Package ‘vpc’

January 11, 2021

Title Create Visual Predictive Checks
Version 1.2.2
Date 2021-01-11
Author Ron Keizer <ronkeizer@gmail.com>
Maintainer Ron Keizer <ronkeizer@gmail.com>
Description Visual predictive checks are a commonly used diagnostic plot in pharmacometrics, showing how certain statistics (percentiles) for observed data compare to those same statistics for data simulated from a model. The package can generate VPCs for continuous, categorical, censored, and (repeated) time-to-event data.
Depends R (>= 3.1.0)
Imports classInt, dplyr, MASS, survival, ggplot2, readr, stringr, tidyr
License MIT + file LICENSE
LazyData true
URL https://github.com/ronkeizer/vpc
Suggests knitr, testit
RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-11 20:20:02 UTC

R topics documented:

 vpc-package ... 2
 add_noise ... 3
 add_sim_index_number .. 3
 add_stratification .. 4
 auto_bin ... 4
 bin_data ... 5
 check_stratification_columns_available 5
VPC package

Description

Create Visual Predictive Checks in R

Author(s)

Ron Keizer <ronkeizer@gmail.com>
add_noise
Add noise / residual error to data

Description
Add noise / residual error to data

Usage
add_noise(x, ruv = list(proportional = 0, additive = 0, exponential = 0))

Arguments
x data
ruv list describing the magnitude of errors. List arguments: "proportional", "additive", "exponential".

Examples
library(dplyr)
ipred <- c(10, 8, 6, 4, 2, 0) %>% add_noise(ruv = list(proportional = 0.1, additive = 0.2))

add_sim_index_number
Add sim index number

Description
Add simulation index number to simulation when not present

Usage
add_sim_index_number(sim, id = "id", sim_label = "sim")

Arguments
sim a data.frame containing the simulation data
id character specifying the column name in the data.frame
sim_label label to indicate simulation index (if available)
add_stratification Adds stratification to data set

Description

Adds stratification to data set

Usage

add_stratification(dat, strat, verbose = FALSE)

Arguments

dat data.frame
strat vector of stratification variables
verbose verbosity (‘TRUE’ or ‘FALSE’)

auto_bin Calculate appropriate bin separators for vpc

Description

This function calculates bin separators either using R’s native binning approaches available in the classInt library such as ‘kmeans’, ‘jenks’, ‘pretty’ etc. Alternatively, a custom approach is available which is based on finding the nadirs in the density functions for the independent variable. Default approach is k-means clustering.

Usage

auto_bin(dat, type = "kmeans", n_bins = 8, verbose = FALSE, ...)

S3 method for class 'numeric'
auto_bin(dat, type = "kmeans", n_bins = 8, verbose = FALSE, ...)

S3 method for class 'data.frame'
auto_bin(dat, type = "kmeans", n_bins = 8, verbose = FALSE, ...)

Arguments

dat data frame
type auto-binning type: "density", "time", or "data"
n_bins number of bins to use; either a positive integer or "auto". For "density" the function might not return a solution with the exact number of bins.
verbose show warnings and other messages (TRUE or FALSE)
... arguments passed on to underlying binning functions
bin_data

Value

A vector of bin separators

bin_data

Function to bin data based on a vector of bin separators, e.g. for use in VPC

Description

Function to bin data based on a vector of bin separators, e.g. for use in VPC

Usage

`bin_data(x, bins = c(0, 3, 5, 7), idv = "time", labeled = F)`

Arguments

- `x` data
- `bins` numeric vector specifying bin separators
- `idv` variable in the data specifies the independent variable (e.g. "time")
- `labeled` whether a labeled factor instead of integers should be returned

check_stratification_columns_available

Check whether stratification columns are available

Description

Check whether stratification columns are available

Usage

`check_stratification_columns_available(data, stratify, type = "observation")`

Arguments

- `data` ‘data.frame’ with observation or simulation data
- `stratify` vector of stratification columns
- `type` either ‘observation’ or ‘simulation’
compute_kaplan

Compute Kaplan-Meier statistics

Description

Compute Kaplan-Meier statistics

Usage

compute_kaplan(
 dat,
 strat = "strat",
 reverse_prob = FALSE,
 rtte_conditional = TRUE,
 ci = NULL
)

Arguments

dat data.frame with events
strat vector of stratification variables
reverse_prob reverse the probability (i.e. return ‘1-probability’)?
rtte_conditional ‘TRUE’ (default) or ‘FALSE’. Compute the probability for each event newly
 (‘TRUE’), or calculate the absolute probability (‘FALSE’, i.e. the "probability
 of a 1st, 2nd, 3rd event etc" rather than the "probability of an event happening").

compute_kmmc

Compute KMMC statistics

Description

Kaplan-Meier Mean Covariate plots are a simulation-based diagnostic to study the influence of
covariates and identify potential model misspecification.

Usage

compute_kmmc(dat, strat = NULL, reverse_prob = FALSE, kmmc = "DOSE")

Arguments

dat data.frame with events
strat vector of stratification variables
reverse_prob reverse the probability (i.e. return ‘1-probability’)?
kmmc variable to create the KMMC plot for.
create_vpc_theme

Create new vpc theme

Description

Create new vpc theme

Usage

create_vpc_theme(...)

Arguments

... pass arguments to 'new_vpc_theme'

define_data_columns

Define data column defaults for various softwares

Description

Define data column defaults for various softwares

Usage

define_data_columns(sim, obs, sim_cols, obs_cols, software_type)

Arguments

sim simulated data
obs observed data
sim_cols list for mapping simulation data columns, e.g. ‘list(dv = "DV", id = "ID", idv = "TIME", pred="PRED")’
obs_cols list for mapping observation data columns, e.g. ‘list(dv = "DV", id = "ID", idv = "TIME", pred="PRED")’
software_type software type, one of ‘nonmem’, ‘phoenix’, ‘PKPDsim’
draw_params_mvr

Draw parameters from multivariate distribution

Description

Draw parameters from multivariate distribution

Usage

draw_params_mvr(ids, n_sim, theta, omega_mat, par_names = NULL)

Arguments

- *ids*: vector of id numbers
- *n_sim*: number of simulations
- *theta*: theta vector
- *omega_mat*: omega matrix
- *par_names*: parameter names vector

loq_perc

Calculate percentiles below / above lloq / uloq

Description

Calculate percentiles below / above lloq / uloq

Usage

loq_perc(x, limit = 1, cens = "left")

Arguments

- *x*: data
- *limit*: censoring limit
- *cens*: censoring direction (left/right)
new_vpc_theme

Create a customized VPC theme

Description

Create a customized VPC theme

Usage

new_vpc_theme(update = NULL)

Arguments

update list containing the plot elements to be updated. Run ‘new_vpc_theme()’ with no arguments to show an overview of available plot elements.

Details

This function creates a theme that customizes how the VPC looks, i.e. colors, fills, transparencies, linetypes an sizes, etc. The following arguments can be specified in the input list:

- obs_color: color for observations points
- obs_size: size for observation points
- obs_median_color: color for median observation line
- obs_median_linetype: linetype for median observation line
- obs_median_size: size for median observation line
- obs_ci_fill: color for observation CI fill
- obs_ci_color: color for observation CI lines
- obs_ci_linetype: linetype for observation CI lines
- obs_ci_size: size for observations CI lines
- sim_pi_fill: fill color for simulated prediction interval areas
- sim_pi_alpha: transparency for simulated prediction interval areas
- sim_pi_color: color for simulated prediction interval lines
- sim_pi_linetype: linetype for simulated prediction interval lines
- sim_pi_size: size for simulated prediction interval lines
- sim_median_fill: fill color for simulated median area
- sim_median_alpha: transparency for simulated median area
- sim_median_color: color for simulated median line
- sim_median_linetype: linetype for simulated median line
- sim_median_size: size for simulated median line
- bin_separators_color: color for bin separator lines, NA for don’t plot
- bin_separators_location: where to plot bin separators ("t" for top, "b" for bottom)
- loq_color: color of line showing limit of quantification
Value

A list with vpc theme specifiers

Examples

```r
theme1 <- new_vpc_theme(update = list(
    obs_color = "red",
    obs_ci_color = "#aa0000",
    obs_alpha = .3,
    sim_pi_fill = "#cc8833",
    sim_pi_size = 2
))
vpc(simple_data$sim, simple_data$obs, vpc_theme = theme1)
```

Description

Simulate PK data from a 1-compartment iv model

Usage

```r
pk_iv_1cmf(
    t,
    t_inf = 1,
    tau = 24,
    dose = 120,
    CL = 0.345,
    Vc = 1.75,
    ruv = NULL
)
```

Arguments

- `t` Time after dose
- `t_inf` Infusion length
- `tau` Dosing interval
- `dose` Dose
- `CL` Clearance
- `Vc` Volume of distribution
- `ruv` Residual variability

Value

A vector of predicted values, with or without added residual variability
Examples

```r
dat1 <- vpc:::pk_iv_1cmt(t = c(0:72), tau = 24, dose = 120,
CL = 5, Vc = 50)
dat2 <- vpc:::pk_iv_1cmt(t = c(0:72), tau = 24, dose = 120,
CL = 5, Vc = 50,
ruv = list(proportional = 0.1, additive = 0.1))
```

pk_oral_1cmt
Simulate PK data from a 1-compartment oral model

Description

Simulate PK data from a 1-compartment oral model

Usage

```r
pk_oral_1cmt(t, tau = 24, dose = 120, ka = 1, ke = 1, cl = 10, ruv = NULL)
```

Arguments

- `t`
 Time after dose
- `tau`
 Dosing interval
- `dose`
 Dose
- `ka`
 Absorption rate
- `ke`
 Elimination rate
- `cl`
 Clearance
- `ruv`
 Residual variability

Value

A vector of predicted values, with or without added residual variability

Examples

```r
dat1 <- vpc:::pk_oral_1cmt(t = c(0:72), tau = 24, dose = 120,
ka = 1, ke = 1, cl = 10)
dat2 <- vpc:::pk_oral_1cmt(t = c(0:72), tau = 24, dose = 120,
ka = 1, ke = 1, cl = 10,
ruv = list(proportional = 0.1, additive = 0.1))
```
plot_vpc

VPC plotting function

Description
This function performs no parsing of data, it just plots the already calculated statistics generated using one of the 'vpc' functions.

Usage
plot_vpc(
 db,
 show = NULL,
 vpc_theme = NULL,
 smooth = TRUE,
 log_x = FALSE,
 log_y = FALSE,
 xlab = NULL,
 ylab = NULL,
 title = NULL,
 verbose = FALSE
)

Arguments

 db object created using the 'vpc' function
 show what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)
 vpc_theme theme to be used in VPC. Expects list of class vpc_theme created with function vpc_themet()
 smooth "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.
 log_x Boolean indicting whether x-axis should be shown as logarithmic. Default is FALSE.
 log_y Boolean indicting whether y-axis should be shown as logarithmic. Default is FALSE.
 xlab label for x axis
 ylab label for y axis
 title title
 verbose verbosity (T/F)

See Also

 sim_data, vpc_cens, vpc_tte, vpc_cat
Examples

```r
library(vpc)
vpc_db <- vpc(sim = simple_data$sim, obs = simple_data$obs, vpcdb = TRUE)
plot_vpc(vpc_db, title = "My new vpc", x = "Custom x label")
```

quantile_cens

Calculate quantiles respecting the censored data

Description

Calculate quantiles respecting the censored data

Usage

```r
quantile_cens(x, p = 0.5, limit = 1, cens = "left")
```

Arguments

- `x`: data
- `p`: quantile
- `limit`: censoring limit
- `cens`: censoring direction (left/right)

read_table_nm

NONMEM output table import function

Description

Quickly import NONMEM output tables into R. Function taken from ‘modelviz’ package by Benjamin Guiastrennec. When both `skip` and `header` are NULL, `read_nmtab` will automatically detect the optimal settings to import the tables. When more than one files are provided for a same NONMEM run, they will be combined into a single data.frame.

Usage

```r
read_table_nm(
  file = NULL,
  skip = NULL,
  header = NULL,
  rm_duplicates = FALSE,
  nonmem_tab = TRUE
)
```
replace_list_elements

Arguments

- **file**: full file name
- **skip**: number of lines to skip before reading data
- **header**: logical value indicating whether the file contains the names of the variables as its first line
- **rm_duplicates**: logical value indicating whether duplicated columns should be removed
- **nonmem_tab**: logical value indicating to the function whether the file is a table or a nonmem additional output file.

Value

A data.frame

Examples

```r
# Not run:
data <- read_table_nm(file = '../models/pk/sdtab101')

# End(Not run)
```

replace_list_elements Replace list elements by name

Description

Replace list elements by name

Usage

```r
replace_list_elements(list, replacement)
```

Arguments

- **list**: original list
- **replacement**: replacement list

Details

Finds and replaces list elements by name and throws an error if an element is not available in the original list. This is a local duplicate of the PKPDmisc copy for the VPC package to reduce dependency on PKPDmisc at this time.
Examples

```r
## Not run:
list <- list(ipred = "ipred", dv = "dv", idv = "idv", "pred" = "pred")
replacement <- list(dv = "conc", idv = "time")
list <- replace_list_elements(list, replacement)

## End(Not run)
```

rtte_obs_nm

Simulated RTTE data (1x)

Description

An example dataset with simulated repeated time-to-event data

Usage

`rtte_obs_nm`

Format

An object of class `data.frame` with 573 rows and 6 columns.

rtte_sim_nm

Simulated RTTE data (100x)

Description

An example dataset with simulated repeated time-to-event data (100 simulations)

Usage

`rtte_sim_nm`

Format

An object of class `data.frame` with 2000000 rows and 7 columns.
show_default Defaults for show argument

Description
Defaults for show argument

Usage
show_default

Format
An object of class list of length 11.

show_default_tte Defaults for show argument for TTE VPC

Description
Defaults for show argument for TTE VPC

Usage
show_default_tte

Format
An object of class list of length 11.

simple_data A small rich dataset

Description
A small rich dataset

Usage
simple_data

Format
An object of class list of length 2.
Details

a list containing the obs and sim data for an example dataset to run a simple vpc.

Examples

```r
## Not run:
vpc(simple_data$sim, simple_data$obs)
## End(Not run)
```

sim_data

Simulate data based on a model and parameter distributions

Description

Simulate data based on a model and parameter distributions

Usage

```r
sim_data(
  design = cbind(id = c(1, 1, 1), idv = c(0, 1, 2)),
  model = function(x) { return(x$alpha + x$beta) },
  theta,
  omega_mat,
  par_names,
  par_values = NULL,
  draw_iiv = "mvrnorm",
  error = list(proportional = 0, additive = 0, exponential = 0),
  n = 100
)
```

Arguments

- **design**: a design dataset. See example
- **model**: A function with the first argument the simulation design, i.e. a dataset with the columns ... The second argument to this function is a dataset with parameters for every individual. This can be supplied by the user, or generated by this sim_data if theta and omega_mat are supplied.
- **theta**: vector of fixed effect parameters
- **omega_mat**: vector of between subject random effects, specified as lower triangle
- **par_names**: A character vector linking the parameters in the model to the variables in the dataset. See example.
- **par_values**: parameter values
- **draw_iiv**: draw between subject random effects?
- **error**: see example
- **n**: number of simulations to perform
Details

This function generates the simulated dependent values for use in the VPC plotting function.

Value

a vector of simulated dependent variables (for us in the VPC plotting function)

See Also

vpc

theme_empty

Empty ggplot2 theme

Description

Empty ggplot2 theme

Usage

theme_empty()

Examples

vpc(simple_data$sim, simple_data$obs) + theme_empty()

theme_plain

A nicer default theme for ggplot2

Description

A nicer default theme for ggplot2

Usage

theme_plain()

Examples

vpc(simple_data$sim, simple_data$obs) + theme_plain()
triangle_to_full Lower to full triangle

Description
Convert the lower triangle of a covariance matrix to a full matrix object

Usage
triangle_to_full(vect)

Arguments
vect the lower triangle of a covariance matrix

vpc VPC function

Description
Creates a VPC plot from observed and simulation data

Usage
vpc(sim, ...)

Default S3 method:
vpc(sim, ...)

vpc_vpc(
sim = NULL,
obs = NULL,
psn_folder = NULL,
bins = "jenks",
n_bins = "auto",
bin_mid = "mean",
obs_cols = NULL,
sim_cols = NULL,
software = "auto",
show = NULL,
stratify = NULL,
pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.05, 0.95),
cl = c(0.05, 0.95),
uloq = NULL,
lloq = NULL,
log.y = FALSE,
log.y.min = 0.001,
xlab = NULL,
ylab = NULL,
title = NULL,
smooth = TRUE,
vpc_theme = NULL,
facet = "wrap",
scales = "fixed",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE,
...)

Arguments

sim this is usually a data.frame with observed data, containing the independent and
dependent variable, a column indicating the individual, and possibly covariates.
E.g. load in from NONMEM using read_table_nm. However it can also be an
object like a nlmixr or xpose object

obs Other arguments sent to other methods (like xpose or nlmixr); Note these argu-
ments are not used in the default vpc and are ignored by the default method.

psn_folder a data.frame with observed data, containing the independent and dependent vari-
able, a column indicating the individual, and possibly covariates. E.g. load in
from NONMEM using read_table_nm

bins instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder

either "density", "time", or "data", "none", or one of the approaches available in
classInterval() such as "jenks" (default) or "pretty", or a numeric vector specify-
ing the bin separators.

n_bins when using the "auto" binning method, what number of bins to aim for

bin_mid either "mean" for the mean of all timepoints (default) or "middle" to use the
average of the bin boundaries.

obs.cols observation dataset column names (list elements: "dv", "idv", "id", "pred")
sim.cols simulation dataset column names (list elements: "dv", "idv", "id", "pred", "sim")
software name of software platform using (e.g. nonmem, phoenix)
show what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median,
sim_median_ci)
stratify character vector of stratification variables. Only 1 or 2 stratification variables
can be supplied.
pred_corr perform prediction-correction?
pred_corr.lower_bnd lower bound for the prediction-correction
pi simulated prediction interval to plot. Default is c(0.05, 0.95),

 ci confidence interval to plot. Default is (0.05, 0.95)

 uloq Number or NULL indicating upper limit of quantification. Default is NULL.

 lloq Number or NULL indicating lower limit of quantification. Default is NULL.

 log_y Boolean indicating whether y-axis should be shown as logarithmic. Default is FALSE.

 log_y_min minimal value when using log_y argument. Default is 1e-3.

 xlab label for x axis

 ylab label for y axis

 title title

 smooth "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.

 vpc_theme theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()

 facet either "wrap", "columns", or "rows"

 scales either "fixed" (default), "free_y", "free_x" or "free"

 labeller ggplot2 labeller function to be passed to underlying ggplot object

 vpcdb Boolean whether to return the underlying vpcdb rather than the plot

 verbose show debugging information (TRUE or FALSE)

Value

a list containing calculated VPC information (when vpcdb=TRUE), or a ggplot2 object (default)

See Also

sim_data, vpc_cens, vpc_tte, vpc_cat

Examples

See vpc.ronkeizer.com for more documentation and examples
library(vpc)

Basic commands:
vpc(sim = simple_data$sim, obs = simple_data$obs)
vpc(sim = simple_data$sim, obs = simple_data$obs, lloq = 20)
Description

Creates a VPC plot from observed and simulation data for categorical variables.

Usage

```r
vpc_cat(
  sim = NULL,
  obs = NULL,
  psn_folder = NULL,
  bins = "jenks",
  n_bins = "auto",
  bin_mid = "mean",
  obs_cols = NULL,
  sim_cols = NULL,
  software = "auto",
  show = NULL,
  ci = c(0.05, 0.95),
  uloq = NULL,
  lloq = NULL,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  smooth = TRUE,
  vpc_theme = NULL,
  facet = "wrap",
  labeller = NULL,
  plot = TRUE,
  vpcdb = FALSE,
  verbose = FALSE
)
```

Arguments

- `sim`: a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using `read_table_nm`
- `obs`: a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using `read_table_nm`
- `psn_folder`: instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder
- `bins`: either "density", "time", or "data", "none", or one of the approaches available in `classInterval()` such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n_bins</code></td>
<td>when using the "auto" binning method, what number of bins to aim for</td>
</tr>
<tr>
<td><code>bin_mid</code></td>
<td>either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries.</td>
</tr>
<tr>
<td><code>obs_cols</code></td>
<td>observation dataset column names (list elements: "dv", "idv", "id", "pred")</td>
</tr>
<tr>
<td><code>sim_cols</code></td>
<td>simulation dataset column names (list elements: "dv", "idv", "id", "pred")</td>
</tr>
<tr>
<td><code>software</code></td>
<td>name of software platform using (e.g. nonmem, phoenix)</td>
</tr>
<tr>
<td><code>show</code></td>
<td>what to show in VPC (obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)</td>
</tr>
<tr>
<td><code>ci</code></td>
<td>confidence interval to plot. Default is (0.05, 0.95)</td>
</tr>
<tr>
<td><code>uloq</code></td>
<td>Number or NULL indicating upper limit of quantification. Default is NULL.</td>
</tr>
<tr>
<td><code>lloq</code></td>
<td>Number or NULL indicating lower limit of quantification. Default is NULL.</td>
</tr>
<tr>
<td><code>xlab</code></td>
<td>label for x-axis</td>
</tr>
<tr>
<td><code>ylab</code></td>
<td>label for y-axis</td>
</tr>
<tr>
<td><code>title</code></td>
<td>title</td>
</tr>
<tr>
<td><code>smooth</code></td>
<td>"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.</td>
</tr>
<tr>
<td><code>vpc_theme</code></td>
<td>theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()</td>
</tr>
<tr>
<td><code>facet</code></td>
<td>either "wrap", "columns", or "rows"</td>
</tr>
<tr>
<td><code>labeller</code></td>
<td>ggplot2 labeller function to be passed to underlying ggplot object</td>
</tr>
<tr>
<td><code>plot</code></td>
<td>Boolean indicating whether to plot the ggplot2 object after creation. Default is FALSE.</td>
</tr>
<tr>
<td><code>vpcdb</code></td>
<td>boolean whether to return the underlying vpcdb rather than the plot</td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>show debugging information (TRUE or FALSE)</td>
</tr>
</tbody>
</table>

Value

a list containing calculated VPC information (when vpcdb=TRUE), or a ggplot2 object (default)

See Also

`sim_data, vpc, vpc_tte, vpc_cens`

Examples

```r
## See vpc.ronkeizer.com for more documentation and examples
library(vpc)

# simple function to simulate categorical data for single individual
sim_id <- function(id = 1) {
  n <- 10
  logit <- function(x) exp(x) / (1+exp(x))
  data.frame(id = id, time = seq(1, n, length.out = n),
```

The code above demonstrates how to use the `vpc` function from the `vpc` package to simulate categorical data for a single individual. The function `sim_id` generates a data frame with categorical time points for a given individual. The `logit` function is used to transform the time points into a probability scale, and this transformation is applied to create the categorical data.
vpc_cens

\[
\text{dv} = \text{round}\left(\text{logit}\left(\frac{1}{n} - \frac{n}{2} + \text{rnorm}(n, 0, 1.5)\right)\right)
\]

simple function to simulate categorical data for a trial

```r
sim_trial <- function(i = 1, n = 20) {
  # function to simulate categorical data for a trial
data.frame(sim = i, do.call("rbind", lapply(1:n, sim_id)))
}
```

simulate single trial for 20 individuals

```r
obs <- sim_trial(n = 20)
```

simulate 200 trials of 20 individuals

```r
sim <- do.call("rbind", lapply(1:200, sim_trial, n = 20))
```

Plot categorical VPC

```r
vpc_cat(sim = sim, obs = obs)
```

vpc_cens

VPC function for left- or right-censored data (e.g. BLOQ data)

Description

Creates a VPC plot from observed and simulation data for censored data. Function can handle both left- (below lower limit of quantification) and right-censored (above upper limit of quantification) data.

Usage

```r
vpc_cens(
  sim = NULL,
  obs = NULL,
  psn_folder = NULL,
  bins = "jenks",
  n_bins = 8,
  bin_mid = "mean",
  obs_cols = NULL,
  sim_cols = NULL,
  software = "auto",
  show = NULL,
  stratify = NULL,
  stratify_color = NULL,
  ci = c(0.05, 0.95),
  uloq = NULL,
  lloq = NULL,
  plot = FALSE,
  xlab = "Time",
  ylab = "Probability of <LOQ",
  title = NULL,
  smooth = TRUE,
)```
vpc_cens

```r
vpc_theme = NULL,
facet = "wrap",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE)
```}

### Arguments

- **sim**: a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using `read_table_nm`

- **obs**: a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using `read_table_nm`

- **psn_folder**: instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder

- **bins**: either "density", "time", or "data", or a numeric vector specifying the bin separators.

- **n_bins**: number of bins

- **bin_mid**: either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries.

- **obs_cols**: observation dataset column names (list elements: "dv", "idv", "id", "pred")

- **sim_cols**: simulation dataset column names (list elements: "dv", "idv", "id", "pred")

- **software**: name of software platform using (e.g. nonmem, phoenix)

- **show**: what to show in VPC (obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)

- **stratify**: character vector of stratification variables. Only 1 or 2 stratification variables can be supplied.

- **stratify_color**: variable to stratify and color lines for observed data. Only 1 stratification variables can be supplied.

- **ci**: confidence interval to plot. Default is (0.05, 0.95)

- **uiloq**: Number or NULL indicating upper limit of quantification. Default is NULL.

- **liloq**: Number or NULL indicating lower limit of quantification. Default is NULL.

- **plot**: Boolean indicating whether to plot the ggplot2 object after creation. Default is FALSE.

- **xlab**: ylab as numeric vector of size 2

- **ylab**: ylab as numeric vector of size 2

- **title**: title

- **smooth**: "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.

- **vpc_theme**: theme to be used in VPC. Expects list of class vpc_theme created with function `vpc_theme()`
vpc_tte

- **facet**: either "wrap", "columns", or "rows"
- **labeller**: ggplot2 labeller function to be passed to underlying ggplot object
- **vpcdb**: boolean whether to return the underlying vpcdb rather than the plot
- **verbose**: show debugging information (TRUE or FALSE)

**Value**

a list containing calculated VPC information, and a ggplot2 object

**See Also**

- sim_data, vpc, vpc_tte, vpc_cat

**Examples**

```r
See vpc.ronkeizer.com for more documentation and examples
library(vpc)

vpc_cens(sim = simple_data$sim, obs = simple_data$obs, lloq = 30)
vpc_cens(sim = simple_data$sim, obs = simple_data$obs, uloq = 120)
```

---

**vpc_tte**

*VPC function for time-to-event (survival) data*

**Description**

This function can be used for either single time-to-event (TTE) or repeated time-to-event (RTTE) data.

**Usage**

```r
vpc_tte(
 sim = NULL,
 obs = NULL,
 psn_folder = NULL,
 rtte = FALSE,
 rtte_calc_diff = TRUE,
 rtte_conditional = TRUE,
 events = NULL,
 bins = FALSE,
 n_bins = 10,
 software = "auto",
 obs_cols = NULL,
 sim_cols = NULL,
 kmmc = NULL,
)```
reverse_prob = FALSE,
stratify = NULL,
stratify_color = NULL,
c1 = c(0.05, 0.95),
plot = FALSE,
xlab = "Time",
ylab = "Survival (%)",
show = NULL,
as_percentage = TRUE,
title = NULL,
smooth = FALSE,
vpc_theme = NULL,
facet = "wrap",
labeller = NULL,
verbose = FALSE,
vpcdb = FALSE
)

Arguments

sim a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm
obs a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm
psn_folder instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder
rtte repeated time-to-event data? Default is FALSE (treat as single-event TTE)
rtte_calc_diff recalculate time (T/F)? When simulating in NONMEM, you will probably need to set this to TRUE to recalculate the TIME to relative times between events (unless you output the time difference between events and specify that as independent variable to the vpc_tte() function.
rtte_conditional 'TRUE' (default) or 'FALSE'. Compute the probability for each event newly ('TRUE'), or calculate the absolute probability ('FALSE', i.e. the "probability of a 1st, 2nd, 3rd event etc" rather than the "probability of an event happening").
events numeric vector describing which events to show a VPC for when repeated TTE data, e.g. c(1:4). Default is NULL, which shows all events.
bins either "density", "time", or "data", or a numeric vector specifying the bin separators.
n_bins number of bins
software name of software platform using (e.g. nonmem, phoenix)
obs_cols observation dataset column names (list elements: "dv", "idv", "id", "pred")
sim_cols simulation dataset column names (list elements: "dv", "idv", "id", "pred", "sim")
kmmc either NULL (for regular TTE vpc, default), or a variable name for a KMMLC plot (e.g. "WT")
reverse_prob: reverse the probability scale (i.e. plot 1-probability)

stratify: character vector of stratification variables. Only 1 or 2 stratification variables can be supplied.

stratify_color: character vector of stratification variables. Only 1 stratification variable can be supplied, cannot be used in conjunction with 'stratify'.

CI: confidence interval to plot. Default is (0.05, 0.95)

plot: Boolean indicating whether to plot the ggplot2 object after creation. Default is FALSE.

xlab: label for x-axis

ylab: label for y-axis

Show what to show in VPC (obs_ci, obs_median, sim_median, sim_median_ci)

as_percentage: Show y-scale from 0-100 percent? TRUE by default, if FALSE then scale from 0-1.

title: title

smooth: "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.

vpc_theme: theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()

facet: either "wrap", "columns", or "rows"

labeller: ggplot2 labeller function to be passed to underlying ggplot object

verbose: TRUE or FALSE (default)

vpcdb: Boolean whether to return the underlying vpcdb rather than the plot

Details

Creates a VPC plot from observed and simulation survival data

Value

a list containing calculated VPC information, and a ggplot2 object

See Also

sim_data, vpc, vpc_tte, vpc_cens

Examples

See vpc-docs.ronkeizer.com for more documentation and examples.

Example for repeated) time-to-event data
with NONMEM-like data (e.g. simulated using a dense grid)

data(rtte_obs_n)
data(rtte_sim_nm)
vpc_tte

treat RTTE as TTE, no stratification
vpc_tte(sim = rtte_sim_nm[rtte_sim_nm$sim <= 20,],
 obs = rtte_obs_nm,
 rtte = FALSE,
 sim_cols=list(dv = "dv", idv = "t"), obs_cols=list(idv = "t"))
Index

* aggregate functions
 sim_data, 17
* datasets
 rtte_obs_nm, 15
 rtte_sim_nm, 15
 show_default, 16
 show_default_tte, 16
 simple_data, 16
 show_default_tte, 16
 sim_data, 12, 17, 21, 23, 26, 28
 simple_data, 16
 theme_empty, 18
 theme_plain, 18
 triangle_to_full, 19
 vpc, 18, 19, 23, 26, 28
 vpc-package, 2
 vpc_cat, 12, 21, 22, 26
 vpc_cens, 12, 21, 23, 24, 28
 vpc_tte, 12, 21, 23, 26, 28
 vpc_vpc (vpc), 19

add_noise, 3
add_sim_index_number, 3
add_stratification, 4
auto_bin, 4
bin_data, 5
check_stratification_columns_available, 5
compute_kaplan, 6
compute_kmmc, 6
create_vpc_theme, 7

define_data_columns, 7
draw_params_mvr, 8

loq_perc, 8
new_vpc_theme, 9
pk_iv_1cmt, 10
pk_oral_1cmt, 11
plot_vpc, 12
quantile_cens, 13
read_table_nm, 13, 20, 22, 25, 27
replace_list_elements, 14
rtte_obs_nm, 15
rtte_sim_nm, 15
show_default, 16