 - collaboration_fizz, 24
 - collaboration_line, 26
 - collaboration_rank, 27
 - collaboration_sum, 30
 - collaboration_trend, 32

* **Data Validation**
 - check_query, 19
 - extract_hr, 102
 - flag_ch_ratio, 103
 - flag_em_ratio, 104
 - flag_extreme, 105
 - flag_outlooktime, 107
 - hr_trend, 120
 - hrvar_count, 116
 - hrvar_count_all, 118
 - hrvar_trend, 119
 - identify_churn, 122
 - identify_holidayweeks, 125
 - identify_inactiveweeks, 126
 - identify_nkw, 127
 - identify_outlier, 128
 - identify_privacythreshold, 129
 - identify_query, 131
 - identify_shifts, 132
 - identify_shifts_wp, 133
 - identify_tenure, 135
 - remove_outliers, 209
 - standardise_pq, 213
 - subject_validate, 217
 - subject_validate_report, 218
 - track_HR_change, 228
 - validation_report, 230

* **Data**
 - dv_data, 77
 - em_data, 88
 - g2g_data, 111
 - mt_data, 173
 - p2p_data_sim, 198
 - sq_data, 210

* **Emails**
 - email_dist, 79
 - email_fizz, 81
 - email_line, 82
 - email_rank, 83
 - email_summary, 85
 - email_trend, 87

* **External Collaboration**
 - external_dist, 93
 - external_fizz, 94
 - external_line, 96
 - external_sum, 100

* **Flexible Input**
 - create_ITSA, 54
 - period_change, 201

* **Flexible**
 - create_bar, 36
 - create_bar_asis, 39
 - create_boxplot, 41
 - create_bubble, 43
 - create_density, 45
 - create_dist, 46
 - create_fizz, 49
 - create_hist, 51

260
INDEX

create_inc, 52
create_line, 58
create_line_asis, 60
create_period_scatter, 62
create_rank, 64
create_scatter, 69
create_stacked, 70
create_tracking, 73
create_trend, 74
period_change, 201

* Import and Export
 copy_df, 36
 create_dt, 48
 export, 91
 import_to_fst, 136
 import_wpa, 137
 standardise_pq, 213

* Information Value
 create_IV, 56
 IV_by_period, 140
 IV_report, 141
 plot_WOE, 206

* Interrupted Time-Series Analysis
 create_ITSA, 54

* Managerial Relations
 mgrcoatt_dist, 170
 mgrrel_matrix, 171
 one2one_dist, 187
 one2one_fizz, 189
 one2one_freq, 190
 one2one_line, 192
 one2one_rank, 194
 one2one_sum, 196
 one2one_trend, 197

* Meetings
 meeting_dist, 156
 meeting_extract, 157
 meeting_fizz, 159
 meeting_line, 160
 meeting_quality, 161
 meeting_rank, 163
 meeting_skim, 165
 meeting_summary, 166
 meeting_summary, 166
 meeting_tm_report, 167
 meeting_trend, 168
 meetingtype_dist, 151
 meetingtype_dist_ca, 152
 meetingtype_dist_mt, 153
 meetingtype_summary, 154

* Network
 external_network_plot, 97
 g2g_data, 111
 internal_network_plot, 138
 network_description, 175
 network_g2g, 176
 network_leiden, 179
 network_louvain, 181
 network_p2p, 183
 network_summary, 186
 p2p_data_sim, 198

* Reports
 capacity_report, 17
 coaching_report, 20
 collaboration_report, 29
 connectivity_report, 35
 generate_report, 112
 IV_report, 141
 meeting_tm_report, 167
 read_preamble, 208
 subject_validate_report, 218
 validation_report, 230
 workpatterns_report, 256

* Support
 camel_clean, 16
 check_inputs, 18
 combine_signals, 33
 cut_hour, 76
 extract_date_range, 101
 extract_hr, 102
 heat_colours, 115
 is_date_format, 139
 maxmin, 150
 p_test, 207
 pairwise_count, 200
 plot_WOE, 206
 read_preamble, 208
 rgb2hex, 210
 totals_bind, 225
 totals_col, 226
 totals_reorder, 227
 tstamp, 229
 us_to_space, 230
 wrap, 258

* Text-mining
 meeting_tm_report, 167
INDEX
236, 238, 239, 241, 242, 244, 256
create_bar_asis, 7, 8, 10, 11, 13, 14, 22, 24,
25, 27, 29, 31, 33, 38, 39, 42, 44,
46–48, 50, 52, 54, 59, 61, 63, 65, 68,
70, 72–75, 80, 81, 83, 85–87, 94–96,
98, 99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_boxplot, 7, 8, 10, 11, 13, 14, 22, 24,
25, 27, 29, 31, 33, 38, 40, 41, 44,
46–48, 50, 52, 54, 59, 61, 63, 65, 68,
70, 72–75, 80, 81, 83, 85–87, 94–96,
98, 99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_bubble, 7, 8, 10, 11, 13, 14, 22, 24,
25, 27, 29, 31, 33, 38, 40, 42, 43,
46–48, 50, 52, 54, 59, 61, 63, 65, 68,
70, 72–75, 80, 81, 83, 85–87, 94–96,
98, 99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_density, 38, 40, 42, 44, 45, 48, 50,
52, 54, 59, 61, 63, 65, 68, 70, 72, 74,
75, 202
create_dist, 7, 8, 10, 11, 13, 14, 22, 24, 25,
27, 29, 31, 33, 38, 40, 42, 44, 46, 46,
50, 52, 54, 59, 61, 63, 65, 68, 70,
72–75, 80, 81, 83, 85–87, 94–96, 98,
99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_dt, 36, 48, 92, 137, 138, 213
create_fizz, 7, 8, 10, 11, 13, 14, 22, 24, 25,
27, 29, 31, 33, 38, 40, 42, 44, 46–48,
49, 52, 54, 59, 61, 63, 65, 68, 70,
72–75, 80, 81, 83, 85–87, 94–96, 98,
99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,

265
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_hist, 38, 40, 42, 44, 46, 48, 50, 51,
54, 59, 61, 63, 65, 68, 70, 72, 74, 75,
202
create_inc, 7, 8, 10, 11, 13, 14, 22, 24, 25,
27, 29, 31, 33, 38, 40, 42, 44, 46–48,
50, 52, 52, 59, 61, 63, 65, 68, 70,
72–75, 80, 81, 83, 85–87, 94–96, 98,
99, 101, 117, 120, 121, 139, 145,
151, 153–155, 157, 159, 161, 162,
164, 167, 169, 170, 172, 188, 190,
192, 193, 195, 196, 198, 202, 235,
236, 238, 239, 241, 242, 244, 256
create_incidence (create_inc), 52
create_ITSA, 54, 202
create_IV, 56, 141, 142, 207
create_line, 7, 8, 10, 11, 13, 14, 22, 24, 25,
27, 29, 31, 33, 38, 40, 42, 44, 46–48,
50, 52, 54, 58, 61, 63, 65, 68, 70,
72–75, 80, 81, 83, 85–87, 94–96, 98,
99, 101, 117, 120, 121, 139, 141,
145, 151, 153–155, 157, 159, 161,
162, 164, 167, 169, 170, 172, 188,
190, 192, 193, 195, 196, 198, 202,
235, 236, 238, 239, 241, 242, 244,
256
create_line(), 10, 96
create_line_asis, 7, 8, 10, 11, 13, 14, 22,
24, 25, 27, 29, 31, 33, 38, 40, 42, 44,
46–48, 50, 52, 54, 59, 60, 63, 65, 68,
70, 72–75, 80, 81, 83, 85–87, 94–96,
98, 99, 101, 117, 120, 121, 139, 141,
145, 151, 153–155, 157, 159, 161,
162, 164, 167, 169, 170, 172, 188,
190, 192, 193, 195, 196, 198, 202,
235, 236, 238, 239, 241, 242, 244,
256
create_period_scatter, 7, 8, 10, 11, 13, 14,
22, 24, 25, 27, 29, 31, 33, 38, 40, 42,
44, 46–48, 50, 52, 54, 59, 61, 62, 65,
68, 70, 72–75, 80, 81, 83, 85–87,
94–96, 98, 99, 101, 117, 120, 121,
139, 141, 145, 151, 153–155, 157,
159, 161, 162, 164, 167, 169, 170,
172, 188, 190, 192, 193, 195, 196,
198, 202, 235, 236, 238, 239, 241,
242, 244, 256



dv_data, 77, 91, 112, 174, 199, 212

dv_data, 79, 88, 112, 174, 199, 212

e-mail_fizz, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 47, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75, 80, 81, 83, 85–88, 94, 95, 97, 98, 100, 101, 117, 120, 121, 139, 145, 151, 153–155, 157, 159, 161, 162, 164, 167, 169, 170, 172, 188, 190, 192, 193, 195, 196, 198, 202, 235, 236, 238, 239, 241, 242, 244, 246

e-mail_line, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 47, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75, 80–82, 85–88, 94, 95, 97, 98, 100, 101, 117, 120, 121, 139, 145, 151, 153–155, 157, 159, 161, 162, 164, 167, 169, 170, 172, 188, 190, 192, 193, 195, 196, 198, 202, 235, 236, 238, 239, 241, 242, 244, 246

e-mail_rank, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 47, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75
INDEX

meeting_trend, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 48, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75, 80, 82, 83, 85–87, 94, 95, 97, 100, 101, 117, 120, 121, 139, 145, 152–155, 157, 158, 160, 161, 163, 165–168, 169, 171, 172, 188, 190, 192, 193, 195, 197, 198, 202, 235, 236, 238, 240–242, 244, 256

meetingtype_dist_ca, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 48, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75, 80, 82, 83, 85–87, 94, 95, 97, 98, 100, 101, 117, 120, 121, 139, 145, 152, 152, 154, 155, 157, 158, 160, 161, 163, 165–169, 171, 172, 188, 190, 192, 193, 195, 197, 198, 202, 235, 236, 238, 240–242, 244, 256

meetingtype_dist_mt, 7, 8, 10, 11, 13, 14, 22, 24, 25, 27, 29, 31, 33, 38, 40, 42, 44, 48, 50, 54, 59, 61, 63, 65, 68, 70, 72, 73, 75, 80, 82, 83, 85–87, 94, 95, 97, 98, 100, 101, 117, 120, 121, 139, 145, 152, 153, 153, 155, 157, 158, 160, 161, 163, 165–169, 171, 172, 188, 190, 192, 193, 195, 197, 198, 202, 235, 236, 238, 240–242, 244, 256

meetingtype_sum(meetingtype_summary), 154

meetingtype_summary, 7, 8, 10, 11, 13, 14,
INDEX

236, 238, 240, 240, 242, 244, 256
workloads_trend, 7, 8, 10, 11, 13, 14, 22, 24,
25, 27, 29, 32, 33, 38, 40, 42, 44, 48,
50, 54, 59, 61, 63, 65, 68, 70, 72, 74,
75, 80, 82, 83, 85, 86, 88, 94, 95, 97,
98, 100, 101, 117, 120, 121, 139,
145, 152–155, 157, 160, 161, 163,
165, 167, 171, 172, 189, 190,
192, 193, 195, 197, 198, 202, 235,
236, 238, 240, 241, 241, 244, 256
workpatterns_area, 7, 8, 10, 11, 13, 14, 22,
24, 25, 27, 29, 32, 33, 38, 40, 42, 44,
48, 50, 54, 59, 61, 63, 65, 68, 70, 72,
74, 75, 80, 82, 83, 85, 86, 88, 94, 95,
97, 98, 100, 101, 110, 117, 120, 121,
132, 134, 139, 145, 152–155, 157,
160, 161, 163, 165, 167, 169, 171,
172, 189, 190, 192, 193, 195, 197,
198, 202, 205, 235, 236, 238,
240–242, 243, 248, 251, 252, 254,
256, 257
workpatterns_classify, 110, 132, 134, 203,
205, 244, 245, 251, 252, 254, 256,
257
workpatterns_classify_bw, 110, 132, 134,
205, 244, 248, 249, 252, 254, 256,
257
workpatterns_classify_pav, 110, 132, 134,
205, 244, 248, 251, 251, 254, 256,
257
workpatterns_hclust, 110, 132, 134, 203,
205, 244, 248, 251, 252, 254, 256,
257
workpatterns_rank, 7, 8, 10, 11, 13, 14, 22,
24, 25, 27, 29, 32, 33, 38, 40, 42, 44,
48, 50, 54, 59, 61, 63, 65, 68, 70, 72,
74, 75, 80, 82, 83, 85, 86, 88, 94, 95,
97, 98, 100, 101, 110, 117, 120, 121,
132, 134, 139, 145, 152–155, 157,
160, 161, 163, 165, 167, 169, 171,
172, 189, 190, 192, 193, 195, 197,
198, 202, 205, 235, 236, 238,
240–242, 244, 248, 251, 252, 254,
254, 257
workpatterns_report, 18, 21, 30, 35, 110,
113, 132, 134, 142, 168, 205, 208,
219, 232, 244, 248, 251, 252, 254,
256, 256
wrap, 17, 18, 34, 76, 102, 103, 116, 140, 150,
200, 207, 208, 210, 225–227, 229,
230, 258
wrap_text, 258