Package ‘uncorbets’

September 24, 2021

Type Package
Title Uncorrelated Bets via Minimum Torsion Algorithm
Version 0.1.1
License MIT + file LICENSE
URL https://github.com/Reckziegel/uncorbets
BugReports https://github.com/Reckziegel/uncorbets/issues
Imports assertthat (>= 0.2.1), NlcOptim (>= 0.6), stats
Suggests spelling, covr, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.1.2
Language en-US
Depends R (>= 2.10)
NeedsCompilation no
Author Bernardo Reckziegel [aut, cre, cph]
Maintainer Bernardo Reckziegel <bernardo_cse@hotmail.com>
Repository CRAN
Date/Publication 2021-09-24 04:30:02 UTC

R topics documented:

effective_bets . 2
max_effective_bets . 3
torsion . 4

Index 5
effective_bets

Effective Number of Bets

Description
Computes the diversification probability distribution and the effective number of bets of an allocation.

Usage
effective_bets(b, sigma, t)

Arguments
- **b**: A vector of exposures (allocations).
- **sigma**: A n x n covariance matrix.
- **t**: A n x n torsion matrix.

Value
A list of length 2 with:
- **p**: the diversification probability distribution;
- **enb**: the effective number of bets.

Examples

```r
# extract the invariants from the data
cat = 1
set.seed(123)
log_ret <- matrix(rnorm(400), ncol = 4) / 10

# compute the covariance matrix
sigma <- stats::cov(log_ret)

data <- data.frame(log_ret)

# torsion
torsion_cov <- torsion(sigma = sigma, model = 'minimum-torsion', method = 'exact')

# 1/N reference
b <- rep(1 / ncol(log_ret), ncol(log_ret))

# ENB
effective_bets(b = b, sigma = sigma, t = torsion_cov)
```
max_effective_bets

Risk-Diversification powered by the Minimum Torsion Algorithm

Description

Finds the allocation that maximizes the effective_bets.

Usage

max_effective_bets(x0, sigma, t, tol = 1e-20, maxeval = 5000L, maxiter = 5000L)

Arguments

- **x0**: A numeric vector for the search starting point. Usually the “one over n” allocation.
- **sigma**: A n x n covariance matrix.
- **t**: A n x n torsion matrix.
- **tol**: An integer with the convergence tolerance.
- **maxeval**: An integer with the maximum number of evaluations of the objective function.
- **maxiter**: An integer with the maximum number of iterations.

Value

A list with the following components:

- weights: the optimal allocation policy
- enb: the optimal effective number of bets
- counts: the number of iterations of the objective and the gradient
- lambda_lb: the lower bound Lagrange multipliers
- lambda_ub: the upper bound Lagrange multipliers
- lambda_eq: the equality Lagrange multipliers
- gradient: the gradient of the objective function at the optimum
- hessian: hessian of the objective function at the optimum

See Also

solnl
Examples

extract the invariants from the data
set.seed(123)
log_ret <- matrix(rnorm(400), ncol = 4) / 10

compute the covariance matrix
sigma <- stats::cov(log_ret)

torsion

torsion(sigma = sigma, model = "minimum-torsion", method = 'exact')

1/N reference
b <- rep(1 / ncol(log_ret), ncol(log_ret))

max_effective_bets(x0 = b, sigma = sigma, t = torsion_cov)

torsion

Computes the Minimum Torsion Matrix

Description

Computes the Principal Components Torsion and the Minimum Torsion for diversification analysis.

Usage

torsion(sigma, model = "minimum-torsion", method = "exact", max_niter = 10000L)

Arguments

sigma A n x n covariance matrix.
model One of: "pca" or "minimum-torsion".
method One of: "approximate" or "exact". Only used when model = "minimum-torsion".
max_niter An integer with the maximum number of iterations.

Value

A n x n torsion matrix.

Examples

extract the invariants from the data
set.seed(123)
log_ret <- matrix(rnorm(400), ncol = 4) / 10

calculate the covariance matrix
sigma <- stats::cov(log_ret)

torsion(sigma = sigma, model = 'minimum-torsion', method = 'exact')
Index

effective_bets, 2, 3
max_effective_bets, 3
solnl, 3
torsion, 4