Package ‘vprr’

November 2, 2020

Type Package
Title Processing and Visualization of Visual Plankton Recorder Data
Version 0.1.0
Maintainer Emily Chisholm <vprrcontact@gmail.com>
Description An oceanographic data processing package for analyzing and visualizing Video Plankton Recorder data. Works in concert with Visual Plankton (MATLAB) software developed at 'WHOI'. This package was developed at 'Bedford Institute of Oceanography'. Functions are designed to process Visual Plankton output and create organized and easily portable data products.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 2.10)
Imports ggplot2, oce, dplyr, interp, magick, gsw, tidyr, stringr, metR, gridExtra, lubridate, usethis
Suggests knitr, rmarkdown, testthat, akima, markdown
VignetteBuilder knitr
BuildVignettes true
NeedsCompilation no
Author Emily Chisholm [aut, cre, cph],
Kevin Sorochan Dev [aut],
Catherine Johnson Contributer [aut]
Repository CRAN
Date/Publication 2020-11-02 09:30:02 UTC

R topics documented:

bin_calculate .. 3
bin_cast ... 4
R topics documented:

concentration_category .. 4
ctd_cast ... 5
ctd_dat_combine ... 6
ctd_df_cols ... 7
ctd_roi_merge .. 8
ctd_roi_oce ... 9
getRoiMeasurements ... 9
insertRow ... 10
isopycnal_calculate .. 10
normalize_matrix ... 11
px_to_mm ... 11
roimeas_dat_combine .. 12
roi_dat_combine .. 12
size_df_f ... 13
taxa_conc_n .. 14
vpr_autoid_check .. 15
vpr_autoid_copy ... 15
vpr_autoid_create .. 16
vpr_autoid_read ... 16
vpr_category ... 18
vpr_category_create .. 19
vpr_ctdroisize_merge .. 20
vpr_ctdroi_merge .. 20
vpr_ctd_files .. 21
vpr_ctd_read ... 22
vpr_ctd_ymd ... 23
vpr_day ... 23
vpr_dayhour ... 24
vpr_hour ... 25
vpr_img_category .. 25
vpr_img_check .. 26
vpr_img_copy ... 27
vpr_img_depth .. 27
vpr_img_reclassified .. 28
vpr_manual_classification .. 28
vpr_oce_create .. 29
vpr_plot_contour ... 30
vpr_plot_histsize .. 31
vpr_plot_profile ... 31
vpr_plot_sizefreq ... 32
vpr_plot_TS .. 33
vpr_plot_TScat ... 33
vpr_roi ... 34
vpr_roi_concentration ... 35
vpr_save ... 36
vpr_size_bin .. 37
vpr_summary .. 37
vpr_trrois_size ... 38
bin_calculate

Get bin averages for VPR and CTD data

Description

Bins CTD data for an individual cast to avoid depth averaging across tow-yo’s

Usage

```r
bin_calculate(data, binSize = 1, imageVolume, rev = FALSE)
```

Arguments

- **data**: ctd data frame object including scan, salinity, temperature, depth, conductivity, time, fluor_ref, turbidity_ref, turbidity_mv, altitude, cast_id, n_roi
- **binSize**: the height of bins over which to average, default is 1 metre
- **imageVolume**: the volume of VPR images used for calculating concentrations (mm\(^3\))
- **rev**: logical value, if TRUE, binning will begin at bottom of each cast, this controls data loss due to uneven binning over depth. If bins begin at bottom, small amounts of data may be lost at the surface of each cast, if binning begins at surface (rev = FALSE), small amounts of data may be lost at bottom of each cast

Details

Image volume calculations can change based on optical setting of VPR as well as autodeck setting used to process images. For IML2018051 (S2) image volume was calculated as 108155 mm\(^3\) by seascan (6.6 cubic inches) For COR2019002 S2 image volume was calculated as 83663 mm\(^3\) and S3 image volume was calculated as 366082 mm\(^3\). Used internally (bin_cast) after ctd_cast on a single ascending or descending section of VPR cast

Note

- binSize should be carefully considered for best results
 - Depth is used for calculations! Please ensure depth is included in data frame using swDepth

Author(s)

E. Chisholm, K. Sorochan
bin_cast

Bin vpr data

Description

Formats oce style VPR data into depth averaged bins using `ctd_cast` and `bin_calculate` This function is used inside `concentration_category`

Usage

```r
bin_cast(ctd_roi_oce, imageVolume, binSize, rev = FALSE)
```

Arguments

- `ctd_roi_oce`
 oce ctd format VPR data from `vpr_oce_create`

- `imageVolume`
 the volume of VPR images used for calculating concentrations (mm^3)

- `binSize`
 passed to `bin_calculate`, determines size of depth bins over which data is averaged

- `rev`
 logical value, passed to `bin_calculate` if TRUE, binning will begin at bottom of each cast, this controls data loss due to uneven binning over depth. If bins begin at bottom, small amounts of data may be lost at the surface of each cast, if binning begins at surface (rev = FALSE), small amounts of data may be lost at bottom of each cast

Details

Image volume calculations can change based on optical setting of VPR as well as autodeck setting used to process images For IML2018051 (S2) image volume was calculated as 108155 mm^3 by seascan (6.6 cubic inches) For COR2019002 S2 image volume was calculated as 83663 mm^3 and S3 image volume was calculated as 366082 mm^3

Value

A dataframe of depth averaged bins of VPR data over an entire cast with calculated concentration values

concentration_category

Binned concentrations

Description

This function produces depth binned concentrations for a specified taxa. Similar to `bin_cast` but calculates concentrations for only one taxa. Used inside `vpr_roi_concentration`
Usage

countdown_category(data, taxa, binSize, imageVolume, rev = FALSE)

Arguments

data dataframe produced by processing internal to vpr_roi_concentration
taxa name of taxa isolated
binSize passed to bin_calculate, determines size of depth bins over which data is averaged
imageVolume the volume of VPR images used for calculating concentrations (mm^3)
rev Logical value defining direction of binning, FALSE - bins will be calculated from surface to bottom, TRUE- bins will be calculated bottom to surface

Details

Image volume calculations can change based on optical setting of VPR as well as autodeck setting used to process images For IML2018051 (S2) image volume was calculated as 108155 mm^3 by seasc an (6.6 cubic inches) For COR2019002 S2 image volume was calculated as 83663 mm^3 and S3 image volume was calculated as 366082 mm^3

Author(s)

E. Chisholm

description

This is an internal step required to bin data

Usage

ctd_cast(
 data,
 cast_direction = "ascending",
 data_type,
 cutoff = 0.1,
 breaks = NULL
)
Arguments

data an oce ctd object

cast_direction 'ascending' or 'descending' depending on desired section

data_type specify 'oce' or 'df' depending on class of desired output

cutoff Argument passed to ctdFindProfiles

breaks Argument passed to ctdFindProfiles

Value

Outputs either data frame or oce ctd object

Note

ctdFindProfiles arguments for minLength and cutOff were updated to prevent losing data (EC 2019/07/23)

Author(s)

K Sorochan, E Chisholm

c td dat combine VPR CTD data

Description

A dataframe including all CTD parameters from the VPR CTD, produced by vpr_ctd_read

Usage

c td dat combine

Format

A dataframe with 15 variables

time_ms Time stamp when ROI was collected (milliseconds)

conductivity Conductivity collected by the VPR CTD

pressure Pressure measured from the VPR CTD in decibars

temperature Temperature measured from the VPR CTD in celsius

salinity Salinity measured from the VPR CTD

fluor_ref A reference fluorescence baseline provided in millivolts by the VPR CTD for calibrating fluorescence_mv data

fluorescence_mv Fluorescence in millivolts from the VPR CTD (uncalibrated)

turbidity_ref A reference turbidity baseline provided in millivolts for calibrating turbidity_mv
ctd_df_cols

- **turbidity_mv** Turbidity in millivolts from the VPR CTD (uncalibrated)
- **altitude_NA** Altitude data from the VPR CTD
- **day** Day on which VPR data was collected (from AutoDeck)
- **hour** Hour during which VPR data was collected (from AutoDeck)
- **station** Station identifier provided during processing
- **sigmaT** Density calculated from temperature, pressure and salinity data
- **depth** Depth in metres calculated from pressure

ctd_df_cols

Read CTD data (SBE49) and Fluorometer data from CTD-VPR package

Description

Internal use *vpr_cnd_read*

Usage

```
ctd_df_cols(x, col_list)
```

Arguments

- `x` full filename (ctd.dat file)
- `col_list` list of CTD data column names

Details

WARNING This is hard coded to accept a specific order of CTD data columns. The names and values in these columns can change based on the specific instrument and should be updated before processing data from a new VPR.

Text file format .dat file Outputs ctd dataframe with variables time_ms, conductivity, temperature, pressure, salinity, fluor_ref, fluorescence_mv, turbidity_ref, turbidity_mv, altitude_NA

Author(s)

K. Sorochan, E. Chisholm
ctd_roi_merge

Description

A dataframe representing CTD data which has been merged with tabulated ROIs in each category, produced by `vpr_ctdroi_merge`

Usage

`ctd_roi_merge`

Format

A dataframe with 28 variables

- `time_ms` Time stamp when ROI was collected (milliseconds)
- `conductivity` Conductivity collected by the VPR CTD
- `pressure` Pressure measured from the VPR CTD in decibars
- `temperature` Temperature measured from the VPR CTD in celsius
- `salinity` Salinity measured from the VPR CTD
- `fluor_ref` A reference fluorescence baseline provided in millivolts by the VPR CTD for calibrating `fluorescence_mv` data
- `fluorescence_mv` Fluorescence in millivolts from the VPR CTD (uncalibrated)
- `turbidity_ref` A reference turbidity baseline provided in millivolts for calibrating `turbidity_mv`
- `turbidity_mv` Turbidity in millivolts from the VPR CTD (uncalibrated)
- `altitude_NA` Altitude data from the VPR CTD
- `day` Day on which VPR data was collected (from AutoDeck)
- `hour` Hour during which VPR data was collected (from AutoDeck)
- `station` Station identifier provided during processing
- `sigmaT` Density calculated from temperature, pressure and salinity data
- `depth` Depth in metres calculated from pressure
- `roi` ROI identification number
- `categories` For each category name (e.g. bad_image_blurry, Calanus, krill), there is a line in the dataframe representing the number of ROIs identified in this category
- `n_roi_total` Total number of ROIs in all categories for each CTD data point
ctd_roi_oce

VPR data including CTD and ROI information

Description

An oce formatted CTD object with VPR CTD and ROI data from package example data set.

Usage

```r
ctd_roi_oce
```

Format

An oce package format, a `CTD` object with VPR CTD and ROI data (1000 data rows)

getRoiMeasurements

THIS FUNCTION HAS BEEN DEPRECATED

Description

pull roi measurements from all taxa, all files

Usage

```r
getRoiMeasurements(taxafolder, nchar_folder, unit = "mm", opticalSetting)
```

Arguments

- `taxafolder` : path to taxa folder (base – autoid folder)
- `nchar_folder` : number of characters in basepath
- `unit` : unit data will be output in, `"mm"` (default – millimetres) or `"px"` (pixels)
- `opticalSetting` : VPR optical setting determining conversion between pixels and millimetres (options are `"S0"`, `"S1"`, `"S2"`, or `"S3"`)

Note

This function is very finicky, easily broken because it relies on character string splitting. taxaFolder argument should not end in a backslash, please check output carefully to ensure taxa names or ROI numbers have been properly sub string’d
isopycnal_calculate

insertRow

INTERNAL USE ONLY quick data frame function from github to insert row inside dat frame

Description

INTERNAL USE ONLY quick data frame function from github to insert row inside dat frame

Usage

insertRow(existingDF, newrow, r)

Arguments

existingDF data frame
newrow new row of data
r index of new row

isopycnal_calculate

Get vector to draw isopycnal lines on TS plot Used internally to create TS plots

Description

Get vector to draw isopycnal lines on TS plot Used internally to create TS plots

Usage

isopycnal_calculate(sal, pot.temp, reference.p = 0)

Arguments

sal salinity vector
pot.temp temperature vector in deg C
reference.p reference pressure for calculation, set to 0

Note

Author(s)

E. Chisholm
normalize_matrix Normalize a matrix

Description

Take each element of matrix divided by column total

Usage

```r
normalize_matrix(mat)
```

Arguments

- `mat`: A matrix to normalize

Details

Make sure to remove total rows before using with VP data

Note

Used internally for visualization of confusion matrices

px_to_mm Get conversion factor for pixels to mm for roi measurements

Description

Used internally

Usage

```r
px_to_mm(x, opticalSetting)
```

Arguments

- `x`: An aidmea data frame (standard) to be converted into mm from pixels
- `opticalSetting`: The VPR setting determining the field of view and conversion factor between mm and pixels

Details

Converts pixels to mm using conversion factor specific to optical setting

Options for `opticalSetting` are 'S0', 'S1', 'S2', or 'S3'
roimeas_dat_combine
VPR measurement data calculated by Visual Plankton

Description
A data frame of measurement information for each ROI in the sample data set including long axis length, perimeter and area, produced by `vpr_autoid_read`.

Usage
`roimeas_dat_combine`

Format
A data frame with 12 variables:
- **roi**: Unique ROI identifier - 10 digit
- **taxa**: Category in which ROI has been classified by Visual Plankton
- **day_hour**: Day and hour in which data was collected (from Autodeck)
- **Perimeter**: The perimeter of the ROI in millimeters
- **Area**: The area of the ROI in millimeters
- **width1**: Width at a first point of the ROI in millimetres (defined in more detail in VPR manual)
- **width2**: Width at a second point of the ROI in millimetres (defined in more detail in VPR manual)
- **width3**: Width at a third point of the ROI in millimetres (defined in more detail in VPR manual)
- **short_axis_length**: The length in millimeters of the ROI along the shorter axis
- **long_axis_length**: The length in millimeters of the ROI along the longer axis
- **station**: Station identifier provided in processing
- **time_ms**: Time stamp when ROI was collected in milliseconds

roi_dat_combine
VPR ROI data

Description
A dataframe including VPR ROI data from the sample dataset, produced by `vpr_autoid_read`.

Usage
`roi_dat_combine`
size_df_f

Format
A dataframe with 13 variables

roi Unique ROI identifier - 8 digit
categories For each category name (e.g., bad_image_blurry, Calanus, krill), there is a line in the
dataframe representing the number of ROIs identified in this category
time_ms Time stamp when ROI was collected (milliseconds)

Description
A sample data frame of size information from Visual Plankton outputs, processed using vpr_ctdroisize_merge

Usage
size_df_f

Format
An object of class data.frame with 14 rows and 14 columns.

Details
@format A dataframe with 14 variables including

frame_ID Unique identifier for each VPR frame
pressure Pressure measured from the VPR CTD in decibars
temperature Temperature measured from the VPR CTD in celsius
salinity Salinity measured from the VPR CTD
sigmaT Density calculated from temperature, salinity and pressure
fluorescence_mv Fluorescence measured by the VPR CTD in millivolts (uncalibrated)
turbidity_mv Turbidity measured by the VPR CTD in millivolts (uncalibrated)
roi Unique ROI identification number - 10 digits, 8 digit millisecond time stamp and two unique
digits to denote multiple ROIs within a millisecond
taxa Category in which ROI has been classified by Visual Plankton
day_hour Day and hour in which data was collected, from AutoDeck processing
long_axis_length The length of the longest axis of the ROI image, measured by Visual Plankton
station Station identifier provided during processing
time_ms Time stamp when ROI was collected (milliseconds)
roi_ID ROI identification number- 8 digit time stamp, without unique 2 digit ending
taxa_conc_n

A binned data frame of concentration data per category

Description

A `binned` dataframe from sample VPR data, including concentrations of each category, where each data point represents a 5 metre bin of averaged VPR data. Produced using `vpr_roi_concentration`

Usage

taxa_conc_n

Format

A dataframe with 21 variables

- **depth** Depth calculated from pressure in metres
- **min_depth** The minimum depth of the bin in metres
- **max_depth** The maximum depth of the bin in metres
- **depth_diff** The difference between minimum and maximum bin depth in metres
- **min_time_s** The minimum time in seconds of the bin
- **max_time_s** The maximum time in seconds of the bin
- **time_diff_s** The difference between minimum and maximum time in a bin, in seconds
- **n_roi_bin** The number of ROI observations in a bin
- **conc_m3** The concentration of ROIs in a bin, calculated based on image volume and number of frames per bin
- **temperature** Temperature measured from the VPR CTD in celsius (averaged within the bin)
- **salinity** Salinity measured from the VPR CTD (averaged within the bin)
- **density** sigma T density calculated from temperature, salinity and pressure (averaged within the bin)
- **fluorescence** Fluorescence measured by the VPR CTD in millivolts (uncalibrated) (averaged within the bin)
- **turbidity** Turbidity measured by the VPR CTD in millivolts (uncalibrated) (averaged within the bin)
- **avg_hr** The mean time in which bin data was collected, in hours
- **n_frames** The number of frames captured within a bin
- **vol_sampled_bin_m3** The volume of the bin sampled in metres cubed
- **toyo** Identifier of the tow-yo section which bin is a part of, either ascending or descending, appended by a number
- **max_cast_depth** The maximum depth of the entire VPR cast
- **taxa** The category in which ROIs in bin have been classified by Visual Plankton
- **station** Station identifier provided during processing
vpr_autoid_check

Checks manually created aid files for errors

Description

Removes any empty aid files after manual reclassification, checks for tow numbers and other metadata to match. Performs check to ensure measurement and ROI files are the same length

Usage

vpr_autoid_check(basepath, cruise)

Arguments

basepath basepath to autoid folder eg. C:/data/CRUISENAME/autoid/
cruise name of cruise which is being checked

Value
text file (saved in working directory) named CRUISENAME_aid_file_check.txt

Author(s)

E Chisholm

vpr_autoid_copy

Copy VPR images into folders

Description

Organize VPR images into folders based on classifications provided by visual plankton

Usage

vpr_autoid_copy(basepath, day, hour, classifier_type, classifier_name, taxa)

Arguments

basepath A file path to your autoid folder where VP data is stored eg. "C:/data\cruise_XXXXXXXXXXXXXXX\"
day character string representing numeric day of interest
hour character string representing hour of interest
classifier_type character string representing the type of classifier (either 'svm', 'nn' or 'dual') from Visual Plankton
classifier_name character string representing name of Visual Plankton classifier
taxa optional list of character strings if you wish to only copy images from specific classification groups
Value
organized file directory where VPR images are contained with folders, organized by day, hour and classification, inside your basepath/autoid folder

vpr_autoid_create
Modifies aid and aid mea files based on manual reclassification

Description
Modifies aid and aid mea files based on manual reclassification

Usage

```r
vpr_autoid_create(reclassify, misclassified, basepath)
```

Arguments

- `reclassify`: list of reclassify files (output from `vpr_manual_classification()`)
- `misclassified`: list misclassify files (output from `vpr_manual_classification()`)
- `basepath`: base path to auto ID folder eg 'E:/autoID_EC_07032019/'

examples:
```r
basepath <- 'E:/autoID_EC_07032019/'
day <- '289'
hour <- '08'
day_hour_files <- paste0('d', day, '.h', hour)
misclassified <- list.files(day_hour_files, pattern = 'misclassified_', full.names = TRUE)
reclassify <- list.files(day_hour_files, pattern = 'reclassify_', full.names = TRUE)
```

Author(s)

E. Chisholm

vpr_autoid_read
Read VPR aid files

Description
Read aid text files containing ROI string information or measurement data and output as a dataframe
Usage

vpr_autoid_read(
 file_list_aid,
 file_list_aidmeas,
 export,
 station_of_interest,
 opticalSetting,
 warn = TRUE
)

Arguments

file_list_aid a list object of aid text files, containing roi strings. Output from matlab Visual Plankton software.

file_list_aidmeas a list object of aidmea text files, containing ROI measurements. Output from matlab Visual Plankton software.

export a character string specifying which type of data to output, either 'aid' (roi strings) or 'aidmeas' (measurement data)

station_of_interest Station information to be added to ROI data output, use NA if irrelevant

opticalSetting Optional argument specifying VPR optical setting. If provided will be used to convert size data into mm from pixels, if missing size data will be output in pixels

warn Logical, FALSE silences size data unit warnings

Details

Only outputs either ROI string information OR measurement data but both file types must be provided

Note

Full paths to each file should be specified

Author(s)

E. Chisholm & K. Sorochan

Examples

station_of_interest <- 'test'
dayhour <- c('d222.h03', 'd222.h04')

VPR OPTICAL SETTING (S0, S1, S2 OR S3)
opticalSetting <- "S2"
imageVolume <- 83663 #mm^3
auto_id_folder <- system.file('extdata/Cor2019002/autoid/', package = 'vprr', mustWork = TRUE)
auto_id_path <- list.files(paste0(auto_id_folder, "/"), full.names = TRUE)

Path to aid for each taxa
aid_path <- paste0(auto_id_path, '/aid/')
Path to mea for each taxa
aidmea_path <- paste0(auto_id_path, '/aidmea/')

AUTO ID FILES
aid_file_list <- list()
aidmea_file_list <- list()
for (i in 1:length(dayhour)) {
 aid_file_list[[i]] <-
 list.files(aid_path, pattern = dayhour[[i]], full.names = TRUE)
 # SIZE DATA FILES
 aidmea_file_list[[i]] <-
 list.files(aidmea_path, pattern = dayhour[[i]], full.names = TRUE)
}

aid_file_list_all <- unlist(aid_file_list)
aidmea_file_list_all <- unlist(aidmea_file_list)

ROIs
roi_dat_combine <-
vpr_autoid_read(
 file_list_aid = aid_file_list_all,
 file_list_aidmeas = aidmea_file_list_all,
 export = 'aid',
 station_of_interest = station_of_interest,
 opticalSetting = opticalSetting,
 warn = FALSE
)

MEASUREMENTS
roimeas_dat_combine <-
vpr_autoid_read(
 file_list_aid = aid_file_list_all,
 file_list_aidmeas = aidmea_file_list_all,
 export = 'aidmeas',
 station_of_interest = station_of_interest,
 opticalSetting = opticalSetting,
 warn = FALSE
)

vpr_category
Get taxa ids from string

Description

Get taxa ids from string
vpr_category_create

Usage

\[\text{vpr_category}(x)\]

Arguments

- \(x\) A string specifying the directory of the "taxafolder", containing the taxa id

Value

A string of only the taxa id

Author(s)

K Sorochan

See Also

vpr_hour, vpr_day, vpr_roi

Examples

```r
taxa_string <- 'C:/data/cruise/autoid/Calanus/d000/h00'
vpr_category(taxa_string)
```

vpr_category_create
Create a new taxa to be considered for classification after processing with VP

Description

creates empty directory structure to allow consideration of new taxa during vpr_manual_classification()

Usage

\[\text{vpr_category_create}(\text{taxa, basepath})\]

Arguments

- \(\text{taxa}\) new taxa name to be added (can be a list of multiple taxa names)
- \(\text{basepath}\) basepath used for vpr_manual_classification

Value

empty directory structure using new taxa name inside basepath
vpr_ctdroi_merge
Format CTD and Size data from VPR

Description
Format CTD and Meas data frames into combined data frame for analysis and plotting of size data

Usage

vpr_ctdroisize_merge(data, data_mea, taxa_of_interest)

Arguments
- **data**: VPR dataframe from `vpr_ctdroi_merge`, with calculated variable sigmaT
- **data_mea**: VPR size data frame from `vpr_autoid_read`
- **taxa_of_interest**: a list of taxa of interest to be included in output dataframe

Value
A dataframe containing VPR CTD and size data

Examples

```r
data("ctd_roi_merge")
data("roimeas_dat_combine")
category_of_interest = 'Calanus'

ctd_roi_merge$avg_hr <- ctd_roi_merge$time_ms /3.6e+06

size_df_f <- vpr_ctdroisize_merge(ctd_roi_merge, data_mea = roimeas_dat_combine,
taxa_of_interest = category_of_interest)
```

vpr_ctdroi_merge
Merge CTD and ROI data from VPR

Description
Combines CTD data (time, hydrographic parameters), with ROI information (identification number) into single dataframe, aligning ROI identification numbers and taxa classifications with time and hydrographic parameters

Usage

vpr_ctdroi_merge(ctd_dat_combine, roi_dat_combine)
vpr_ctd_files

Arguments

ctd_dat_combine
 a CTD dataframe from VPR processing from vpr_ctd_read

roi_dat_combine
 a data frame of roi aid data from vpr_autoid_read

Author(s)

E. Chisholm & K. Sorochan

Examples

data('ctd_dat_combine')
data('roi_dat_combine')

ctd_roi_merge <- vpr_ctdroi_merge(ctd_dat_combine, roi_dat_combine)

vpr_ctd_files

Create a list of ctd files to be read

Description

Searches through typical VP directory structure

Usage

vpr_ctd_files(castdir, cruise, day_hour)

Arguments

castdir root directory for ctd cast files

cruise cruise name (exactly as in directory structure)

day_hour vector of day-hour combinations (e.g. dXXX.hXX)

Details

Use with caution

Value

vector of ctd file paths matching days-hour combinations provided

Author(s)

E. Chisholm and K. Sorochan
vpr_ctd_read

Read and format CTD VPR data

Description

Acts as a wrapper for `ctd_df_cols`

Usage

vpr_ctd_read(ctd_files, station_of_interest, day, hour, col_list)

Arguments

- `ctd_files` full file paths to vpr ctd .dat files
- `station_of_interest` VPR station name
- `day` Day of interest, if not provided will be pulled from file path
- `hour` Hour of interest, if not provided will be pulled from file path
- `col_list` Optional list of CTD data column names

Details

Reads CTD data and adds day, hour, and station information. Calculates sigma T and depth variables from existing CTD data to supplement raw data. If there are multiple hours of CTD data, combines them into single dataframe.

WARNING `ctd_df_cols` is hard coded to accept a specific order of CTD data columns. The names and values in these columns can change based on the specific instrument and should be updated/confirmed before processing data from a new VPR.

Author(s)

E. Chisholm & K. Sorochan

Examples

```r
station_of_interest <- 'test'

ctd_files <- system.file("extdata/COR2019002/rois/vpr5/d222","h03ctd.dat", package = "vprr", mustWork = TRUE)

ctd_dat_combine <- vpr_ctd_read(ctd_files, station_of_interest)
```
vpr_ctd_ymd

Add Year/month/day(hour:minute:second) information

Description
Calculate and record calendar dates for vpr data from day-of-year, hour, and time (in milliseconds) info. Will also add 'avg_hr' parameter if not already present.

Usage
vpr_ctd_ymd(data, year, offset)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>VPR data frame from vpr_ctdroi_merge</td>
</tr>
<tr>
<td>year</td>
<td>Year of data collection</td>
</tr>
<tr>
<td>offset</td>
<td>time offset in hours between VPR CPU and processed data times (optional)</td>
</tr>
</tbody>
</table>

Value
a VPR data frame with complete date/time information in a new row named 'ymdhms'

Examples

```r
year <- 2019
data('ctd_roi_merge')
dat <- vpr_ctd_ymd(ctd_roi_merge, year)
```

vpr_day

Get day identifier

Description
Get day identifier

Usage
vpr_day(x)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A string specifying the directory and file name of the size file</td>
</tr>
</tbody>
</table>
vpr_dayhour

Value

A string of only the day identifier (i.e., "dXX")

Author(s)

K Sorochan

See Also

vpr_hour, vpr_roi, vpr_category

Examples

day_string <- 'C:/data/cruise/autoid/Calanus/d000/h00'
vpr_day(day_string)

vpr_dayhour

Find day & hour info to match each station of interest for processing

Description

@author E. Chisholm and K. Sorochan

Usage

vpr_dayhour(stations, file)

Arguments

stations a vector of character values naming stations of interest
file CSV file containing 'day', 'hour', 'station', and 'day_hour' columns

Value

Vector of day-hour combinations corresponding to stations of interest
vpr_hour

Description

Get hour identifier

Usage

vpr_hour(x)

Arguments

x A string specifying the directory and file name of the size file

Value

A string of only the hour identifier (i.e., "hXX")

Author(s)

K Sorochan

See Also

vpr_day, vpr_roi, vpr_category

Examples

hour_string <- 'C:/data/cruise/autoid/Calanus/d000/h00'
vpr_hour(hour_string)

vpr_img_category

Explore images by depth and classification

Description

Pulls images from specific depth ranges in specific classification group
Usage

vpr_img_category(
 data,
 min.depth,
 max.depth,
 roiFolder,
 format = "list",
 taxa_of_interest
)

Arguments

data data frame containing CTD and ROI data from vpr_ctdroi_merge, which also
 contains calculated variables sigmaT and avg_hr
min.depth minimum depth of ROIs you are interested in looking at
max.depth maximum depth of ROIs you are interested in exploring
roiFolder directory that ROIs are within (can be very general eg. C:/data, but will be
 quicker to process with more specific file path)
format option of how images will be output, either as 'list' a list of file names or 'image'
 where images will be displayed
taxa_of_interest character string of classification group from which to pull images

vpr_img_check Remove ROI strings from aid and aidmeas files based on a manually
 organized folder of images

Description

Should be used after vpr_img_copy, and manual image removal from created folders

Usage

vpr_img_check(folder_dir, basepath)

Arguments

caller_dir directory path to day hour folders containing manually reorganized images of a
 specific taxa eg. 'C:/data/cruise_IML2018051/krill/images/' where that folder
 contains '......d123.b01/' which contains manually sorted images of krill
basepath directory path to original Visual Plankton files, specified down to the classification
group. eg. 'C:/data/cruise_IML2018051/autoid/krill'
vpr_img_copy

Image copying function for specific taxa of interest

Description
This function can be used to copy images from a particular taxa, day and hour into distinct folders within the auto id directory This is useful for visualizing the ROIs of a particular classification group or for performing manual tertiary checks to remove images not matching classification group descriptions.

Usage
vpr_img_copy(auto_id_folder, taxas.of.interest, day, hour)

Arguments
auto_id_folder eg "D:/VP_data/IML2018051/autoid"
taxas.of.interest eg. taxas.of.interest <- c('Calanus')day character, day of interesthour character, hour of interest

vpr_img_depth

Explore VPR images by depth bin

Description
Allows user to pull VPR images from specific depth ranges, to investigate trends before classification of images into taxa groups

Usage
vpr_img_depth(data, min.depth, max.depth, roiFolder, format = "list")

Arguments
data data frame containing CTD and ROI data from vpr_ctdroi_merge, which also contains calculated variables sigmaT and avg_hrmin.depth minimum depth of ROIs you are interested in looking atmax.depth maximum depth of ROIs you are interested in exploringroiFolder directory that ROIs are within (can be very general eg. C:/data, but will be quicker to process with more specific file path)format option of how images will be output, either as 'list' a list of file names or 'image' where images will be displayed
vpr_img_reclassified Explore reclassified images

Description
Pull image from reclassified or misclassified files produced during vpr_manual_classification

Usage
vpr_img_reclassified(day, hour, base_dir, taxa_of_interest, image_dir)

Arguments
- **day**: Character string, 3 digit day of interest of VPR data
- **hour**: Character string, 2 digit hour of interest of VPR data
- **base_dir**: Directory path to folder containing day/hour folders in which misclassified and reclassified files are organized (e.g., 'C:/VPR_PROJECT/r_project_data_vis/classification files/') which would contain 'd123.h01/reclassified_krill.txt')
- **taxa_of_interest**: Classification group from which to pull images
- **image_dir**: Directory path to ROI images, e.g., "E:\data\cruise_IML2018051\", file separator MUST BE "\" in order to be recognized

Value
folders of misclassified or reclassified images inside image_dir

vpr_manual_classification Function to check results of classification manually

Description
Displays each image in day hour specified, prompts user to confirm or deny classification. If classification is denied, asks for a reclassification value based on available taxa

Usage
vpr_manual_classification(
 day, hour, basepath, taxa_of_interest, gr = TRUE,
)
vpr_oce_create

 scale = "x300",
 opticalSetting = "S2",
 img_bright = TRUE
)

Arguments

day
day of interest in autoid

hour
hour of interest in autoid

basepath
file path to auto id folder eg 'E:/autoID_EC_07032019/

taxa_of_interest
list of taxa folders you wish you sort through

gr
logical indicating whether pop up graphic menus are used (user preference -
defaults to TRUE)

scale
argument passed to image_scale, default = 'x300'

opticalSetting
specifies optical setting of VPR, defining image frame size, current options are
'S0', 'S1', 'S2' (default), 'S3', see further info in details

img_bright
logical value indicating whether or not to include a blown out high brightness
version of image (can be helpful for viewing dark field fine appendages)

Details

Optical Setting frame sizes: S0 = 7x7 mm, S1 = 14x14mm, S2 = 24x24mm, S3 = 48x48 mm.
These settings define the conversion factor from pixels to millimetres and calculate image size for
classification reference

Development

• Add "undo" functionality to go back on a typing mistake
• Fix scaling/ size issue so images are consistently sized
• show ROI number for image somewhere for reference when in doubt of classification

vpr_oce_create

Create ctd oce object with vpr data

Description

Formats VPR data frame into oce format CTD object

Usage

vpr_oce_create(data)
Arguments

- `data`: data frame of vpr data with variable names 'time_ms', 'fluorescence_mv', 'turbidity_mv', 'n_roi', 'sigmaT'

Author(s)

E. Chisholm

Examples

```r
data('ctd_roi_merge')
oce_dat <- vpr_oce_create(ctd_roi_merge)
```

Description

Interpolated contour plot of particular variable

Usage

```r
vpr_plot_contour(
  data,
  var,
  dup = "mean",
  method = "interp",
  labels = TRUE,
  bw = 1
)
```

Arguments

- `data`: data frame needs to include avg_hr, depth, and variable of choice (var)
- `var`: variable in dataframe which will be interpolated and plotted
- `dup`: if method == 'interp'. Method of handling duplicates in interpolation, passed to interp function (options: 'mean', 'strip', 'error')
- `method`: Specifies interpolation method, options are 'akima', 'interp' or 'oce', akima and interp produce identical interpolations, oce uses slightly different method (oce is least error prone)
- `labels`: logical value indicating whether or not to plot contour labels
- `bw`: bin width defining interval at which contours are labelled

Author(s)

E. Chisholm
vpr_plot_histsize

Plot size frequency histogram

Description
Plot size frequency histogram

Usage
vpr_plot_histsize(data, param, title = NULL, bw = 0.1, xlim = NULL)

Arguments
- data: size data from auto_measure_mm subset into taxas
- param: size parameter of interest (corresponds to sub lists within data argument)
- title: main title for plot, if left null will default based on parameter and taxa
- bw: bin width, defines width of bars on histogram, defaults to 0.1, decrease for more detail
- xlim: plot xlimit, defaults to min max of data if not provided

Note
param options are typically 'Perimeter', 'Area', 'width1', 'width2', 'width3', 'short_axis_length', 'long_axis_length'

Author(s)
E. Chisholm

vpr_plot_profile
Plots VPR profiles of temperature, salinity, density, fluorescence and concentration (by classification group)

Description
This plot allows a good overview of vertical distribution of individual classification groups along with reference to hydrographic parameters. Facet wrap is used to create distinct panels for each taxa provided

Usage
vpr_plot_profile(taxa_conc_n, taxa_to_plot, plot_conc)
vpr_plot_sizefreq

Arguments

- `taxa_conc_n`: A VPR data frame with hydrographic and concentration data separated by taxa (from `vpr_roi_concentration`)
- `taxa_to_plot`: The specific classification groups which will be plotted, if NULL, will plot all taxa combined
- `plot_conc`: Logical value whether or not to include a concentration plot (FALSE just shows CTD data)

Value

A gridded object of at least 3 ggplot objects

vpr_plot_sizefreq Size Frequency plots for VPR data

Description

This uses the `hist` plot function in base R to give a histogram of size (long axis length) frequency within a taxa. **WARNING**: this function uses hard coded plot attributes

Usage

`vpr_plot_sizefreq(x, number_of_classes, colour_of_bar)`

Arguments

- `x`: a data frame with columns 'taxa', 'long_axis_length'
- `number_of_classes`: numeric value passed to nclass argument in hist()
- `colour_of_bar`: character value defining colour of plotted bars

Author(s)

K. Sorochan
vpr_plot_TS

Make a balloon plot against a TS plot

Description

TS balloon plot with ROI concentration, sorted by taxa includes isopycnal line calculations

Usage

\[\text{vpr_plot_TS}(x, \text{reference.p} = 0, \text{var}) \]

Arguments

- \(x \): dataframe with temperature, salinity, number of rois (n_roi_bin)
- \(\text{reference.p} \): reference pressure (default at 0 for surface) - used to calculate isopycnals
- \(\text{var} \): variable on which size of points will be based, eg conc_m3 or n_roi_bin

Note

modified from source: https://github.com/Davidatlarge/ggTS/blob/master/ggTS_DK.R

Author(s)

E. Chisholm

vpr_plot_TScat

Make a balloon plot

Description

Balloon plot against a TS plot with ROI concentration and sorted by taxa includes isopycnal line calculations. Version of vpr_plot_TS, with only relevant* taxa specified. *to current analysis and research objectives (See note).

Usage

\[\text{vpr_plot_TScat}(x, \text{reference.p} = 0) \]

Arguments

- \(x \): dataframe with temperature, salinity, number of rois named by taxa
- \(\text{reference.p} \): reference pressure (default at 0 for surface) - used to calculate isopycnals
Note

WARNING HARD CODED FOR 5 TAXA, CALANUS, KRILL, ECHINODERM LARVAE, SMALL COPEPOD, CHAETOGNATHS !! Uses isopycnal labelling method which does not label every contour

vpr_roi

Get roi ids from string

Description

Get roi ids from string

Usage

`vpr_roi(x)`

Arguments

- `x` A string specifying directory and file name of roi

Value

A string of only the 10 digit roi identifier

Author(s)

K Sorochan

See Also

`vpr_hour, vpr_day, vpr_category`

Examples

```r
roi_string <- 'roi.0100000000.tif'
vpr_roi(roi_string)
```
vpr_roi_concentration Calculate VPR concentrations

Description

Calculates concentrations for each named taxa in dataframe

Usage

vpr_roi_concentration(
 data,
 taxas_list,
 station_of_interest,
 binSize,
 imageVolume
)

Arguments

data a VPR dataframe as produced by vpr_ctdroi_merge
taxas_list a list of character strings representing taxa present in the station being processed
station_of_interest The station being processed
binSize passed to bin_calculate, determines size of depth bins over which data is averaged
imageVolume the volume of VPR images used for calculating concentrations (mm^3)

Examples

data('ctd_roi_merge')
ctd_roi_merge$avg_hr <- ctd_roi_merge$time_ms /3.6e+06
taxas_list <- c('Calanus', 'krill')
binSize <- 5
station_of_interest <- 'test'
imageVolume <- 83663
taxa_conc_n <- vpr_roi_concentration(ctd_roi_merge, taxas_list, station_of_interest, binSize, imageVolume)
vpr_save

Save VPR data as an as.oce object

Description
Save VPR data as an as.oce object

Usage
vpr_save(data, metadata)

Arguments
- data: a VPR data frame
- metadata: (optional) a named list of character values giving metadata values. If this argument is not provided user will be prompted for a few generic metadata requirements.

Details
This function will pass a VPR data frame object to an oce object. Using an oce object as the default export format for VPR data allows for metadata and data to be kept in the same, space efficient file, and avoid redundancy in the data frame. The function check for data parameters that may actually be metadata parameters (rows which have the same value repeated for every observation). These parameters will automatically be copied into the metadata slot of the oce object. The function will also prompt for a variety of required metadata fields. Depending on specific research / archiving requirements, these metadata parameters could be updated by providing the argument metadata.

Default metadata parameters include 'deploymentType', 'waterDepth', 'serialNumber', 'latitude', 'longitude', 'castDate', 'castStartTime', 'castEndTime', 'processedBy', 'opticalSetting', 'imageVolume', 'comment'.

Value
an oce CTD object with all VPR data as well as metadata

Examples
```r
data("taxa_conc_n")
metadata <- c('deploymentType' = 'towyo', 'waterDepth' =
max(ctd_roi_merge$pressure), 'serialNumber' = NA, 'latitude' = 47,
'longitude' = -65, 'castDate' = '2019-08-11', 'castStartTime' = '00:00',
'castEndTime' = '01:00', 'processedBy' = 'E. Chisholm', 'opticalSetting' =
'S2', 'imageVolume' = 83663, 'comment' = 'test data')

oce_dat <- vpr_save(taxa_conc_n, metadata)
# save(oce_dat, file = vpr_save.RData) # save data
```
vpr_size_bin
Bin VPR size data

Description

Calculates statistics for VPR measurement data in depth averaged bins for analysis and visualization.

Usage

```r
vpr_size_bin(data_all, bin_mea)
```

Arguments

- `data_all`: a VPR CTD and measurement dataframe from `vpr_ctdroisize_merge`
- `bin_mea`: Numerical value representing size of depth bins over which data will be combined, unit is metres, typical values range from 1 - 5.

Value

A dataframe of binned VPR size data statistics including number of observations, median, interquartile ranges, salinity and pressure, useful for making boxplots.

Examples

```r
data('size_df_f')
vpr_size_bin(size_df_f, bin_mea = 5)
```

vpr_summary
Data Summary Report

Description

Part of VP easy plot processing, prints data summary report to give quantitative, exploratory analysis of data.

Usage

```r
vpr_summary(all_dat, fn, tow = tow, day = day, hour = hour)
```
vp_plot_matrix

Arguments

all_dat data frame containing VPR and CTD data including time_ms, avg_hr, conductivity, temperature, pressure, salinity, fluorescence_mv, turbidity_mv, sigmaT
fn file name to save data summary, if not provided, summary will print to console
tow VPR tow number
day julian day
hour two digit hour (24 hr clock)

Author(s)

E Chisholm

vpr_trrois_size

Get size data from idsize files

Description

useful for getting size distribution of known rois from each taxa. gathers size information from idsize text files produced when training a new classifier in VP (Visual Plankton)

Usage

vpr_trrois_size(directory, taxa, opticalSetting)

Arguments

directory cruise directory eg. 'C:/data/IML2018051/

taxa list of character elements containing taxa of interest
opticalSetting VPR optical setting determining conversion between pixels and millimetres (options are 'S0', 'S1', 'S2', or 'S3')

vp_plot_matrix

Plots normalized confusion matrix

Description

Plots normalized confusion matrix

Usage

vp_plot_matrix(cm, classes, type, addLabels = TRUE, threshold = NULL)
vp_plot_unkn

Arguments

- **cm**: dual unknown confusion matrix from VP
- **classes**: taxa groups in order, from VP
- **threshold**: minimum value which will be labelled in plot
- **summary**: logical to add text summary to plot E. Chisholm May 2019
- **sample_size**: character string describes the sample size used to train the model being plotted (optional)

Value

a visualization of the confusion matrix, normalized

Author(s)

E. Chisholm

Description

Makes confusion matrix like plot, where x axis represent SVM classification, y axis represent NN classification Allows visual summary of data lost to unknown category

Usage

vp_plot_unkn(cm, classes, threshold = 0, summary = TRUE, sample_size = NULL)
Index

* datasets
 ctd_dat_combine, 6
 ctd_roi_merge, 8
 ctd_roi_oce, 9
 roi_dat_combine, 12
 roimeas_dat_combine, 12
 size_df_f, 13
 taxa_conc_n, 14

as.oce, 36

bin_calculate, 3, 4, 5, 35
bin_cast, 3, 4

concentration_category, 4, 4
ctd_cast, 3, 4, 5
ctd_dat_combine, 6
ctd_df_cols, 7, 22
ctd_roi_merge, 8
ctd_roi_oce, 9
ctdFindProfiles, 6

getriMeasurments, 9

hist, 32

image_scale, 29
insertRow, 10
isopycnal_calculate, 10

normalize_matrix, 11

px_to_mm, 11

roi_dat_combine, 12
roimeas_dat_combine, 12

size_df_f, 13
swDepth, 3

taxa_conc_n, 14

vp_plot_matrix, 38
vp_plot_unkn, 39
vpr_autooid_check, 15
vpr_autooid_copy, 15
vpr_autooid_create, 16
vpr_autooid_read, 12, 16, 20, 21
vpr_category, 18, 24, 25, 34
vpr_category_create, 19
vpr_crd_files, 21
vpr_crd_read, 6, 7, 21, 22
vpr_crd_ymd, 23
vpr_crdroi_merge, 8, 20, 23, 26, 27, 35
vpr_crdroisize_merge, 13, 20, 37
vpr_day, 19, 23, 25, 34
vpr_dayhour, 24
vpr_hour, 19, 24, 25, 34
vpr_img_category, 25
vpr_img_check, 26
vpr_img_copy, 26, 27
vpr_img_depth, 27
vpr_img_reclassified, 28
vpr_manual_classification, 28, 28
vpr_oe_create, 4, 29
vpr_plot_contour, 30
vpr_plot_histsize, 31
vpr_plot_profile, 31
vpr_plot_sizefreq, 32
vpr_plot_T, 33, 33
vpr_plot_TScat, 33
vpr_roi, 19, 24, 25, 34
vpr_roi_concentration, 4, 14, 32, 35
vpr_save, 36
vpr_size_bin, 37
vpr_summary, 37
vpr_trrois_size, 38