Package ‘visR’

June 14, 2021

Type Package

Title Clinical Graphs and Tables Adhering to Graphical Principles

Description To enable fit-for-purpose, reusable clinical and medical research focused visualizations and tables with sensible defaults and based on graphical principles as described in:
``Vandemeulebroecke et al. (2018)” <doi:10.1002/pst.1912>,
``Vandemeulebroecke et al. (2019)” <doi:10.1002/psp4.12455>, and

Version 0.2.0

Date 2021-06-11

LazyData true

Maintainer Mark Baillie <bailliem@gmail.com>

URL https://github.com/openpharma/visR

BugReports https://github.com/openpharma/visR/issues

License MIT + file LICENSE

Depends R (>= 3.0.0)

Suggests covr, testthat (>= 2.1.0), vdiffr, knitr, rmarkdown, forcats, glue, tibble, data.table

RoxygenNote 7.1.1

Encoding UTF-8

biocViews

Imports broom, DT, survival, magrittr, ggplot2, tidyr, dplyr, kableExtra, gt (>= 0.1.0), tidyselect, parcats (>= 0.0.1), cowplot, gttable, gridExtra, rlang

VignetteBuilder knitr

NeedsCompilation no

Author Diego Saldana [aut],
Charlotta Fruechtenicht [aut],
Mark Baillie [aut, cre],
Marc Vandemeulebroecke [aut],
Thanos Siadimas [aut],
Pawel Kawski [aut],
Steven Haesendonckx [aut],
James Black [aut],
Pelagia Alexandra Papadopoulou [aut],
Tim Treis [aut],
Rebecca Albrecht [aut]

Repository CRAN

Date/Publication 2021-06-14 09:00:02 UTC

R topics documented:

add_annotation .. 3
add_CI ... 5
add_CNSR ... 6
add_risktable .. 7
adtte ... 9
AlignPlots .. 10
apply_attrition ... 11
apply_theme .. 11
brca_cohort .. 12
define_theme .. 13
estimate_KM .. 14
get_attrition ... 15
get_COX_HR .. 16
get_pvalue ... 17
get_quantile .. 19
get_risktable .. 20
get_summary .. 21
get_tableone .. 22
legendopts ... 24
render ... 25
summarize_long ... 26
summarize_long.default ... 27
summarize_long.factor ... 27
summarize_long.integer ... 28
summarize_long.numeric ... 28
summarize_short ... 29
summarize_short.default ... 29
summarize_short.factor ... 30
summarize_short.integer ... 30
summarize_short.numeric ... 31
tableone ... 31
the_lhs ... 33
tidyme ... 34
visr ... 35
add_annotation

Add annotations to a visR object

Description

Wrapper around ggplot2::annotation_custom for simplified annotation to ggplot2 plots. This function accepts a string, dataframe, data.table, tibble or customized objects of class gtable and places them on the specified location on the ggplot. The layout is fixed: bold columnheaders and plain body. Only the font size and type can be chosen. Both the initial plot as the individual annotation are stored as attribute component in the final object.

Usage

```r
add_annotation(
  gg = NULL,
  label = NULL,
  base_family = "sans",
  base_size = 11,
  xmin = -Inf,
  xmax = Inf,
  ymin = -Inf,
  ymax = Inf
)
```

Arguments

- **gg** Object of class ggplot.
- **label** String, dataframe, data.table, tibble used to annotate the ggplot.
- **base_family** character. Base font family
- **base_size** numeric. Base font size in pt
- **xmin** x coordinates giving horizontal location of raster in which to fit annotation.
- **xmax** x coordinates giving horizontal location of raster in which to fit annotation.
- **ymin** y coordinates giving vertical location of raster in which to fit annotation.
- **ymax** y coordinates giving vertical location of raster in which to fit annotation.

Value

Object of class ggplot with added annotation with an object of class gtable.

See Also

tableGrob annotation_custom
Examples

```r
## Estimate survival
surv_object <- visR::estimate_KM(data = adtte, strata = "TRTP")

## We want to annotate the survival KM plot with a simple string comment
visR::visr(surv_object) %>%
  visR::add_annotation(
    label = "My simple comment",
    base_family = "sans",
    base_size = 15,
    xmin = 110,
    xmax = 180,
    ymin = 0.80
  )

## Currently, care needs to be taken on the x-y values relative to the plot data area. Here we are plotting outside of the data area.
visR::visr(surv_object) %>%
  visR::add_annotation(
    label = "My simple comment",
    base_family = "sans",
    base_size = 15,
    xmin = 210,
    xmax = 380,
    ymin = 1.0
  )

## We may also want to annotate a KM plot with information from additional tests or estimates. This example we annotate with p-values contained in a tibble

## we calculate p-values for "Equality across strata"
lbl <- visR::get_pvalue(surv_object,
  statlist = c("test", "pvalue"),
  type = "All")

## display p-values
lbl

## Now annotate survival KM plot with the p-values
visR::visr(surv_object) %>%
  visR::add_annotation(
    label = lbl,
    base_family = "sans",
    base_size = 9,
    xmin = 100,
    xmax = 180,
    ymin = 0.80
  )
```
add_CI

Add confidence interval (CI) to visR object

Description
Method to add pointwise confidence intervals to a an object created by visR through an S3 method. The method is set up to use the pipe %>% . There are two options to display CI’s, a "ribbon" or as "step" lines.
No default method is available at the moment.

Usage
add_CI(gg, ...)

S3 method for class 'ggsurvfit'
add_CI(gg, alpha = 0.1, style = "ribbon", linetype, ...)

Arguments

- **gg** A ggplot created with visR
- **...** other arguments passed on to the method to modify geom_ribbon
- **alpha** aesthetic of ggplot2 geom_ribbon. Default is 0.1.
- **style** aesthetic of ggplot2 geom_ribbon. Default is "ribbon". An alternative option is "step" that uses a line to display interval bounds.
- **linetype** aesthetic of ggplot2 geom_ribbon.

Value
Pointwise confidence interval overlayed on a visR ggplot

Examples

library(visR)

Estimate KM curves by treatment group
survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1-CNSR) ~ TRTP)

plot without confidence intervals (CI)
p <- visR::visr(survfit_object)
p

add CI to plot with default settings
p %>% add_CI()

change transparency of CI ribbon
p %>% add_CI(alpha = 0.9, style = "ribbon")
plot CI as a step line instead of ribbon
p %>% add_CI(alpha = 0.1, style = "step")

change linetype of CI
p %>% add_CI(style = "step", linetype = 1)

Description

Add censoring symbols to a visR ggplot through an S3 method. The S3 method is for adding censoring symbols to a visR ggplot. The method is set up to use the pipe %>%.

No default method is available at the moment.

Usage

```r
add_CNSR(gg, ...)
```

```r
# S3 method for class 'ggsurvfit'
add_CNSR(gg, shape = 3, size = 2, ...)
```

Arguments

- **gg**: A ggplot created with visR
- **...**: other arguments passed on to the method to modify `geom_point`
- **shape**: aesthetic of ggplot2 `geom_point`. Default is 3.
- **size**: aesthetic of ggplot2 `geom_point`. Default is 2.

Value

Censoring symbols overlayed on a visR ggplot

Examples

```r
library(visR)

# Estimate KM curves by treatment group
survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1-CNSR) ~ TRTP)

# plot without confidence intervals
p <- visR::visr(survfit_object)
p

# add censoring to plot
```
add_risktable

Add risk tables to visR plots through an S3 method

Description

S3 method for adding risk tables to visR plots. The function has following workflow:

- The risktables are calculated using `get_risktable`
- The risktables are placed underneath visR plots using `plot_grid`
- Both the initial visR plot as the individual risktables are stored as attribute component in the final object to allow post-modification of the individual plots if desired

Usage

```r
add_risktable(gg, ...)
```

S3 method for class 'ggsurvfit'

```r
add_risktable(  
  gg,  
  times = NULL,  
  statlist = c("n.risk"),  
  label = "At risk",  
  group = "strata",  
  collapse = FALSE,  
  ...  
)
```

Arguments

- `gg` visR plot of class ggsurvfit
- `...` other arguments passed on to the method add_risktable
- `times` Numeric vector indicating the times at which the risk set, censored subjects, events are calculated.
- `statlist` Character vector indicating which summary data to present. Current choices are "n.risk" "n.event" "n.censor". Default is "n.risk".
- `label` Character vector with labels for the statlist. Default matches "n.risk" with "At risk", "n.event" with "Events" and "n.censor" with "Censored".
add_risktable

String indicating the grouping variable for the risk tables. Current options are:

- "strata": groups the risk tables per stratum. The label specifies the label within each risk table. The strata levels are used for the titles of the risk tables. This is the default.

- "statlist": groups the risk tables per statlist. The label specifies the title for each risk table. The strata levels are used for labeling within each risk table.

Default is "strata".

collapse

Boolean, indicates whether to present the data overall. Default is FALSE.

Value

Object of class ggplot with added risk table.

See Also

plot_grid

Examples

```r
## Display 2 risk tables, 1 per statlist
adtte %>%
  visR::estimate_KM(strata = "TRTP") %>%
  visR::visr() %>%
  visR::add_risktable(label = c("Subjects at Risk", "Censored"),
                      statlist = c("n.risk", "n.censor"),
                      group = "statlist")

## Display overall risk table at selected times
adtte %>%
  visR::estimate_KM(strata = "TRTP") %>%
  visR::visr() %>%
  visR::add_risktable(label = c("Subjects at Risk", "Censored"),
                      statlist = c("n.risk", "n.censor"),
                      collapse = TRUE,
                      times = c(0, 20, 40, 60))

## Add risk set as specified times
adtte %>%
  visR::estimate_KM(strata = "TRTP") %>%
  visR::visr() %>%
  visR::add_risktable(times = c(0, 20, 40, 100, 111, 200))
```
Description

ADTTE data copied from the 2013 CDISC Pilot

Usage

adtte

Format

A data frame with 254 rows and 26 variables:

STUDYID Study Identifier
SITEID Study Site Identifier
USUBJID Unique Subject Identifier
AGE Age
AGEGR1 Pooled Age Group 1
AGEGR1N Pooled Age Group 1 (N)
RACE Race
RACEN Race (N)
SEX Sex
TRTSDT Date of First Exposure to Treatment
TRTDT Date of Last Exposure to Treatment
TRTDUR Duration of treatment (days)
TRTP Planned Treatment
TRTA Actual Treatment
TRTAN Actual Treatment (N)
PARAM Parameter Description
PARAMCD Parameter Code
VAL Analysis Value
STARTDT Time to Event Origin Date for Subject
ADT Analysis Date
CNSR Censor
EVNTDESC Event or Censoring Description
SRCDOM Source Domain
SRCVAR Source Variable
SRCSEQ Source Sequence Number
SAFFL Safety Population Flag
AlignPlots

Source

Examples

data("adtte")

AlignPlots

Align multiple ggplot graphs, taking into account the legend width.

Description
This function aligns multiple ggplot graphs by making them the same width by taking into account the legend width.

Usage
AlignPlots(pltlist = NULL)

Arguments

pltlist A list of plots (TODO: provide more detail)

Value
List of ggplot with equal width.

References

Examples

library(ggplot2)
library(gtable)
library(cowplot)

create 2 graphs
p1 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE), fill = "Age").) +
 ggplot2::geom_histogram(bins = 15)
p2 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE)).) +
 ggplot2::geom_histogram(bins = 15)

default alignment does not take into account legend size
cowplot::plot_grid(plotlist = list(p1, p2), align = "none", nrow=2)

Alignplots takes into account legend width
cowplot::plot_grid(plotlist = AlignPlots(pltlist = list(p1, p2)), align = "none", nrow=2)
apply_attrition

Apply list of inclusion/exclusion criteria to a patient-level dataframe

Description

Apply list of inclusion/exclusion criteria to a patient-level dataframe

Usage

apply_attrition(data, criteria_conditions)

Arguments

data data.frame. Data set to be filtered

criteria_conditions character Dplyr-filter compatible conditions of the filtering criteria. These conditions will be applied to filter the input data set and obtain final analysis data set

Value

Filtered data frame

Examples

adtte_filtered <- visR::apply_attrition(adtte, criteria_conditions = c("TRTP=='Placebo'","AGE>=75", "RACE=='WHITE'", "SITEID==709"))

apply_theme

Applies a theme to a ggplot object.

Description

Takes in the styling options defined through visR::define_theme and applies them to a plot.

Usage

apply_theme(gg, visR_theme_dict = NULL)

Arguments

gg object of class ggplot

visR_theme_dict nested list containing possible font options
brca_cohort

Value

- object of class ggplot

Examples

```r
library(visR)

theme <- visR::define_theme(strata = list("SEX" = list("F" = "red",
               "M" = "blue"),
               "TRTA" = list("Placebo" = "cyan",
               "Xanomeline High Dose" = "purple",
               "Xanomeline Low Dose" = "brown")),
               fontsizes = list("axis" = 12,
               "ticks" = 10,
               "legend_title" = 10,
               "legend_text" = 8),
               fontfamily = "Helvetica",
               grid = FALSE,
               bg = "transparent",
               legend_position = "top")

gg <- adtte %>%
  visR::estimate_KM(strata = "SEX") %>%
  visR::visr() %>%
  visR::add_CI() %>%
  visR::apply_theme(theme)

gg
```

brca_cohort Cancer survival data

Description

- Creation script in data-raw

Usage

brca_cohort

Format

- An object of class data.frame with 1098 rows and 10 columns.
define_theme

Provides a simple wrapper for themes

Description

This function collects several lists if they are present. If absent, reasonable defaults are used.

Usage

```r
define_theme(
strata = NULL,
fontsizes = NULL,
fontfamily = "Helvetica",
grid = FALSE,
bg = "transparent",
legend_position = NULL
)
```

Arguments

- **strata** list containing the different strata and name:colour value pairs
- **fontsizes** list containing the font sizes for different options
- **fontfamily** string with the name of a supported font
- **grid** boolean that specifies whether the grid should be drawn or not
- **bg** string giving the colour for the background of the plot
- **legend_position** string indicating the legend position

Value

Nested list with styling preferences for a ggplot object

Examples

```r
theme <- visR::define_theme(strata = list("SEX" = list("F" = "red",
"M" = "blue"),
"TRTA" = list("Placebo" = "cyan",
"Xanomeline High Dose" = "purple",
"Xanomeline Low Dose" = "brown")),
fontsizes = list("axis" = 12,
"ticks" = 10,
"legend_title" = 10,
"legend_text" = 8),
fontfamily = "Helvetica",
grid = list("major" = FALSE,
"minor" = FALSE),
```
Description

This function is a wrapper around `survival::survfit.formula` to perform a Kaplan-Meier analysis, assuming right-censored data. The function expects that the data has been filtered on the parameter (PARAM/PARAMCD) of interest. Alternatively, PARAM/PARAMCD can be used in the `strata` argument.

The result is an object of class `survfit` which can be used in downstream functions and methods that rely on the `survfit` class. By default:

- The Kaplan Meier estimate is estimated directly (`stype = 1`).
- The cumulative hazard is estimated using the Nelson-Aalen estimator (`ctype = 1`): \(H_{\text{tilde}} = \text{cumsum}(x$n.event/x$n.risk) \). The MLE \(\hat{H}(t) = -\log(S(t)) \) can’t be requested.
- A two-sided pointwise 0.95 confidence interval is estimated using a log transformation (`conf.type = "log"`).

Usage

`estimate_KM(data = NULL, strata = NULL, CNSR = "CNSR", AVAL = "AVAL", ...)`

Arguments

- `data`: The name of the dataset for Time-to-Event analysis based on the Analysis Data Model (ADaM) principles. The dataset is expected to have one record per subject per analysis parameter. Rows in which the analysis variable (AVAL) or the sensor variable (CNSR) contain NA, are removed during analysis.
- `strata`: Character vector, representing the strata for Time-to-Event analysis. When NULL, an overall analysis is performed. Default is NULL.
- `CNSR`: Censor for Time-to-Event analysis. Default is "CNSR", as per CDISC ADaM guiding principles.
- `AVAL`: Analysis value for Time-to-Event analysis. Default is "AVAL", as per CDISC ADaM guiding principles.
- `...`: additional arguments passed on to the ellipsis of the call `survival::survfit.formula(data = data, formula = Surv(AVAL,1-CNSR) ~ strata),...`). Use `?survival::survfit.formula` and `?survival::survfitCI` for more information.

Value

`survfit` object, extended by elements PARAM/PARAMCD, ready for downstream processing in estimation or visualization functions and methods.
get_attrition

References

https://github.com/therneau/survival

See Also

survfit.formula survfitCI

Examples

```r
## No stratification
visR::estimate_KM(data = adtte)

## Stratified Kaplan-Meier analysis by `TRTP`
visR::estimate_KM(data = adtte, strata = "TRTP")

## Stratified Kaplan-Meier analysis by `TRTP` and `SEX`
visR::estimate_KM(data = adtte, strata = c("TRTP", "SEX"))

## Stratification with one level
visR::estimate_KM(data = adtte, strata = "PARAMCD")

## Analysis on subset of adtte
visR::estimate_KM(data = adtte[adtte$SEX == "F", ])

## Modify the default analysis by using the ellipsis
visR::estimate_KM(data = adtte, strata = NULL,
                   type = "kaplan-meier", conf.int = FALSE, timefix = TRUE)

## Example working with non CDISC data
head(survival::veteran)

# convert time and censoring data to ADaM variables
# convert censoring status to CDISC principles
veteran_adam <- survival::veteran %>%
               dplyr::mutate(AVAL = time,
                             CNSR = dplyr::if_else(status == 1, 0, 1))

visR::estimate_KM(data = veteran_adam, strata = "trt")
```

get_attrition Generate cohort attrition table

Description

[Experimental] This is an experimental function that may be developed over time.

This function calculates the subjects counts excluded and included for each step of the cohort selection process.
Usage

get_attrition(data, criteria_descriptions, criteria_conditions, subject_column_name)

Arguments

data Dataframe. It is used as the input data to count the subjects that meets the criteria of interest
criteria_descriptions character It contains the descriptions of the inclusion/exclusion criteria. Each element of the vector corresponds to the description of each criterion.
criteria_conditions character It contains the corresponding conditions of the criteria. These conditions will be used in the table to compute the counts of the subjects.
subject_column_name character The column name of the table that contains the subject id.

Details

criteria_descriptions and criteria_conditions need to be of same length

Value

The counts and percentages of the remaining and excluded subjects for each step of the cohort selection in a table format.

Examples

visR::get_attrition(adtte,
 criteria_descriptions =
 c("1. Placebo Group", "2. Be 75 years of age or older.",
 "3. White", "4. Site 709"),
 criteria_conditions = c("TRTP=='Placebo'","AGE>=75",
 "RACE=='WHITE'", "SITEID==709"),
 subject_column_name = 'USUBJID')

get_COX_HR

Summarize Hazard Ratio from a survival object using S3 method

description

S3 method for extracting information regarding Hazard Ratios. The function allows the survival object's formula to be updated. No default method is available at the moment.
Usage

get_COX_HR(x, ...)

S3 method for class 'survfit'
get_COX_HR(x, update_formula = NULL, ...)

Arguments

x An object of class survfit
...
other arguments passed on to the method survival::coxph
update_formula Template which specifies how to update the formula of the survfit object update.formula

Value

A tidied object of class coxph containing Hazard Ratios

See Also

coxph update.formula

Examples

treatment effect
survfit_object_trt <- visR::estimate_KM(data = adtte, strata = c("TRTP"))
visR::get_COX_HR(survfit_object_trt)

treatment and gender effect
survfit_object_trt_sex <- visR::estimate_KM(data = adtte, strata = c("TRTP", "SEX"))
visR::get_COX_HR(survfit_object_trt_sex)

update formula of KM estimates by treatment to include "SEX" for HR estimation
visR::get_COX_HR(survfit_object_trt, update_formula = ". ~ . + SEX")

update formula of KM estimates by treatment to include "AGE" for
HR estimation with ties considered via the efron method
visR::get_COX_HR(survfit_object_trt,
 update_formula = ". ~ . + survival::strata(AGE)", ties = "efron")

get_pvalue

Summarize the test for equality across strata from a survival object using S3 method

Description

Wrapper around survival::survdiff that tests the null hypothesis of equality across strata.
Usage

get_pvalue(
 survfit_object,
 ptype = "All",
 rho = NULL,
 statlist = c("test", "Chisq", "df", "pvalue"),

)

Arguments

survfit_object An object of class survfit
ptype Character vector containing the type of p-value desired. Current options are "Log-Rank" "Wilcoxon" "Tarone-Ware" "Custom" "All". "Custom" allows the user to specify the weights on the Kaplan-Meier estimates using the argument rho. The default is "All" displaying all types possible. When rho is specified in context of "All", also a custom p-value is displayed.
rho a scalar parameter that controls the type of test.
statlist Character vector containing the desired information to be displayed. The order of the arguments determines the order in which they are displayed in the final result. Default is the test name ("test"), Chi-square test statistic ("Chisq"), degrees of freedom ("df") and p-value ("pvalue").

Value

A data frame with summary measures for the Test of Equality Across Strata

See Also

survdiff

Examples

general examples
survfit_object <- visR::estimate_KM(data = adtte, strata = "TRTP")
visR::get_pvalue(survfit_object)
visR::get_pvalue(survfit_object, ptype = "All")

examples to obtain specific tests
visR::get_pvalue(survfit_object, ptype = "Log-Rank")
visR::get_pvalue(survfit_object, ptype = "Wilcoxon")
visR::get_pvalue(survfit_object, ptype = "Tarone-Ware")

Custom example - obtain Harrington and Fleming test
visR::get_pvalue(survfit_object, ptype = "Custom", rho = 1)

Get specific information and statistics
get_quantile

visR::get_pvalue(survfit_object, ptype = "Log-Rank", statlist = c("test", "Chisq", "df", "pvalue"))
visR::get_pvalue(survfit_object, ptype = "Wilcoxon", statlist = c("pvalue"))

get_quantile
Wrapper around quantile methods

Description

S3 method for extracting quantiles. No default method is available at the moment.

Usage

get_quantile(x, ...)

S3 method for class 'survfit'
get_quantile(
 x,
 ...,
 probs = c(0.25, 0.5, 0.75),
 conf.int = TRUE,
 tolerance = sqrt(.Machine$double.eps)
)

Arguments

x
An object of class survfit

...
other arguments passed on to the method

probs
probabilities Default = c(0.25, 0.50, 0.75)

conf.int
should lower and upper confidence limits be returned?

tolerance
tolerance for checking that the survival curve exactly equals one of the quantiles

Value

A data frame with quantiles of the object

See Also

quantile.survfit
get_risktable

Examples

Kaplan-Meier estimates
survfit_object <- visR::estimate_KM(data = adtte, strata = c("TRTP"))

visR quantiles
visR::get_quantile(survfit_object)

survival quantiles
quantile(survfit_object)

get_risktable Obtain risk tables for tables and plots

Description

Create a risk table from an object using an S3 method. Currently, no default method is defined.

Usage

get_risktable(x, ...)

S3 method for class 'survfit'
get_risktable(
 x,
 times = NULL,
 statlist = c("n.risk"),
 label = NULL,
 group = "strata",
 collapse = FALSE,
 ...
)

Arguments

x an object of class survfit
...
other arguments passed on to the method
times Numeric vector indicating the times at which the risk set, censored subjects, events are calculated.
statlist Character vector indicating which summary data to present. Current choices are "n.risk" "n.event" "n.censor". Default is "n.risk".
label Character vector with labels for the statlist. Default matches "n.risk" with "At risk", "n.event" with "Events" and "n.censor" with "Censored".
group String indicating the grouping variable for the risk tables. Current options are:
get_summary

- "strata": groups the risk tables per stratum. The label specifies the label within each risk table. The strata levels are used for the titles of the risk tables. This is the default.
- "statlist": groups the risk tables per statlist. The label specifies the title for each risk table. The strata levels are used for labeling within each risk table.

Default is "strata".

collapse

Boolean, indicates whether to present the data overall. Default is FALSE.

Value

return list of attributes the form the risk table i.e. number of patients at risk per strata

return list of attributes the form the risk table i.e. number of patients at risk per strata

See Also

summary.survfit

Description

S3 method for extracting descriptive statistics across strata. No default method is available at the moment.

Usage

get_summary(x, ...)

S3 method for class 'survfit'
get_summary(
x,
statlist = c("strata", "records", "events", "median", "LCL", "UCL", "CI"),
...)

Arguments

x An object of class survfit

... other arguments passed on to the method
statlist Character vector containing the desired information to be displayed. The order of the arguments determines the order in which they are displayed in the final result. Default is the strata ("strata"), number of subjects ("records"), number of events ("events"), the median survival time ("median"), the Confidence Interval ("CI"), the Lower Confidence Limit ("UCL") and the Upper Confidence Limit ("UCL").

@examples
survfit_object <- survival::survfit(data = adtte, Surv(A VAL, 1-CNSR) ~ TRTP)
get_summary(survfit_object)

Value

A data frame with summary measures from a `survfit` object

Description

S3 method for creating a table of summary statistics. The summary statistics can be used for presentation in tables such as table one or baseline and demography tables.

The summary statistics estimated are conditional on the variable type: continuous, binary, categorical, etc.

By default the following summary stats are calculated:

- Numeric variables: mean, min, 25th-percentile, median, 75th-percentile, maximum, standard deviation
- Factor variables: proportion of each factor level in the overall dataset
- Default: number of unique values and number of missing values

Usage

```r
get_tableone(
  data,
  strata = NULL,
  overall = TRUE,
  summary_function = summarize_short
)
```

```r
## Default S3 method:
get_tableone(
  data,
  strata = NULL,
  overall = TRUE,
  summary_function = summarize_short
)
```

```r
## Example
survfit_object <- survival::survfit(data = adtte, Surv(A VAL, 1-CNSR) ~ TRTP)
get_summary(survfit_object)
```
Arguments

data The dataset to summarize as dataframe or tibble
strata Stratifying/Grouping variable name(s) as character vector. If NULL, only over-
 all results are returned
overall If TRUE, the summary statistics for the overall dataset are also calculated
summary_function A function defining summary statistics for numeric and categorical values

Details

It is possible to provide your own summary function. Please have a loot at summary for inspiration.

Value

A list of data specified summaries for all input variables.

object of class tableone. That is a list of data specified summaries for all input variables.

Note

All columns in the table will be summarized. If only some columns shall be used, please select only
those variables prior to creating the summary table by using dplyr::select()

Examples

Example using the ovarian data set

survival::ovarian %>%
dplyr::select(-fustat) %>%
dplyr::mutate(
 age_group = factor(
 dplyr::case_when(
 age <= 50 ~ "<= 50 years",
 age <= 60 ~ "<= 60 years",
 age <= 70 ~ "<= 70 years",
 TRUE ~ "> 70 years"
)
),
 rx = factor(rx),
 ecog.ps = factor(ecog.ps)
) %>%
dplyr::select(age, age_group, everything()) %>%
visR::get_tableone()

Examples using ADaM data

display patients in an analysis set
adtte %>%
dplyr::filter(SAFFL == "Y") %>%
dplyr::select(TRTA) %>%
legendopts

Translates options for legend into a list that can be passed to ggplot2

Description

This function takes the legend position and orientation, defined by the user and puts them into a list for ggplot2.

Usage

legendopts(legend_position = "right", legend_orientation = NULL)

Arguments

legend_position
 Default = "right".

legend_orientation
 Default = NULL.

Value

List of legend options for ggplot2.
Render a previously created dataframe to html, rtf or latex

Usage

```r
render(
  data,
  title,
  datasource,
  footnote = "",
  output_format = "html",
  engine = "gt",
  download_format = c("copy", "csv", "excel")
)
```

S3 method for class 'tableone'

```r
render(
  data,
  title,
  datasource,
  footnote = "",
  output_format = "html",
  engine = "gt",
  download_format = c("copy", "csv", "excel")
)
```

S3 method for class 'risktable'

```r
render(
  data,
  title,
  datasource,
  footnote = "",
  output_format = "html",
  engine = "gt",
  download_format = c("copy", "csv", "excel")
)
```

S3 method for class 'data.frame'

```r
render(
  data,
  title,
  datasource,
  footnote = "",
  output_format = "html",
  engine = "gt",
  download_format = c("copy", "csv", "excel")
)
```
output_format = "html",
engine = "gt",
download_format = c("copy", "csv", "excel")
)

Arguments

data The dataframe or tibble to visualise
title Table title to include in the rendered table
datasource String specifying the datasource underlying the data set
footnote String specifying additional information to be displayed in the table note along-
side the data source and specifications of statistical tests.
output_format If TRUE, the summary statistics for the overall dataset are also calculated
engine If html is selected as output format, one can chose between using kable, gt and
DT as engine to create the output table
download_format How can users download it

Value

A table-like data structure, possibly interactive depending on the choice of the engine
A table-like data structure, possibly interactive depending on the choice of the engine
A table-like data structure, possibly interactive depending on the choice of the engine
A table-like data structure, possibly interactive depending on the choice of the engine

summarize_long Calculate summary statistics for a vector

Description

Calculates several summary statistics for a vector depending on the vector class

Usage

summarize_long(x)

Arguments

x an object

Value

A summarized version of the input.
summarize_long.default

Create variable summary for all other variable types

Description
Create variable summary for all other variable types

Usage
```r
## Default S3 method:
summarize_long(x)
```

Arguments
- `x`: an object of any other class

Value
List of counts for unique and missing values in `x`.

summarize_long.factor Create variable summary for factors

Description
Create variable summary for factors

Usage
```r
## S3 method for class 'factor'
summarize_long(x)
```

Arguments
- `x`: an object of class "factor"

Value
Long list of summary statistics for the input factors.
summarize_long.integer

Create variable summary for numeric variables

Description

Create variable summary for numeric variables

Usage

```r
## S3 method for class 'integer'
summarize_long(x)
```

Arguments

- `x` an object of class "integer"

Value

Long list of summary statistics for the input.

summarize_long.numeric

Create variable summary for numeric variables

Description

Create variable summary for numeric variables

Usage

```r
## S3 method for class 'numeric'
summarize_long(x)
```

Arguments

- `x` an object of class "numeric"

Value

Long list of summary statistics for the input.
summarize_short

Create abbreviated variable summary for table 1

Description
This function creates summaries combines multiple summary measures in a single formatted string.

Usage
summarize_short(x)

Arguments
x

a vector to be summarized

Value
A summarized less detailed version of the input.

summarize_short.default

Create variable summary for all other variable types

Description
Create variable summary for all other variable types

Usage
Default S3 method:
summarize_short(x)

Arguments
x

an object of any other class

Value
List of counts for unique and missing values in x.
summarize_short.factor

Create variable summary for factors

Description

Calculates N and % of occurrence for each factor value

Usage

```r
## S3 method for class 'factor'
summarize_short(x)
```

Arguments

- `x` an object of class "factor"

Value

Short list of summary statistics for the input factors.

summarize_short.integer

Create variable summary for integer variables

Description

Calculates mean (standard deviation), median (IQR), min-max range and N/% missing elements for a integer vector.

Usage

```r
## S3 method for class 'integer'
summarize_short(x)
```

Arguments

- `x` an object of class "integer"

Value

Short list of summary statistics for the input.
summarize_short.numeric

Create variable summary for numeric variables

Description

Calculates mean (standard deviation), median (IQR), min-max range and N/% missing elements for a numeric vector.

Usage

S3 method for class 'numeric'
summarize_short(x)

Arguments

x

an object of class "numeric"

Value

Short list of summary statistics for the input.

tableone

Display a summary Table (i.e. table one)

Description

Wrapper function to produce a summary table (i.e. Table One). Create and render a summary table for a dataset. A typical example of a summary table are "table one", the first table in an applied medical research manuscript.

Calculate summary statistics and present them in a formatted table

Usage

tableone(
 data,
 title,
 datasource,
 footnote,
 strata = NULL,
 overall = TRUE,
 summary_function = summarize_short,
 ...
)

)
Arguments

data The dataframe or tibble to visualize
title Table title to include in the rendered table. Input is a text string.
datasource String specifying the datasource underlying the data set
footnote Table footnote to include in the rendered table. Input is a text string.
strata Character vector with column names to use for stratification in the summary table. Default: NULL, which indicates no stratification.
overall If TRUE, the summary statistics for the overall dataset are also calculated
summary_function A function defining summary statistics for numeric and categorical values Pre-implemented functions are summarize_long and summarize_short
...

Value

A table-like data structure, possibly interactive depending on the choice of the engine

Examples

metadata for table
t1_title <- "Cohort Summary"
t1_ds <- "ADaM Interim Dataset for Time-to-Event Analysis"
t1_fn <- "My table one footnote"

table by treatment - without overall and render with DT
adtte %>%
dplyr::filter(SAFFL == "Y") %>%
dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>%
visR::tableone(
 strata = "TRTA",
 overall = FALSE,
 title = t1_title,
 datasource = t1_ds,
 footnote = t1_fn,
 engine = "DT"
)

table by treatment - without overall and render with GT
adtte %>%
dplyr::filter(SAFFL == "Y") %>%
dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>%
visR::tableone(
 strata = "TRTA",
 overall = FALSE,
 title = t1_title,
 datasource = t1_ds,
 footnote = t1_fn,
)
the_lhs

```r

engine = "gt"
)

## table by treatment - without overall and render with kable
adtte %>%
dplyr::filter(SAFFL == "Y") %>%
dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>%
visR::tableone(
  strata = "TRTA",
  overall = FALSE,
  title = t1_title,
  datasource = t1_ds,
  footnote = t1_fn,
  engine = "kable"
)

## table by treatment - without overall and render with kable as
## a latex table format rather than html
adtte %>%
dplyr::filter(SAFFL == "Y") %>%
dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>%
visR::tableone(
  strata = "TRTA",
  overall = FALSE,
  title = t1_title,
  datasource = t1_ds,
  footnote = t1_fn,
  output_format = "latex",
  engine = "kable"
)
```

the_lhs

Find the "lhs" in the pipeline

Description

This function finds the left-hand sided symbol in a magrittr pipe and returns it as a character.

Usage

```r
the_lhs()
```

Value

Left-hand sided symbol as string in the magrittr pipe.

References

https://github.com/tidyverse/magrittr/issues/115#issuecomment-173894787
Examples

```r
library(magrittr)

## example
blah <- function(x) the_lhs()
adtte %>%
  blah()
```

tidyme

Extended tidy cleaning of selected objects using S3 method

Description

S3 method for extended tidying of selected model outputs. The default method relies on `broom::tidy` to return a tidied object.

Usage

```r
tidyme(x, ...)

## Default S3 method:
tidyme(x, ...)

## S3 method for class 'survfit'
tidyme(x, ...)
```

Arguments

- `x` S3 object
- `...` other arguments passed on to the method

Value

Tibble containing all list elements of the S3 object as columns

See Also

- `tidy`

Examples

```r
## Extended tidying for a survfit object
surv_object <- visR::estimate_KM(data = adtte, strata = "TRTA")
tidied <- visR::tidyme(surv_object)

## Tidyme for non-included classes
data <- cars
```
lm_object <- stats::lm(data = cars, speed ~ dist)
lm_tidied <- visR::tidyme(lm_object)
lm_tidied

visr

Plot a visR object

Description

Method to display a `ggplot` directly from an object through an S3 method. S3 method for creating plots directly from objects using `ggplot2`, similar to base plot function.

Usage

`visr(x, ...)`

```r
## Default S3 method:
visr(x, ...)

## S3 method for class 'survfit'
visr(
  x = NULL,
  x_label = NULL,
  y_label = NULL,
  x_units = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  fun = "surv",
  legend_position = "right",
  ...
)

## S3 method for class 'attrition'
visr(
  x,
  description_column_name = "Criteria",
  value_column_name = "Remaining N",
  complement_column_name = "",
  box_width = 50,
  font_size = 12,
  fill = "white",
  border = "black",
  ...
)
```
Arguments

\textbf{x} \hspace{1cm} \text{Object of class \textit{attritiontable} with each row corresponding to an inclusion step in the cohort and minimally a description and a count column}

\ldots \hspace{1cm}
\text{other arguments passed on to the method}

\textbf{x_label} \hspace{1cm} \text{character Label for the x-axis. When not specified, the algorithm will look for "PARAM" information inside the list structure of the \textit{survfit} object. Note that this information is automatically added when using \texttt{visR::estimate}_\text{KM} and when the input data has the variable "PARAM". If no "PARAM" information is available "time" is used as label.}

\textbf{y_label} \hspace{1cm} \text{character Label for the y-axis. When not specified, the default will do a proposal, depending on the \textit{fun} argument.}

\textbf{x_units} \hspace{1cm} \text{Unit to be added to the x_label (x_label (x_unit)). Default is NULL.}

\textbf{x_ticks} \hspace{1cm} \text{Ticks for the x-axis. When not specified, the default will do a proposal.}

\textbf{y_ticks} \hspace{1cm} \text{Ticks for the y-axis. When not specified, the default will do a proposal based on the \textit{fun} argument.}

\textbf{fun} \hspace{1cm} \text{Change the scale of the estimate. The current options are:}

\begin{itemize}
 \item \texttt{surv} is the survival probability. This is the default.
 \item \texttt{logis} log of the survival probability
 \item \texttt{eventis} the failure probability
 \item \texttt{cloglogis} log(-log(survival probability))
 \item \texttt{pctis} survival as a percentage
 \item \texttt{logpctis} log survival as a percentage
 \item \texttt{cumhazis} the cumulative hazard
\end{itemize}

\textbf{legend_position} \hspace{1cm} \text{Specifies the legend position in the plot. Character values allowed are "top" "left" "bottom" "right". Numeric coordinates are also allowed. Default is "right".}

\textbf{description_column_name} \hspace{1cm} \text{character Name of the column containing the inclusion descriptions}

\textbf{value_column_name} \hspace{1cm} \text{character Name of the column containing the remaining sample counts}

\textbf{complement_column_name} \hspace{1cm} \text{character Optional: Name of the column containing the exclusion descriptions}

\textbf{box_width} \hspace{1cm} \text{character The box width for each box in the flow chart}

\textbf{font_size} \hspace{1cm} \text{character The fontsize in pt}

\textbf{fill} \hspace{1cm} \text{The color (string or hexcode) to use to fill the boxes in the flowchart}

\textbf{border} \hspace{1cm} \text{The color (string or hexcode) to use for the borders of the boxes in the flowchart}

Value

Object of class \texttt{ggplot ggsurvplot}.

Object of class \texttt{ggplot}.
See Also

`ggplot`

Examples

```r
# fit KM
km_fit <- survival::survfit(survival::Surv(AVAL, 1-CNSR) ~ TRTP, data=adtte)

# plot curves using survival plot function
plot(km_fit)

# plot same curves using visR::visr plotting function
visR::visr(km_fit)

# estimate KM using visR wrapper
survfit_object <- visR::estimate_KM(data = adtte, strata = "TRTP")

# Plot survival probability
visR::visr(survfit_object, fun = "surv")

# Plot survival percentage
visR::visr(survfit_object, fun = "pct")

# Plot cumulative hazard
visR::visr(survfit_object, fun = "cloglog")

attrition <- visR::get_attrition(adtte,
   criteria_descriptions = c("1. Not in Placebo Group",
   "2. Be 75 years of age or older.",
   "3. White",
   "4. Female"),
   criteria_conditions = c("TRTP != "Placebo",
   "AGE >= 75",
   "RACE=="WHITE",
   "SEX=="F"),
   subject_column_name = "USUBJID")

# Draw a CONSORT attrition chart without specifying extra text for the complement
attrition %>%
   visr("Criteria", "Remaining N")

# Adding more detailed complement descriptions to the "exclusion" part of the CONSORT diagram
# Step 1. Add new column to attrition dataframe
attrition$Complement <- c("NA", "Placebo Group", "Younger than 75 years", "Non-White", "Male")

# Step 2. Define the name of the column in the call to the plotting function
attrition %>%
   visr("Criteria", "Remaining N", "Complement")

# Styling the CONSORT flowchart
# Change the fill and outline of the boxes in the flowchart
```
attrition %>%
 visr("Criteria", "Remaining N", "Complement", fill = "lightblue", border="grey")

Adjust the font size in the boxes
attrition %>%
 visr("Criteria", "Remaining N", font_size = 10)

<table>
<thead>
<tr>
<th>visR Global</th>
<th>visR package</th>
</tr>
</thead>
</table>

Description

Set global variables
Index

* CDISC
 adtte, 9
* adtte
 adtte, 9
* datasets
 adtte, 9
 brca_cohort, 12
 add_annotation, 3
 add_CI, 5
 add_CNSR, 6
 add_risktable, 7
 adtte, 9
 AlignPlots, 10
 annotation_custom, 3
 apply_attrition, 11
 apply_theme, 11
 brca_cohort, 12
 coxph, 17
 define_theme, 13
 estimate_KM, 14
 geom_point, 6
 geom_ribbon, 5
 get_attrition, 15
 get_COX_HR, 16
 get_pvalue, 17
 get_quantile, 19
 get_risktable, 7, 20
 get_summary, 21
 get_tableone, 22
 ggplot, 37
 legendopts, 24
 plot_grid, 7, 8
 quantile.survfit, 19
 render, 25
 summarize_long, 26
 summarize_long.default, 27
 summarize_long.factor, 27
 summarize_long.integer, 28
 summarize_long.numeric, 28
 summarize_short, 29
 summarize_short.default, 29
 summarize_short.factor, 30
 summarize_short.integer, 30
 summarize_short.numeric, 31
 summary.survfit, 21
 survdiff, 18
 survfit.formula, 15
 survfitCI, 15
 tableGrob, 3
 tableone, 31
 the_lhs, 33
 tidy, 34
 tidyme, 34
 update.formula, 17
 visr, 35
 visR Global, 38