Package ‘unifed’

November 6, 2019

Title The Unifed Distribution
Version 1.1.2
Date 2019-11-06
Description Probability functions, family for glm() and Stan code for working with the unifed distribution (Quijano Xacur, 2019; <doi:10.1186/s40488-019-0102-6>).
Depends R (>= 3.1), methods
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat, rstan, data.table
VignetteBuilder knitr
Author Oscar Alberto Quijano Xacur [aut,cre]
Maintainer Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-11-06 06:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dirwin.hall</td>
<td>2</td>
</tr>
<tr>
<td>dunifed</td>
<td>3</td>
</tr>
<tr>
<td>summary_unifed_glm</td>
<td>4</td>
</tr>
<tr>
<td>unifed</td>
<td>5</td>
</tr>
<tr>
<td>unifed.deviance</td>
<td>6</td>
</tr>
<tr>
<td>unifed.kappa</td>
<td>7</td>
</tr>
<tr>
<td>unifed.mle</td>
<td>8</td>
</tr>
<tr>
<td>unifed.stan</td>
<td>9</td>
</tr>
<tr>
<td>unifed.stan.path</td>
<td>10</td>
</tr>
<tr>
<td>unifed.varf</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 11
dirwin.hall

Irwin-Hall density

Description

Irwin-Hall density

Usage

```r
dirwin.hall(x, n, log = FALSE)
```

Arguments

- `x`: A number between 0 and `n`.
- `n`: Number of uniform distributions in the unit interval to sum.
- `log`: If it evaluates to `TRUE` it returns the log of the density instead of the density.

Details

Gives the density of the Irwin-Hall distribution. It is the density of the sum of `n` uniform distributions on the interval `(0,1)`.

\[
h(y; n) = \frac{1}{(n - 1)!} \sum_{k=0}^{\lfloor y \rfloor} (-1)^k \binom{n}{k} (y - k)^{n-1}
\]

where \(x \in [0,1] \) and \(n \) is a positive integer.

This function is not numerically stable. The examples have some cases of this.

Examples

```r
dirwin.hall(2,5)
```

Numerically unstable example
Run the following one after the other
See how it goes from positive to negative (which means overflowing)
dirwin.hall(35,50)
dirwin.hall(36,50)
dirwin.hall(37,50)
dirwin.hall(38,50)
The unified distribution

Description

Density, distribution function, quantile function and random generation for the unified distribution.

Usage

dunified(x, theta)
unifed.lcdf(x, theta)
punifed(q, theta)
qunifed(p, theta)
runifed(n, theta)

Arguments

x A vector of quantiles. They must be numbers between 0 and 1.
theta The value of the canonical parameter. It must be of length one.
q A vector of quantiles.
p A vector of probabilities.
n number of observations

Value

dunified gives the density function.
unifed.lcdf returns the log of the cumulative distribution function of the unified.
punifed gives the distribution function.
qunifed gives the quantile function.
runifed generates random observations.

References

summary_unifed_glm

Summarizing Generalized Linear Model Fits

Description

Wrapper function for `summary.glm`.

Usage

`summary_unifed_glm(object, ...)`

Arguments

- `object`
an object of class "glm".
- `...`
 Other arguments for `stats::summary.glm`.

This wrapper function was created in order to automatically set to 1 the dispersion parameter of a fitted unified GLM. When the package is loaded the summary method of the `glm` class is rewritten using this function.

Examples

```r
dunifed(c(0.1,0.3,0.7), 10)

x <- c(0.3,0.6,0.9)
unifed.lcdf(x,5)

x <- c(0.1,0.4,0.7,1)
punified(x,-5)

p <- 1:9/10
qunified(p,5)

runified(20,-3.3)
```
Family object for the unifed distribution

Description

Family object for the unifed distribution

Usage

unifed(link = "logit", ...)
quasiunifed(link = "logit", ...)
unifed.canonical.link()

Arguments

link a specification for the model link function. This can be a name/expression, a literal character string, a length-one character vector or an object of class “link-glm” (such as generated by 'make.link') provided it is not specified via one of the accepted names. The unifed family accepts the links (as names) 'canonical', 'logit', 'probit', 'cloglog' and 'cauchit'.

... Optional tol and maxit arguments for unifed.unit.deviance.

Details

The link 'canonical' is not part of the standard names accepted by make.link() from the stats package. It corresponds to the canonical link function for the unifed distribution, which is the inverse of the derivative of its cumulant generator. There is no explicit formula for it. The function unifed.kappa.prime.inverse() implements it using the Newthon-Raphson method.

Value

unifed returns a family object for using the unifed distribution with the glm function.
The quasiunifed family differs from the unifed only in that the dispersion parameter is not fixed to one.
An object of class "link-glm".

References

See Also

- Gamma `unifed.kappa.prime.inverse`
- `make.link`

unified.deviance

Deviance of the unified distribution

Description

Deviance of the unified distribution

Usage

```r
unifed.deviance(y.v, mu.v, wt = 1, ...)
unifed.unit.deviance(y, mu, tol = 1e-07, maxit = 50)
```

Arguments

- `y.v`: A numeric vector with values between 0 and 1
- `mu.v`: A numeric vector with values between 0 and 1
- `wt`: (default value: 1) The weight vector. It contains the weight of each observation. It must contain positive integers only.
- `...`: Additional parameters of `unifed.kappa.prime.inverse.one`
- `y`: A vector with values between 0 and 1.
- `mu`: A vector with values between 0 and 1.
- `tol`: Tolerance level for the Newton-Raphson algorithm for computing the inverse of the derivative of the cumulant generator of the family.
- `maxit`: Maximum number of iterations for the Newton-Raphson algorithm for computing the inverse of the derivative of the cumulant generator of the family.

Details

unifed.unit.deviance uses the following expression for the deviance of regular exponential dispersion families

\[
 d(y, \mu) = 2 \left[y \left(\hat{\kappa}^{-1}(y) - \kappa^{-1}(\mu) \right) - \kappa(\hat{\kappa}^{-1}(y)) + \kappa(\hat{\kappa}^{-1}(\mu)) \right]
\]

\(\hat{\kappa}^{-1} \) is computed with the function `unifed.kappa.prime.inverse` from this package.
unifed.kappa

Value

unifed.deviance returns the deviance of a GLM with a unifed response distribution. This is

\[D(y, \mu) = \sum_{i=1}^{m} w_i d(y_i, \mu_i) \]

Where \(d(y_i, \mu_i) \) is the unit deviance of the unifed distribution between the i-th entry of \(y \) and \(\mu \). \(w_i \) is the i-th entry of the weight vector. unifed.unit.deviance is used to get the value of \(d \).

unifed.unit.deviance

unifed.kappa

Cumulant generator of the unifed distribution

Description

Cumulant generator of the unifed distribution

Usage

unifed.kappa(theta)

unifed.kappa.prime(theta)

unifed.kappa.double.prime(theta)

unifed.kappa.prime.inverse(mu, ...)

unifed.kappa.prime.inverse.one(mu, tol = 1e-07, maxit = 1e+07)

Arguments

theta A numeric vector.

mu A vector of numbers between 0 and 1

... Other parameters of unifed.kappa.prime.inverse.one

tol Tolerance level. The algorithm stops if the proportional difference between the new and old value of an iteration is less or equal than this number.

maxit Maximum number of iterations of the algorithm to look for convergence.

Details

The cumulant generator of the unifed distribution is defined as

\[\kappa(\theta) = \begin{cases} \log \left(\frac{e^\theta - 1}{\theta} \right) & \text{if } \theta \neq 0 \\ 0 & \text{if } \theta = 0 \end{cases} \]

unifed.kappa.prime.inverse.one uses the Newthon-Raphson method for finding the inverse of unifed.kappa.prime for a single value.
Value

unifed.kappa returns a vector that contains the cumulant generator of the unifed distribution applied to each element of theta.
unifed.kappa.prime returns a vector that contains the derivative of the cumulant generator of the unifed distribution for each element of theta.
unifed.kappa.double.prime returns a vector that contains the second derivative of the cumulant generator of the unifed distribution for each element of theta.
unifed.kappa.prime.inverse returns a vector with unifed.kappa.prime.inverse.one evaluated at every entry of mu.
unifed.kappa.prime.inverse.one if the tolerance level is reached within maxit iterations, the function returns the value of the last iteration. Otherwise it returns NA.

References

Examples

unifed.kappa(1)
unifed.kappa(-5:5)

unifed.kappa.prime(4.5)

unifed.kappa.double.prime(0)

unifed.kappa.prime.inverse(0.5)
unifed.kappa.prime.inverse(c(0.1,0.7,0.9))

unifed.mle

Maximum Likelihood Estimate for the unifed distribution

Description

Maximum Likelihood Estimate for the unifed distribution

Usage

unifed.mle(x)
Arguments

\(x \)
A numeric vector with values in the interval [0,1].
Computes the maximum likelihood estimator of the canonical parameter of the unified distribution. It is assumed that the elements of \(x \) come from independent and identically distributed unified random variables.

Examples

```r
a.unifed.sample <- runifed(1000,10)
theta.mle <- unifed.mle(a.unifed.sample)
```

unifed.stan
Stan functions for working with the unified distribution

Description

Stan functions for working with the unified distribution

Details

A script with stan functions of the unified is provided. The script can be included in stan code. The full path to the script can be obtained with the function `unifed.stan.path`. The following list are the names of functions that take one real value:

- `real unifed_kappa(real theta)` Computes the cumulant generator of the unified distribution.
- `real unifed_kappa_prime(real theta)` Computes the first derivative of the cumulant generator.
- `real unifed_kappa_double_prime(real theta)` Computes the second derivative of the cumulant generator.
- `real unifed_lpdf(real x,real theta)` Computes the logarithm of the probability density function of a unified distribution. \(\theta \) is the value of the canonical parameter of the unified and \(x \) if the value where the density is evaluated.
- `real unifed_quantile(real p,real theta)` Returns the \(p \)-th quantile of a unified distribution with canonical parameter \(\theta \).
- `real unifed_rng(real theta)` Returns a simulated value of a unified distribution with canonical parameter \(\theta \).
- `real unifed_lcdf(real x,real theta)` Computes the logarithm of the cumulative density function of a unified distribution. \(\theta \) is the value of the canonical parameter of the unified and \(x \) if the value where the density is evaluated.
- `real unifed_kappa_prime_inverse(real mu)` Returns the inverse of the derivative of the unified cumulant generator.
- `real unifed_unit_deviance(real y,real mu)` Unit deviance function of the unified.

The following functions take vectors as arguments.
vector unifed_kappa_v(vector theta) Vectorized version of unifed_kappa.
vector unifed_kappa_prime_inverse_v(vector mu) Vectorized version of unifed_kappa_prime_inverse.
void unifed_glm_lp(vector y, vector theta, vector weights) Adds to the Log Probability Accumulator the logarithm of the likelihood function of a GLM with observed response y, estimated canonical parameter theta and weights weights.

unifed.stan.path
Unifed Stan function paths

Description

The unifed.stan provided by the file contains functions for using the unifed distribution in stan. The file can be included (with #include) inside the functions block of a stan program or its contents can be copied and pasted.

Usage

unifed.stan.path()

unifed.stan.folder()

Value

The full path to the unifed.stan file provided by the package. unifed.stan.folder returns a string containing the path to the folder containing the unifed.stan file. This can be used as the isystem parameter in stan functions.

unifed.varf
Variance function of the unifed distribution

Description

Variance function of the unifed distribution

Usage

unifed.varf(mu)

Arguments

mu
A vector with numbers between 0 and 1.

Value

It returns unifed.kappa.double.prime(unifed.kappa.prime.inverse(mu)).
Index

dirwin.hall, 2
dunifed, 3

punifed (dunifed), 3

quasiunifed (unifed), 5
qunifed (dunifed), 3

runifed (dunifed), 3

summary_unifed glm, 4

unifed, 5
unifed.deviance, 6
unifed.kappa, 7
unifed.kappa.prime.inverse, 5, 6
unifed.kappa.prime.inverse.one, 6, 7
unifed.lcdf (dunifed), 3
unifed.mle, 8
unifed.stan, 9
unifed.stan.folder (unifed.stan.path), 10
unifed.stan.path, 9, 10
unifed.unit.deviance, 5, 7
unifed.unit.deviance (unifed.deviance), 6
unifed.varf, 10