Package ‘woeR’

January 23, 2019

Title Weight of Evidence Based Segmentation of a Variable
Version 0.2.1
Author Kashish Soien
Maintainer Kashish Soien <kashish.soien19@gmail.com>

Description
Segment a numeric variable based on a dichotomous dependent variable by using the weight of evidence (WOE) approach (Ref: Siddiqi, N. (2006) <doi:10.1002/9781119201731.biblio>). The underlying algorithm adopts a recursive approach to create segments that are diverse in respect of their WOE values and meet the demands of user-defined parameters. The algorithm also aims to maintain a monotonic trend in WOE values of consecutive segments. As such, it can be particularly helpful in improving robustness of linear and logistic regression models.

Imports dplyr
Suggests smbinning
Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1

BugReports https://github.com/kraken19/woeR/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2019-01-23 08:30:04 UTC

R topics documented:

 apply_woe ... 2
 woe_binning ... 2

Index

1
woe_binning

Weight of Evidence based segmentation of a variable

Description

This function applies the binning generated from woe_binning to new data

Usage

```r
apply_woe(df, woe_object)
```

Arguments

- **df**: A data frame. The variable names and types need to be identical to the ones passed to woe_binning
- **woe_object**: Output object from woe_binning function

Value

Input data frame is returned with two new columns - bin & woe

Examples

```r
library(smbinning)
## Not run: woe_object <- woe_binning(smbsimdf1, "cbs1", "fgood", initial_bins = 10)
out <- apply_woe(smbsimdf1, woe_object)
# Above example to create and apply woe segmentation
## End(Not run)
```

woe_binning

Weight of Evidence based segmentation of a variable

Description

Create heterogeneous segmentations of a numeric variable based on a dependent variable using Weight of Evidence approach

Usage

```r
woe_binning(df, variable, dv, min_perc = 0.02, initial_bins = 50, woe_cutoff = 0.1)
```
Arguments

- **df**: A data frame containing input arguments - variable & dv
- **variable**: character string specifying the column name of the variable you want to bin. Currently, the code supports only numeric and integer classes
- **dv**: character string specifying the column name of the binary dependent variable (0,1) (NAs are ignored). Dependent variable should be either of integer or numeric class
- **min_perc**: Minimum percentage of records in each segment. If the percentage of records in a segment falls below this threshold it is merged with other segments. Acceptable values are in the range 0.01-0.2
- **initial_bins**: No of segments of the variable to be created in the 1st iteration. Default value = 50 (2 percent) for sample size > 1500. Acceptable values are in the range 5-100
- **woe_cutoff**: Threshold of the absolute difference in woe values between consecutive segments. If the difference is less than this threshold segments are merged. Acceptable values are in the range 0-0.2

Details

Weight of Evidence represents the natural log of the ratio of percent of 0’s in the segment to percent of 1’s in the segment. It is a proxy for how far the dv rate for a segment is from the sample dv rate (# of 1s/# of observations).

Value

Output is a list containing the following elements:
- a) variable - value of the input argument 'variable'
- b) dv - value of the input argument 'dv'
- c) breaks - vector specifying cut-off values for each segment. Pass it to 'breaks' argument of cut function to create segments of the variable
- d) woe - woe table for the final iteration
- e) IV - Information Value for the final iteration

Examples

```r
library(smbinning)
woe_binning(smbsimdf1, "cbs1", "fgood", initial_bins = 10)
```
Index

apply_woe, 2

woe_binning, 2