Package ‘unusualprofile’

May 13, 2021

Type Package
Title Calculates Conditional Mahalanobis Distances
Version 0.1.0
Description Calculates a Mahalanobis distance for every row of a set of outcome variables (Mahalanobis, 1936 <doi:10.1007/s13171-019-00164-5>). The conditional Mahalanobis distance is calculated using a conditional covariance matrix (i.e., a covariance matrix of the outcome variables after controlling for a set of predictors). Plotting the output of the cond_maha() function can help identify which elements of a profile are unusual after controlling for the predictors.

License GPL (>= 3)
Language en-US
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.1
Depends R (>= 3.1)
Imports lavaan, magrittr, dplyr, tidyr, tibble, stats, purrr, simstandard (>= 0.6.3), ggplot2, gnormalviolin, rlang, patchwork, scales, ragg, lifecycle
Suggests testthat, knitr, glue, mvtnorm, kableExtra, forcats, stringr, rmarkdown, covr, roxygen2, bookdown

VignetteBuilder knitr

URL https://github.com/wjschne/unusualprofile

BugReports https://github.com/wjschne/unusualprofile/issues

NeedsCompilation no

Author W. Joel Schneider [aut, cre] (<https://orcid.org/0000-0002-8393-5316>), Feng Ji [aut]

Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>

Repository CRAN

Date/Publication 2021-05-13 10:10:02 UTC
cond_maha

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond_maha</td>
<td>2</td>
</tr>
<tr>
<td>d_example</td>
<td>4</td>
</tr>
<tr>
<td>plot.cond_maha</td>
<td>5</td>
</tr>
<tr>
<td>plot.maha</td>
<td>6</td>
</tr>
<tr>
<td>proportion2percentile</td>
<td>6</td>
</tr>
<tr>
<td>proportion_round</td>
<td>7</td>
</tr>
<tr>
<td>R_example</td>
<td>8</td>
</tr>
<tr>
<td>unusualprofile</td>
<td>8</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond_maha</td>
<td>9</td>
</tr>
</tbody>
</table>

cond_maha

Calculate the conditional Mahalanobis distance for any variables.

Description

Calculate the conditional Mahalanobis distance for any variables.

Usage

```r
cond_maha(
  data,
  R,
  v_dep,
  v_ind = NULL,
  v_ind_composites = NULL,
  mu = 0,
  sigma = 1,
  use_sample_stats = FALSE,
  label = NA
)
```

Arguments

- `data` Data.frame with the independent and dependent variables. Unless `mu` and `sigma` are specified, data are assumed to be z-scores.
- `R` Correlation among all variables.
- `v_dep` Vector of names of the dependent variables in your profile.
- `v_ind` Vector of names of independent variables you would like to control for.
- `v_ind_composites` Vector of names of independent variables that are composites of dependent variables.
- `mu` A vector of means. A single value means that all variables have the same mean.
- `sigma` A vector of standard deviations. A single value means that all variables have the same standard deviation.
cond_maha

use_sample_stats

If TRUE, estimate R, mu, and sigma from data. Only complete cases are used (i.e., no missing values in `v_dep`, `v_ind`, `v_ind_composites`).

label

optional tag for labeling output

Value

a list with the conditional Mahalanobis distance

- **dCM** = Conditional Mahalanobis distance
- **dCM_df** = Degrees of freedom for the conditional Mahalanobis distance
- **dCM_p** = A proportion that indicates how unusual this profile is compared to profiles with the same independent variable values. For example, if `dCM_p` = 0.88, this profile is more unusual than 88 percent of profiles after controlling for the independent variables.
- **dM_dep** = Mahalanobis distance of just the dependent variables
- **dM_dep_df** = Degrees of freedom for the Mahalanobis distance of the dependent variables
- **dM_dep_p** = Proportion associated with the Mahalanobis distance of the dependent variables
- **dM_ind** = Mahalanobis distance of just the independent variables
- **dM_ind_df** = Degrees of freedom for the Mahalanobis distance of the independent variables
- **dM_ind_p** = Proportion associated with the Mahalanobis distance of the independent variables
- **v_dep** = Dependent variable names
- **v_ind** = Independent variable names
- **v_ind_singular** = Independent variables that can be perfectly predicted from the dependent variables (e.g., composite scores)
- **v_ind_nonsingular** = Independent variables that are not perfectly predicted from the dependent variables
- **data** = data used in the calculations
- **d_ind** = independent variable data
- **d_inp_p** = Assuming normality, cumulative distribution function of the independent variables
- **d_dep** = dependent variable data
- **d_dep_predicted** = predicted values of the dependent variables
- **d_dep_deviations** = `d_dep` - `d_dep_predicted` (i.e., residuals of the dependent variables)
- **d_dep_residuals_z** = standardized residuals of the dependent variables
- **d_dep_cp** = conditional proportions associated with standardized residuals
- **d_dep_p** = Assuming normality, cumulative distribution function of the dependent variables
- **R2** = Proportion of variance in each dependent variable explained by the independent variables
- **SEE** = Standard error of the estimate for each dependent variable
- **ConditionalCovariance** = Covariance matrix of the dependent variables after controlling for the independent variables
- **distance_reduction** = `1 - (dCM / dM_dep)` (Degree to which the independent variables decrease the Mahalanobis distance of the dependent variables. Negative reductions mean that the profile is more unusual after controlling for the independent variables. Returns 0 if `dM_dep` is 0.)
variability_reduction = 1 - \text{sum}((X_{\text{dep}} - \text{predicted}_{\text{dep}})^2) / \text{sum}((X_{\text{dep}} - \text{mu}_{\text{dep}})^2)
(Degree to which the independent variables decrease the variability the dependent variables \(X_{\text{dep}}\). Negative reductions mean that the profile is more variable after controlling for the independent variables. Returns 0 if \(X_{\text{dep}} == \text{mu}_{\text{dep}}\))

- \text{mu} = Variable means
- \text{sigma} = Variable standard deviations
- \text{d_person} = Data frame consisting of Mahalanobis distance data for each person
- \text{d_variable} = Data frame consisting of variable characteristics
- \text{label} = label slot

Examples

```r
library(unusualprofile)
library(simstandard)

m <- 
Gc ~ 0.85 * Gc1 + 0.68 * Gc2 + 0.8 * Gc3
Gf ~ 0.8 * Gf1 + 0.9 * Gf2 + 0.8 * Gf3
Gs ~ 0.7 * Gs1 + 0.8 * Gs2 + 0.8 * Gs3
Read ~ 0.66 * Read1 + 0.85 * Read2 + 0.91 * Read3
Math ~ 0.4 * Math1 + 0.9 * Math2 + 0.7 * Math3
Gc ~ 0.6 * Gf + 0.1 * Gs
Gf ~ 0.5 * Gs
Read ~ 0.4 * Gc + 0.1 * Gf
Math ~ 0.2 * Gc + 0.3 * Gf + 0.1 * Gs"

# Generate 10 cases
d_demo <- simstandard::sim_standardized(m = m, n = 10)

# Get model-implied correlation matrix
R_all <- simstandard::sim_standardized_matrices(m)$Correlations$R_all

cond_maha(data = d_demo,
            R = R_all,
            v_dep = c("Math", "Read"),
            v_ind = c("Gf", "Gs", "Gc"))
```

d_example

An example data.frame

Description

A dataset with 1 row of data for a single case.

Usage

```
d_example
```
Format
A data frame with 1 row and 8 variables:

X_1 A predictor variable
X_2 A predictor variable
X_3 A predictor variable
Y_1 An outcome variable
Y_2 An outcome variable
Y_3 An outcome variable
X A latent predictor variable
Y A latent outcome variable

Description
Plot the variables from the results of the cond_maha function.

Usage
S3 method for class 'cond_maha'
plot(
 x,
 ...,
 p_tail = 0,
 family = "serif",
 score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)

Arguments
x The results of the cond_maha function.
... Arguments passed to print function
p_tail The proportion of the tail to shade
family Font family.
score_digits Number of digits to round scores.

Value
A ggplot2-object
plot.maha

Plot objects of the maha class (i.e, the results of the cond_maha function using dependent variables only).

Usage

```r
## S3 method for class 'maha'
plot(
x, 
..., 
p_tail = 0, 
family = "serif", 
score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)
```

Arguments

- `x` The results of the cond_maha function.
- `...` Arguments passed to print function
- `p_tail` Proportion in violin tail (defaults to 0).
- `family` Font family.
- `score_digits` Number of digits to round scores.

Value

A ggplot2-object

proportion2percentile

Rounds proportions to significant digits both near 0 and 1, then converts to percentiles

Description

Rounds proportions to significant digits both near 0 and 1, then converts to percentiles
Rounds proportions to significant digits both near 0 and 1

Usage

```r
proportion_round(p, digits = 2)
```

Arguments

- `p`: probability
- `digits`: rounding digits

Value

numeric vector

Examples

```r
proportion_round(0.01111)
```
R_example

An example correlation matrix

Description

A correlation matrix used for demonstration purposes. It is the model-implied correlation matrix for this structural model:

\[X \sim 0.7 \times X_1 + 0.5 \times X_2 + 0.8 \times X_3 \]

\[Y \sim 0.8 \times Y_1 + 0.7 \times Y_2 + 0.9 \times Y_3 \]

\[Y \sim 0.6 \times X \]

Usage

R_example

Format

A matrix with 8 rows and 8 columns:

- **X_1** A predictor variable
- **X_2** A predictor variable
- **X_3** A predictor variable
- **Y_1** An outcome variable
- **Y_2** An outcome variable
- **Y_3** An outcome variable
- **X** A latent predictor variable
- **Y** A latent outcome variable

unusualprofile

unusualprofile: Calculates Conditional Mahalanobis Distances

Description

The unusualprofile package calculates the unusualness of score profiles conditioned on a set of predictor variables.

Author(s)

W. Joel Schneider

Feng Ji
Index

* datasets
 d_example, 4
 R_example, 8
cond_maha, 2

R_example, 8

d_example, 4
plot.cond_maha, 5
plot.maha, 6
proportion2percentile, 6
proportion_round, 7

unusualprofile, 8