Package ‘vamc’

February 3, 2020

Type Package

Title A Monte Carlo Valuation Framework for Variable Annuities

Version 0.2.0

Description Implementation of a Monte Carlo simulation engine for valuing synthetic portfolios of variable annuities, which reflect realistic features of common annuity contracts in practice. It aims to facilitate the development and dissemination of research related to the efficient valuation of a portfolio of large variable annuities. The main valuation methodology was proposed by Gan (2017) <doi:10.1515/demo-2017-0021>.

Depends R (>= 3.3.0)

License GPL-2

LazyData true

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.0.2

Imports stats (>= 3.3.0), utils (>= 3.3.0), Rdpack (>= 0.4)

RdMacros Rdpack

NeedsCompilation no

Encoding UTF-8

Repository CRAN

Author Hengxin Li [aut, cph],
Ben Feng [aut, cph],
Mingyi Jiang [aut, cph, cre],
GuoJun Gan [ctb]

Maintainer Mingyi Jiang <m64jiang@uwaterloo.ca>

Date/Publication 2020-02-03 15:50:02 UTC

R topics documented:

ageOnePolicy ... 2
agePortfolio ... 4
Description

Age a VA policy specified in inPolicy from currentDate (specified in inPolicy) to targetDate. The aging scenario is given in fundScen. The time step length is specified in dT. Here we input a rather irrelevant parameter df to "hack" for a more flexible user-defined projection function.

Usage

```r
ageOnePolicy(
  inPolicy,  
  mortTable, 
  fundScen, 
  scenDates, 
  dT = 1/12, 
  targetDate, 
  df
)
```

Arguments

- **inPolicy**: A vector containing 45 attributes of a VA policy, usually a row of a VA portfolio dataframe.
- **mortTable**: A dataframe with three columns of doubles representing the mortality table.
ageOnePolicy

fundScen A numScen-by-numStep-by-numFund array of doubles of return factors (i.e., \(\exp(\mu_t \, dt) \)) in each period.

cenDates A vector containing strings in the format of "YYYY-MM-DD" of dates corresponding to each period in fundScen.

dT A double of stepsize in years; \(dT = 1 / 12 \) would be monthly.

targetDate A string in the format of "YYYY-MM-DD" of valuation date of the portfolio.

df A vector of doubles of risk-free discount rates of different tenor (not forward rates), should have length being numStep.

Value

Outputs a vector containing 45 attributes of a VA policy, where currentDate, gbAmt, GMWBbalance, withdrawal, & fundValue could be updated as a result of aging. Usually a row of a VA portfolio dataframe.

Note

Target date MUST be PRIOR to the last date of historical scenario date, Current date MUST be LATER than the first date of historical scenario date.

Examples

```r
exPolicy <- VAPort[1, ]
targetDate <- "2016-01-01"
histFundScen <- genFundScen(fundMap, histIdxScen) ageOnePolicy(exPolicy, mortTable, histFundScen, histDates, dT = 1 / 12, targetDate, cForwardCurve)
## Not run:
targetDate <- "2001-01-01"
histFundScen <- genFundScen(fundMap, histIdxScen) ageOnePolicy(exPolicy, mortTable, histFundScen, histDates, dT = 1 / 12, targetDate, cForwardCurve)
## End(Not run)
## Not run:
exPolicy <- VAPort[1, ] exPolicy[1, c("currentDate", "issueDate")]
<- c("2001-01-01", "2001-01-01") histFundScen <- genFundScen(fundMap, histIdxScen) ageOnePolicy(exPolicy, mortTable, histFundScen, histDates, dT = 1 / 12, targetDate, cForwardCurve)
## End(Not run)
```
Description

Age a portfolio of VA policies specified in each inPolicy of inPortfolio from currentDate (specified in inPolicy) to targetDate. The aging scenario is given in fundScen. The time step length is specified in dT. Here we input a rather irrelevant parameter df to "hack" for a more flexible user-defined projection function.

Usage

```r
agePortfolio(
  inPortfolio, 
  mortTable, 
  fundScen, 
  scenDates, 
  dT = 1/12, 
  targetDate, 
  df
)
```

Arguments

- `inPortfolio`: A dataframe containing numPolicy rows and 45 attributes of each VA policy.
- `mortTable`: A dataframe with three columns of doubles representing the mortality table.
- `fundScen`: A numScen-by-numStep-by-numFund array of doubles of return factors (i.e., \(\exp(\mu_t \, dt) \)) in each period.
- `scenDates`: A vector containing strings in the format of "YYYY-MM-DD" of dates corresponding to each period in fundScen.
- `dT`: A double of stepsize in years; \(dT = 1 / 12 \) would be monthly.
- `targetDate`: A string in the format of "YYYY-MM-DD" of valuation date of the portfolio.
- `df`: A vector of doubles of risk-free discount rates of different tenor (not forward rates), should have length being numStep.

Value

Outputs a dataframe containing numPolicy rows and 45 attributes of each VA policy, where currentDate, gbAmt, GMWBbalance, withdrawal, & fundValue of each policy could be updated as a result of aging.

Note

Target date MUST be PRIOR to the last date of historical scenario date, Current date MUST be LATER than the first date of historical scenario date.

buildCurve

Build Curve

Description

Bootstrap discount factors from a yield curve.

Usage

buildCurve(
 swapRates,
 tenors,
 fixFreq = 6,
 fixDCC = "Thirty360",
 fltFreq = 6,
 fltDCC = "Thirty360",
 calendar = "General",
 bdc = c("Actual", "Preceding", "Following", "Modified_Prec", "Modified_Foll"),
 curveDate,
 numSetDay,
 yieldCurveDCC = "Thirty360",
 holidays = NULL
)

Arguments

 swapRates A vector of doubles of swap rates.
 tenors A vector of integers of corresponding tenors.
fixFreq An integer of fixed leg frequency of payment in months. Default is 6, semi-annual payments.

fixDCC A string of fixed leg day count convention from four options: "Thirty360", "ACT360", "ACT365", or "ACTACT". Default is "Thirty360".

fltFreq An integer of floating leg frequency of payment in months. Default is 6, semi-annual payments.

fltDCC A string of floating leg day count convention from four options: "Thirty360", "ACT360", "ACT365", or "ACTACT". Default is "Thirty360".

calendar A string of the desired calendar convention from two options:
- "NY": New York holiday calendar
- "General": all weekdays are business days

bdc A string of business day convention from five options:
- "Actual": No rolling on the date applied even if it is a non-business day
- "Preceding": 1st business day before holiday
- "Following": 1st business day after holiday
- "Modified_Prec": Same as "Preceding" unless it belongs to a different month, in which case 1st business day after holiday
- "Modified_Foll": Same as "Following" unless it belongs to a different month, in which case 1st business day before holiday

Default is "Actual".

curveDate A string in the format of "YYYY-MM-DD" of yield curve date.

numSetDay An integer of settlement days from yield curve date.

yieldCurveDCC A string of yield curve day count convention from four options: "Thirty360", "ACT360", "ACT365", or "ACTACT". Default is "Thirty360".

holidays An optional vector dates of user-defined holidays. If provided, within the given holidays range, the calendar provided in the parameter "calendar" will not be applied; If the date is not in the given holidays range, it will follow the calendar provided in the "calendar" parameter

Value

Outputs a data frame of strings of discount dates and doubles of discount factors.

Examples

```r
rate <- c(0.69, 0.77, 0.88, 1.01, 1.14, 1.38, 1.66, 2.15) * 0.01
tenor <- c(1, 2, 3, 4, 5, 7, 10, 30)
fixFreq <- 6
fixDCC <- "Thirty360"
fltFreq <- 6
fltDCC <- "ACT360"
```
calcMortFactors Calculate Mortality Factors

Description

Calculates the mortality factors \((t - 1)p_x q(x + t - 1)\) and \(tp_x\) required to valuate the \(\text{inPolicy}\). Extract gender, age (birth date & current date), valuation date (current date), and maturity date from \(\text{inPolicy}\), mortality rates from \(\text{mortTable}\).

Usage

\[
\text{calcMortFactors}(\text{inPolicy}, \text{mortTable}, dT = 1/12)
\]

Arguments

- \text{inPolicy}
 A vector containing 45 attributes of a VA policy, usually a row of a VA portfolio dataframe.
- \text{mortTable}
 A dataframe with three columns of doubles representing the mortality table.
- \text{dT}
 A double of stepsize in years; \(dT = 1 / 12\) would be monthly.

Value

Outputs a two-column data frame of doubles of \(\text{mortFactors}\) \((t - 1)p_x q(x + t - 1)\) and \(tp_x\).

Examples

\[
\text{exPolicy} \leftarrow \text{VAPort}[1, ,]
\text{calcMortFactors}(\text{exPolicy, mortTable, dT = 1 / 12})
\]
cForwardCurve

Constant Forward Curve

Description

A dataset containing 2 percent continuously compounded annual interest rate for illustration purposes.

Usage

cForwardCurve

Format

A vector with 360 elements:

- **rate** discount rate ...

fundMap

Fund Map for 10 Funds

Description

A dataset containing a default mapping from five indices to ten different funds.

Usage

fundMap

Format

A matrix with 10 rows and 5 columns:

- **index name** name for each index
- **fund number** proportion of fund allocated to a particular index ...
Generate Fund Scenerio

Description

Calculate numScen-by-numIndex-by-numStep fund scenarios based on given index scenarios indexScen and fund map fundMap that maps indices to funds.

Usage

```
genFundScen(fundMap, indexScen)
```

Arguments

- **fundMap**: A numFund-by-numIndex matrix of doubles, mapping indices to funds.
- **indexScen**: A numScen-by-numStep-by-numIndex array of doubles, index scenarios.

Value

Outputs a numScen-by-numStep-by-numFund array of doubles of fund scenarios.

Examples

```
genFundScen(fundMap, indexScen)
```

Generate Index Scenerio

Description

Simulate a 3D array, numScen by numIndex by numStep, of Black-Scholes return factors for numIndex indices in each of numStep time steps and each of numScen scenarios. Covariances among indices are specified in covMatrix. Stepsize is given is dT and interpolated discount factors are given in vDF. Random seed is optional for reproducibility.

Usage

```
genIndexScen(covMatrix, numScen, numStep, indexNames, dT, forwardCurve, seed)
```
Arguments

covMatrix A numIndex-by-numIndex matrix of doubles of covariances among numIndex indices.
numScen An integer of number of scenario (sample paths) to be simulated.
numStep An integer of number of periods to be simulated.
indexNames A vector of strings containing index names.
dT A double of stepsize in years; dT = 1 / 12 would be monthly.
forwardCurve A vector of doubles of discount rates at each time step.
seed An integer of the deterministic seed for random sampling.

Value

Outputs a 3D array (numScen-by-numStep-by-numIndex) of index scenarios

Examples

 genIndexScen(mCov, 100, 360, indexNames, 1 / 12, cForwardCurve, 1)

genPortInception Generate Portfolio at Inception

Description

Generate a portfolio of VA contracts at inception based on given attribute ranges and investment fund information.

Usage

 genPortInception(
 birthDayRng = c("1950-01-01", "1980-01-01"),
 issueRng = c("2001-08-01", "2014-01-01"),
 matRng = c(15, 30),
 acctValueRng = c(50000, 5e+05),
 femPct = 0.4,
 fundFee = c(30, 50, 60, 80, 10, 38, 45, 55, 47, 46),
 baseFee = 200,
 prodPct = rep(1/19, 19),
 prodType = c("DBRP", "DBRU", "DBSU", "ABRP", "ABRU", "ABSU", "IBRP", "IBRU", "IBSU",
 "MBRP", "MBRU", "MBSU", "WBRP", "WBRU", "WBSS", "DBAB", "DBIB", "DBMB", "DBWB"),
 riderFee = c(25, 35, 35, 50, 60, 60, 60, 70, 70, 50, 60, 60, 65, 75, 75, 75, 85, 75,
 90),
 rollUpRate = rep(5, 19),
 withdrawalRate = rep(5, 19),
 numPolicy = 10
)
histDates

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthDayRng</td>
<td>A vector of two strings in 'YYYY-MM-DD' of birthday range.</td>
</tr>
<tr>
<td>issueRng</td>
<td>A vector of two strings in 'YYYY-MM-DD' of issue date range.</td>
</tr>
<tr>
<td>matRng</td>
<td>A vector of two integers, range of policy maturity.</td>
</tr>
<tr>
<td>acctValueRng</td>
<td>A vector of two doubles, range of initial account values.</td>
</tr>
<tr>
<td>femPct</td>
<td>A double, percentage of female policyholders in the portfolio.</td>
</tr>
<tr>
<td>fundFee</td>
<td>A vector of doubles, fees charged by each fund in bps.</td>
</tr>
<tr>
<td>baseFee</td>
<td>A double, base fee for all funds in bps.</td>
</tr>
<tr>
<td>prodPct</td>
<td>A vector of non-negative doubles, proportions of rider types.</td>
</tr>
<tr>
<td>prodType</td>
<td>A vector of strings, names of different rider types.</td>
</tr>
<tr>
<td>riderFee</td>
<td>A vector of doubles, rider fees for different riders in bps.</td>
</tr>
<tr>
<td>rollUpRate</td>
<td>A vector of doubles, roll up rates for different rider types in bps.</td>
</tr>
<tr>
<td>withdrawalRate</td>
<td>A vector of doubles, withdrawal rates for different rider types in bps.</td>
</tr>
<tr>
<td>numPolicy</td>
<td>An integer, number of each type of policies to be generated.</td>
</tr>
</tbody>
</table>

Value

Outputs a data frame of 45 columns of attributes in an annuity contract.

Examples

```r
genPortInception(c("1980-01-01", "1990-01-01"), c("2001-08-01", "2014-01-01"),
c(15, 30), c(5e4, 5e5), 0.4, c(30, 50, 60, 80, 10, 38, 45, 55, 47, 46),
200, rep(1 / 4, 4), c("WBRP", "WBRU", "WBSU", "DBWB"),
riderFee = c(25, 35, 35, 50), rep(5, 4), rep(5, 4), 100)
## Not run:
genPortInception()
## End(Not run)
```

histDates

Historical Scenario Dates

Description

A dataset containing the dates at which historical returns for different indices were observed.

Usage

```r
histDates
```

Format

A vector with 175 elements:

- **date** each observation date of the historical scenarios ...
histIdxScen
Historical Index Scenario for 5 Indices over 175 Months

Description

A dataset containing a matrix, number of indices (5) by number of time steps (175), of observed historical returns for each index in each of time step in the past.

Usage

histIdxScen

Format

A data frame with dimensions 175 rows and 10 columns:

- **FIXED** historical return for index "FIXED" in one month
- **INT** historical return for index "INT" in one month
- **MONEY** historical return for index "MONEY" in one month
- **SMALL** historical return for index "SMALL" in one month
- **US** historical return for index "US" in one month ...

Remark

These historical index scenarios were assessed on 2008-09-12

Source

http://www.math.uconn.edu/~gan/software.html

indexNames
Index Names

Description

A dataset containing names for each index.

Usage

indexNames

Format

A vector with 5 elements:

- **name** name of the index ...
indexScen

| indexScen | 5 Indices for 10 Scenarios over 360 Months |

Description

A dataset containing a 3D array, number of scenarios (10) by number of indices (5) by number of time steps (360), of Black-Scholes return factors for each index in each of time step and each of scenario.

Usage

`indexScen`

Format

A 3D array with dimensions 10x360x5:

- **scenario** scenario number
- **month** month since valuation date
- **index number** monthly return for a particular index in one scenario one month ...

mCov

Covariance Matrix for 5 Indices

| mCov |

Description

A dataset containing the covariance matrix among the returns of five indices.

Usage

`mCov`

Format

A matrix with 5 rows and 5 columns:

- **index number** number for each index ...
mortTable
Mortality Rate for Male and Female from Ages 5 to 115

Description
A dataset containing the mortality rates for male and female from ages 5 to 115 (table IAM 1996 from the Society of Actuaries).

Usage
mortTable

Format
A data frame with 110 rows and 3 columns:
- age individual’s age
- male mortality of a male at a particular age ranging from 5 to 115
- female mortality of a female at a particular age ranging from 5 to 115 ...

Source
https://mort.soa.org

swapRate
Swap Rates across 30 Years

Description
A dataset containing US swap rates for various maturities.

Usage
swapRate

Format
A vector with 8 elements:
- rate swap rate ...

Remark
These swap rates were assessed on 2016-02-08

Source
http://www.federalreserve.gov
Description

Valuate a VA policy specified in inPolicy based on the simulated fund scenarios fundScen. The time step length is specified in dT and the discount rate for each period is specified in df.

Usage

valuateOnePolicy(inPolicy, mortTable, fundScen, dT, df)

Arguments

- **inPolicy**: A vector containing 45 attributes of a VA policy, usually a row of a VA portfolio dataframe.
- **mortTable**: A dataframe with three columns of doubles representing the mortality table.
- **fundScen**: A numScen-by-numStep-by-numFund array of doubles of return factors (i.e., exp(mu_t dt)) in each period.
- **dT**: A double of stepsize in years; dT = 1 / 12 would be monthly.
- **df**: A vector of doubles of risk-free discount rates of different tenor (not forward rates), should have length being numStep.

Value

Outputs a list of doubles of policyValue, the average discounted payoff of the VA, and riskCharge, the average discounted risk charges.

Examples

```
fundScen <- genFundScen(fundMap, indexScen)[1, , ]
exPolicy <- VAPort[1, ]
valuateOnePolicy(exPolicy, mortTable, fundScen, 1 / 12, cForwardCurve)
```

Description

Valuate a Portfolio VA policies specified in each curPolicy of inPortfolio based on the simulated fund scenarios fundScen. The time step length is specified in dT and the discount rate for each period is specified in df.
Usage

valutePortfolio(inPortfolio, mortTable, fundScen, dT, df)

Arguments

- inPortfolio: A dataframe containing numPolicy rows and 45 attributes of each VA policy.
- mortTable: A dataframe with three columns of doubles representing the mortality table.
- fundScen: A numScen-by-numStep-by-numFund array of doubles of return factors (i.e., \(\exp(\mu_t \cdot dt) \)) in each period.
- dT: A double of stepsize in years; \(dT = 1 / 12 \) would be monthly.
- df: A vector of doubles of risk-free discount rates of different tenor (not forward rates), should have length being numStep.

Value

Outputs a list of doubles of portVal, the sum of average discounted payoff of the VAs in inPortfolio, portRC, the sum of average discounted risk charges of the VAs in inPortfolio, and vectors of doubles of these average discounted values for each policy.

Examples

```r
fundScen <- genFundScen(fundMap, indexScen)[1, , ]
valutePortfolio(VAPort[1:2, ], mortTable, fundScen, 1 / 12, cForwardCurve)
```

Description

The vamc package provides a Monte Carlo engine for valuating a pool of variable annuities. The key steps are: YieldCurveGeneration, ScenarioGeneration, PolicyGeneration, and MonteCarloValuation.

YieldCurveGeneration functions

YieldCurveGeneration generates a forward curve from swap rates. The forward curve is obtained by solving for swap rates that equates values of floating and fixed notes.

ScenarioGeneration functions

ScenarioGeneration generates a random fund scenario under Black-Scholes. After simulating random index scenarios, a fundMap is used to allocate returns of indices to each fund according to proportion of investment.
PolicyGenerationl functions

PolicyGenerationl randomly generates a pool of variable annuities for user-input birthday range, issue-date range, maturity range, account value range, female percentage, fund management fee, fund base fee, product types, rider fee of each type, roll-up-rate for roll-up featured guarantees, withdrawal rate for GMWB, and number of policies to be generated for each type.

MonteCarloValuation functions

MonteCarloValuation discounts cash flow from living and death benefits, as well as risk charges for each policy in the portfolio.

References

VAPort

A Randomly Generated Pool of Variable Annuities

Description

A dataset containing information of the policy and the policy holder.

Usage

VAPort

Format

A data frame with 19 row and 45 columns:

- `recordID` Unique identifier of the policy
- `survivorShip` Positive weighting number
- `gender` Gender of the policyholder
- `productType` Product type
- `issueDate` Issue date
- `matDate` Maturity date
- `birthDate` Birth date of the policyholder
- `currentDate` Current date
- `baseFee` M&E (Mortality & Expense) fee
- `riderFee` Rider fee
- `rollUpRate` Roll-up rate
- `gbAmt` Guaranteed benefit
- `gmwbBalance` GMWB balance
wbWithdrawalRate Guaranteed withdrawal rate

withdrawal Withdrawal so far

fundNum1 Fund number of the 1st investment fund

fundNum2 Fund number of the 2nd investment fund

fundNum3 Fund number of the 3rd investment fund

fundNum4 Fund number of the 4th investment fund

fundNum5 Fund number of the 5th investment fund

fundNum6 Fund number of the 6th investment fund

fundNum7 Fund number of the 7th investment fund

fundNum8 Fund number of the 8th investment fund

fundNum9 Fund number of the 9th investment fund

fundNum10 Fund number of the 10th investment fund

fundValue1 Fund value of the 1st investment fund

fundValue2 Fund value of the 2nd investment fund

fundValue3 Fund value of the 3rd investment fund

fundValue4 Fund value of the 4th investment fund

fundValue5 Fund value of the 5th investment fund

fundValue6 Fund value of the 6th investment fund

fundValue7 Fund value of the 7th investment fund

fundValue8 Fund value of the 8th investment fund

fundValue9 Fund value of the 9th investment fund

fundValue10 Fund value of the 10th investment fund

fundFee1 Fund management fee of the 1st investment fund

fundFee2 Fund management fee of the 2nd investment fund

fundFee3 Fund management fee of the 3rd investment fund

fundFee4 Fund management fee of the 4th investment fund

fundFee5 Fund management fee of the 5th investment fund

fundFee6 Fund management fee of the 6th investment fund

fundFee7 Fund management fee of the 7th investment fund

fundFee8 Fund management fee of the 8th investment fund

fundFee9 Fund management fee of the 9th investment fund

fundFee10 Fund management fee of the 10th investment fund...
Index

*Topic datasets
 cForwardCurve, 8
 fundMap, 8
 histDates, 11
 histIdxScen, 12
 indexNames, 12
 indexScen, 13
 mCov, 13
 mortTable, 14
 swapRate, 14
 VAPort, 17

ageOnePolicy, 2
agePortfolio, 4

buildCurve, 5

calcMortFactors, 7
cForwardFactors, 8

fundMap, 8

genFundScen, 9
genIndexScen, 9
genPortInception, 10

histDates, 11
histIdxScen, 12

indexNames, 12
indexScen, 13

mCov, 13
mortTable, 14

swapRate, 14

valuateOnePolicy, 15
valuatePortfolio, 15
vamc, 16
VAPort, 17