Package ‘ubms’

February 2, 2021

Version 1.0.2
Date 2021-02-01
Title Bayesian Models for Data from Unmarked Animals using 'Stan'
Depends R (>= 3.4.0), unmarked
Imports ggplot2 (>= 2.0.0), gridExtra, lme4, loo, Matrix, methods,
Rcpp (>= 0.12.0), rstan (>= 2.18.1), rstantools (>= 2.0.0),
stats
Suggests covr, devtools, knitr, pkgdown, raster, rmarkdown, roxygen2,
testthat
VignetteBuilder knitr
Description Fit Bayesian hierarchical models of animal abundance and occurrence
via the 'rstan' package, the R interface to the 'Stan' C++ library.
Supported models include single-season occupancy, dynamic occupancy, and
N-mixture abundance models. Covariates on model parameters are specified
using a formula-based interface similar to package 'unmarked', while also
allowing for estimation of random slope and intercept terms. References:
Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>;
License GPL (>= 3)
URL https://kenkellner.com/ubms/
BugReports https://github.com/kenkellner/ubms/issues
Encoding UTF-8
RoxygenNote 7.1.1
Biarch true
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppArmadillo (>=
0.9.300.2.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.18.1),
StanHeaders (>= 2.18.0)
SystemRequirements GNU make
Collate 'RcppExports.R' 'submodel.R' 'response.R' 'inputs.R' 'fit.R'
'posterior_predict.R' 'posterior_linpred.R' 'fitted.R' 'gof.R'

1
Topics documented:

- occu.R
- coext.R
- missing.R
- distamp.R
- fitlist.R
- occuRN.R
- mb_chisq.R
- multinomPois.R
- occuTTD.R
- pcount.R
- plot_marginal.R
- predict.R
- ranef.R
- residuals.R
- stanmodels.R
- ubms-package.R
- ubmsFit-methods.R
- ubmsFitList-methods.R
- umf.R
- utils.R

NeedsCompilation: yes

Author: Ken Kellner [cre, aut]

Maintainer: Ken Kellner <contact@kenkellner.com>

Repository: CRAN

Date/Publication: 2021-02-02 00:10:13 UTC

R topics documented:

- coef,ubmsFit-method .. 3
- extract,ubmsFit-method .. 3
- fitList,ubmsFit-method .. 4
- fitted,ubmsFit-method ... 4
- getY,ubmsFit-method .. 5
- gof ... 5
- loo,ubmsFit-method .. 6
- modSel,ubmsFitList-method ... 7
- names,ubmsFit-method ... 7
- names,ubmsFitList-method ... 8
- nsamples,ubmsFit-method .. 8
- plot,ubmsFit,ANY-method ... 9
- plot_marginal,ubmsFit-method 9
- plot_residuals,ubmsFit-method 10
- posterior_linpred,ubmsFit-method 11
- posterior_predict,ubmsFit-method 12
- predict,ubmsFit-method .. 13
- projected ... 14
- ranef,ubmsFit-method ... 15
- residuals,ubmsFit-method .. 15
- stan_coext .. 16
- stan_distamp ... 17
- stan_multinomPois .. 19
- stan_occu .. 20
- stan_occuRN ... 21
- stan_occuTTD ... 22
- stan_pcount ... 23
- summary,ubmsFit-method .. 25
- traceplot,ubmsFit-method ... 25
- turnover ... 26
- ubms .. 26
- ubmsFitList-extractors ... 27
- waic,ubmsFit-method .. 27
Description

Extract Coefficient Values From a ubmsFit Model

Usage

```r
## S4 method for signature 'ubmsFit'
coef(object, ...)
```

Arguments

- `object`: A `ubmsFit` model
- `...`: Currently ignored

Value

A vector of coefficient values for all submodels.

Description

Extract Samples From a ubmsFit Model

Usage

```r
## S4 method for signature 'ubmsFit'
extract(object, pars, permuted = TRUE, inc_warmup = FALSE, include = TRUE)
```

Arguments

- `object`: A `ubmsFit` object
- `pars`: An optional character vector providing parameter names of interest. If not specified, all parameters are used
- `permuted`: Logical. If TRUE, draws are permuted and merged; if FALSE, the original order is kept
- `inc_warmup`: Logical. If TRUE, warmup iterations are included; if FALSE they are discarded.
- `include`: Logical. If TRUE provided parameter names in `pars` are kept; if FALSE they are excluded.
Value

If permuted=TRUE, a list; if permuted=FALSE, an array.

fitList,ubmsFit-method

Create a List of ubmsFit Models

Description

Create a list of ubmsFit models

Usage

S4 method for signature 'ubmsFit'
fitList(...)

Arguments

...

ubmsFit model objects, preferably named

Value

An object of class ubmsFitList containing the list of models

fitted,ubmsFit-method Extract Fitted Values

Description

Extract fitted values for a given submodel from a ubmsFit object. Fitted values are calculated separately for each submodel using the posterior predictive distribution of the latent state \(z \), following Wright et al. (2019).

Usage

S4 method for signature 'ubmsFit'
fitted(object, submodel, draws = NULL, ...)

Arguments

object
A fitted model of class ubmsFit

submodel
Submodel to get fitted values for, options are "state" or "det"

draws
An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample.

...
Currently ignored
Value

A matrix of fitted values with dimension draws by observations. Note that calculation of fitted values for the detection submodel is conditional on \(z > 0 \), so fitted values for an observation in a posterior draw where \(z = 0 \) are assigned value NA (Wright et al. 2019).

References

getY,ubmsFit-method

Extract y, the Response Variable, From a ubmsFit Model

Description

Extract y, the Response Variable, From a ubmsFit Model

Usage

```r
## S4 method for signature 'ubmsFit'
getY(object)
```

Arguments

- `object`: A `ubmsFit` model

Value

A matrix containing the response variable \(y \).

gof

Check model goodness-of-fit

Description

Goodness-of-fit tests for `ubmsFit` models using posterior predictive checks

Usage

```r
gof(object, draws = NULL, ...)  
## S4 method for signature 'ubmsFitOccu'
gof(object, draws = NULL, quiet = FALSE, ...)

## S4 method for signature 'ubmsFitAbun'
gof(object, draws = NULL, quiet = FALSE, ...)
```
Arguments

object A fitted model of class ubmsFit
draws Number of draws from the posterior to use in the check
... Currently ignored
quiet If TRUE, suppress progress bar

Value
An object of class ubmsGOF containing statistics calculated from the posterior predictive distribution.

Functions

• gof,ubmsFitAbun-method: A goodness-of-fit test for N-mixture type models based on Pearson’s chi-square.

References
modSel.ubmsFitList-method

Model Selection For a List of ubmsFit Models

Description

Construct a model selection table from a `ubmsFitList`.

Usage

```r
## S4 method for signature 'ubmsFitList'
modSel(object, ...)
```

Arguments

- `object`: An object of class `ubmsFitList`
- `...`: Currently ignored

Value

A `data.frame` of model fit information with one row per model in the input `ubmsFitList`. Models are ranked in descending order by expected log pointwise predictive density (`elpd`).

See Also

- `loo`, `loo_compare`

names.ubmsFit-method

Get Parameter Names From a `ubmsFit` Model

Description

Get Parameter Names From a `ubmsFit` Model.

Usage

```r
## S4 method for signature 'ubmsFit'
names(x)
```

Arguments

- `x`: A `ubmsFit` model

Value

A character vector of parameter names.
names,ubmsFitList-method

Get Names of Models in a ubmsFitList

Description
Get Names of Models in a ubmsFitList

Usage
S4 method for signature 'ubmsFitList'
names(x)

Arguments
x
A ubmsFitList object

Value
A character vector of model names.

nsamples,ubmsFit-method

Get number of Posterior Samples Stored in a ubmsFit Model

Description
Get number of Posterior Samples Stored in a ubmsFit Model

Usage
S4 method for signature 'ubmsFit'
nsamples(object, ...)

Arguments
object
A ubmsFit model
...
Currently ignored

Value
An integer representing the number of posterior samples
plot.ubmsFit,ANY-method

Plot Residuals For All Submodels in a ubmsFit Model

Description

Plot Residuals For All Submodels in a ubmsFit Model

Usage

```r
## S4 method for signature 'ubmsFit,ANY'
plot(x, y, ...)
```

Arguments

- `x` A `ubmsFit` model
- `y` Currently ignored
- `...` Currently ignored

Value

A plot object of class `gtable` with one panel per submodel.

plot.marginal.ubmsFit-method

Plot Marginal Effects of Covariates

Description

Generates marginal fixed effects plots of one or more covariates from a `ubmsFit` submodel. For each plot, the focal covariate is allowed to vary across its range (or possible discrete values, for a factor), while the other covariates are held at their means or reference levels. Random effects are ignored.

Usage

```r
## S4 method for signature 'ubmsFit'
plot_marginal(object, submodel, covariate = NULL, level = 0.95, ...)
```

Arguments

- `object` A fitted model of class `ubmsFit`
- `submodel` Submodel to get plots for, for example "det"
- `covariate` Plot a specific covariate; provide the name as a string
- `level` Probability mass to include in the uncertainty interval
- `...` Currently ignored
Description

Plot residuals for a submodel from a ubmsFit object, for multiple posterior draws. By default, residuals are plotted against fitted values. When the submodel has a binomial response (e.g., detection models), regular residual plots are not typically informative. Instead, the residuals and fitted values are divided into bins based on fitted value and the averages are plotted. For a count response (e.g., Poisson), Pearson residuals are calculated. To plot residuals against values of a particular covariate instead of the fitted values, supply the name of the covariate (as a string) to the covariate argument.

Usage

```r
## S4 method for signature 'ubmsFit'
plot_residuals(
  object, submodel, covariate = NULL, draws = 9, nbins = NULL, ...
)
```

Arguments

- **object**: A fitted model of class `ubmsFit`
- **submodel**: Submodel to plot residuals for, for example "det"
- **covariate**: If specified, plot residuals against values of a covariate. Covariate name should be provided as a string. If `NULL`, residuals are plotted against predicted values.
- **draws**: An integer indicating the number of posterior draws to use. Separate plots are generated for each draw, so this number should be relatively small. The default and maximum number of draws is the size of the posterior sample.
- **nbins**: For submodels with a binomial response, manually set the number of bins to use
- **...**: Currently ignored

Value

A ggplot of residuals vs. fitted values or covariate values, with one panel per posterior draw. For binned residual plots, the shaded area represents plus/minus two standard deviations around the mean residual. If the model is true, we would expect about 95 fall within this area.
See Also

residuals

Description

Extract posterior draws of the linear predictor for a `ubmsFit` submodel, possibly transformed by the inverse-link function.

Usage

```r
## S4 method for signature 'ubmsFit'

posterior_linpred(
  object,
  transform = FALSE,
  submodel,
  newdata = NULL,
  draws = NULL,
  re.form = NULL,
  ...
)
```

Arguments

- `object` A fitted model of class `ubmsFit`
- `transform` Should the linear predictor be transformed using the inverse link function?
- `submodel` The name of the submodel, as a character string, for which to calculate the linear predictor
- `newdata` Optional data frame of newdata to use when calculating the linear predictor. If not provided, the model matrix is used.
- `draws` An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample.
- `re.form` If NULL, any estimated group-level parameters ("random effects") are included. If NA, they are ignored
- `...` Currently ignored

Value

A matrix of simulations from the posterior predictive distribution of the linear predictor. The dimensions are `draws` by number of linear predictor values (e.g., number of sites or number of observations).
posterior_predict,ubmsFit-method

Draw from the posterior predictive distribution

Description

Draw from the posterior predictive distribution after fitting a model. You can draw from the posterior of the observed outcome y or the latent unobserved state z.

Usage

```r
## S4 method for signature 'ubmsFit'
posterior_predict(
  object,
  param = c("y", "z"),
  draws = NULL,
  re.form = NULL,
  ...
)
```

Arguments

- **object**: A fitted model of class `ubmsFit`
- **param**: Either "y" for the observed outcome or "z" for the unobserved latent state
- **draws**: An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample.
- **re.form**: If NULL, any estimated group-level parameters ("random effects") are included. If NA, they are ignored
- **...**: Currently ignored

Value

A matrix of simulations from the posterior predictive distribution. If `param = "z"`, the dimensions are `draws` by number of sites (or sites x primary periods in site-major order for dynamic models). If `param = "y"`, the dimensions are `draws` by sites x observations (or sites x primary periods x observations for dynamic models).
predict,ubmsFit-method

Predict parameter values from a fitted model

Description

This method generates predicted parameter values for the original dataset or a new dataset using the posterior distribution. Standard deviation and a customizable uncertainty interval are also calculated.

Usage

```r
## S4 method for signature 'ubmsFit'
predict(
  object,
  submodel,
  newdata = NULL,
  transform = TRUE,
  re.form = NULL,
  level = 0.95,
  ...
)
```

Arguments

- **object**: A fitted model of class `ubmsFit`
- **submodel**: Submodel to predict from, for example "det"
- **newdata**: Optional data frame or `RasterStack` of covariates to generate predictions from. If not provided (the default), predictions are generated from the original data
- **transform**: If `TRUE`, back-transform the predictions to their original scale
- **re.form**: If `NULL`, any estimated group-level parameters ("random effects") are included. If `NA`, they are ignored
- **level**: Probability mass to include in the uncertainty interval
- **...**: Currently ignored

Value

If `newdata` was a data frame: A data frame with one row per prediction and four columns: 1) Predicted point estimates (posterior means), 2) Standard deviation of the posterior, 3-4) Lower and upper bounds of the specified uncertainty interval

For parameters with more than one dimension, the rows are in site-major order, or site-year-observation for dynamic models.

If `newdata` was a `RasterStack`, returns a `RasterStack` with four layers corresponding to the four columns above with the same projection as the original `RasterStack`.
projected

See Also

posterior_linpred, posterior_interval

projected

Projected Occupancy Trajectories

Description

Generate posterior draws of occupancy probability for all sites and primary periods, i.e. the projected trajectory (Weir et al. 2009).

Usage

```r
projected(object, ...)  
## S4 method for signature 'ubmsFitColext'
projected(object, draws = NULL, re.form = NULL, ...)
```

Arguments

- `object`: A fitted dynamic occupancy model of class inheriting `ubmsFit`
- `...`: Currently ignored
- `draws`: Number of draws from the posterior to use in the check
- `re.form`: If `NULL`, any estimated group-level parameters ("random effects") are included. If `NA`, they are ignored

Value

A matrix of occupancy values from the posterior predictive distribution. The dimensions are `draws` by number of sites x primary periods in site-major order.

References

See Also

`stan_colext`
Extract Random Effects

Extract random effects from a `ubmsFit` model. Note that this function works like `ranef` for `merMod` objects from `lme4`, not like `ranef` for `unmarkedFit` objects. To get functionality similar to that of `unmarkedFit`, use `posterior_predict`.

Usage

```r
## S4 method for signature 'ubmsFit'
ranef(object, submodel, summary = FALSE, ...)
```

Arguments

- `object`: A fitted model of class `ubmsFit`
- `submodel`: The name of the submodel, as a character string, for which to generate the random effects
- `summary`: If `TRUE`, calculate mean, SD, and 95 for each random effect term
- `...`: Currently ignored

Value

If `summary=FALSE`, a list of random effect values; if `TRUE`, a data frame with columns for random effect mean, SD, and 95

See Also

- `ranef`
- `posterior_predict`

Extract Model Residuals

Extract residuals for a given submodel from a `ubmsFit` object. Residuals are calculated separately for each submodel using the posterior predictive distribution of the latent state z, following Wright et al. (2019).

Usage

```r
## S4 method for signature 'ubmsFit'
residuals(object, submodel, draws = NULL, ...)
```

Description

Extract residuals for a given submodel from a `ubmsFit` object. Residuals are calculated separately for each submodel using the posterior predictive distribution of the latent state z, following Wright et al. (2019).
Arguments

- **object**: A fitted model of class `ubmsFit`
- **submodel**: Submodel to get residuals for, for example "det"
- **draws**: An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample.

 ... Currently ignored

Value

A matrix of residual values with dimension `draws` by observations. Note that calculation of residuals for the detection submodel is conditional on \(z > 0 \), so residuals for an observation in a posterior draw where \(z = 0 \) are assigned value NA (Wright et al. 2019).

References

stan_colext

Fit the MacKenzie et al. (2003) Dynamic Occupancy Model

Description

This function fits the dynamic occupancy model of MacKenzie et al. (2003).

Usage

```r
stan_colext(
  psiformula = ~1,
  gammaformula = ~1,
  epsilonformula = ~1,
  pformula = ~1,
  data,
  ...
)
```

Arguments

- **psiformula**: Right-hand sided formula for the initial probability of occupancy at each site
- **gammaformula**: Right-hand sided formula for colonization probability
- **epsilonformula**: Right-hand sided formula for extinction probability
- **pformula**: Right-hand sided formula for detection probability
- **data**: A `unmarkedMultFrame` object

 ... Arguments passed to the `stan` call, such as number of chains `chains` or iterations `iter`
Value

`ubmsFitColext` object describing the model fit.

References

See Also

colext, unmarkedMultFrame

Examples

data(frogs)
umf <- formatMult(masspcru)
umf@y[umf@y > 1] <- 1 # convert counts to presence/absence
umf <- umf[1:100,] # Use only 100 sites

fit_frog <- stan_colext(~1, ~1, ~1, ~1, umf, chains=3, iter=300)

stan_distsamp

Fit the Royle et al. (2004) Distance Sampling Model

Description

This function fits the hierarchical distance sampling model of Royle et al. (2004) to line or point transect data recorded in discrete distance intervals.

Usage

```r
stan_distsamp(
  formula,  # Double right-hand side formula describing covariates of detection and occupancy in that order
  data,     # A unmarkedFrameDS object
  keyfun = c("halfnorm", "exp", "hazard"),
  output = c("density", "abund"),
  unitsOut = c("ha", "kmsq"),
  ...
)
```

Arguments

- `formula`: Double right-hand side formula describing covariates of detection and occupancy in that order
- `data`: A `unmarkedFrameDS` object
keyfun One of the following detection functions: "halfnorm" for half-normal, "exp" for negative exponential, or "hazard" for hazard-rate (see warning below)

output Model either density "density" or abundance "abund"

unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively

Value

ubmsFitDistsamp object describing the model fit.

Warning

Use of the hazard-rate key function ("hazard") typically requires a large sample size in order to get good parameter estimates. If you have a relatively small number of points/transects (<100), you should be cautious with the resulting models. Check your results against estimates from unmarked, which doesn’t require as much data to get good estimates of the hazard-rate shape and scale parameters.

Note

Values of ‘dist.breaks’ in the ‘unmarkedFrameDS’ should be as small as possible (<10) to facilitate convergence. Consider converting ‘unitsIn’ from meters to kilometers, for example. See example below.

References

See Also

distsamp, unmarkedFrameDS

Examples

data(issj)
#Note use of km instead of m for distance breaks
jayUMF <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),
nsiteCovs=issj[,c("elevation","forest")],
dist.breaks=c(0,0.1,0.2,0.3),
unitsIn="km", survey="point")

fm_jay <- stan_distsamp(~1~scale(elevation), jayUMF, chains=3, iter=300)
stan_multinomPois

Fit the Multinomial-Poisson Mixture Model

Description

This function fits the multinomial-Poisson mixture model, useful for data collected via survey methods such as removal or double observer sampling.

Usage

stan_multinomPois(formula, data, ...)

Arguments

- **formula** Double right-hand side formula describing covariates of detection and abundance in that order
- **data** A unmarkedFrameMpois object
- **...** Arguments passed to the stan call, such as number of chains chains or iterations iter

Value

ubmsFitMultinomPois object describing the model fit.

See Also

multinomPois, unmarkedFrameMpois

Examples

data(ovendata)
ovenFrame <- unmarkedFrameMpois(ovendata.list$data,
siteCovs=ovendata.list$covariates,
type="removal")

oven_fit <- stan_multinomPois(~1-scale(ufc), ovenFrame, chains=3, iter=300)
stan_occu

Fit the MacKenzie et al. (2002) Occupancy Model

Description

This function fits the single season occupancy model of MacKenzie et al. (2002).

Usage

stan_occu(formula, data, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and occupancy in that order
data A unmarkedFrameOccu object
... Arguments passed to the stan call, such as number of chains chains or iterations iter

Value

ubmsFitOccu object describing the model fit.

References

See Also

occu, unmarkedFrameOccu

Examples

data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)

#Add some covariates
siteCovs(pferUMF) <- data.frame(cov1=rnorm(numSites(pferUMF)))

#Fit model
(fm <- stan_occu(~1~cov1, pferUMF, chains=3, iter=300))
Description

Fit the occupancy model of Royle and Nichols (2003), which relates probability of detection of the species to the number of individuals available for detection at each site.

Usage

```r
stan_occuRN(formula, data, K = 20, ...)
```

Arguments

- `formula`: Double right-hand side formula describing covariates of detection and abundance in that order.
- `data`: A `unmarkedFrameOccu` object.
- `K`: Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with `K`.
- `...`: Arguments passed to the `stan` call, such as number of chains `chains` or iterations `iter`.

Value

A `ubmsFitOccuRN` object describing the model fit.

References

See Also

`occuRN`, `unmarkedFrameOccu`

Examples

```r
data(birds)
woodthrushUMF <- unmarkedFrameOccu(woodthrush.bin)
#Add a site covariate
siteCovs(woodthrushUMF) <- data.frame(cov1=rnorm(numSites(woodthrushUMF)))

(fm_wood <- stan_occuRN(~1~cov1, woodthrushUMF, chains=3, iter=300))
```
stan_occuTTD

Fit Time-to-detection Occupancy Models

Description

Fit time-to-detection occupancy models of Garrard et al. (2008, 2013). Time-to-detection can be modeled with either an exponential or Weibull distribution.

Usage

stan_occuTTD(
 psiformula = ~1,
 gammaformula = ~1,
 epsilonformula = ~1,
 detformula = ~1,
 data,
 ttdDist = c("exp", "weibull"),
 linkPsi = c("logit"),
 ...
)

Arguments

- **psiformula**: Right-hand sided formula for the initial probability of occupancy at each site.
- **gammaformula**: Right-hand sided formula for colonization probability. Currently ignored as dynamic models are not yet supported.
- **epsilonformula**: Right-hand sided formula for extinction probability. Currently ignored as dynamic models are not yet supported.
- **detformula**: Right-hand sided formula for mean time-to-detection.
- **data**: unmarkedFrameOccuTTD object that supplies the data (see unmarkedFrameOccuTTD).
- **ttdDist**: Distribution to use for time-to-detection; either "exp" for the exponential, or "weibull" for the Weibull, which adds an additional shape parameter k.
- **linkPsi**: Link function for the occupancy model. Only option is "logit" for now, in the future "cloglog" will be supported for the complimentary log-log link.
- **...**: Arguments passed to the stan call, such as number of chains chains or iterations iter.

Value

ubmsFitOccuTTD object describing the model fit.
References

See Also

`occuTTD, unmarkedFrameOccuTTD`

Examples

```r
#Simulate data
N <- 500; J <- 1
scovs <- data.frame(elev=c(scale(runif(N, 0,100))),
                     forest=runif(N,0,1),
                     wind=runif(N,0,1))
beta_psi <- c(-0.69, 0.71, -0.5)
psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi)
z <- rbinom(N, 1, psi)

Tmax <- 10 #Same survey length for all observations
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam)
ttd <- rexp(N, rate)
ttd[z==0] <- Tmax #Censor at unoccupied sites
ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length

#Build unmarkedFrame
umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs)

#Fit model
(fit <- stan_occuTTD(psiformula=~elev+forest, detformula=~elev+wind,
data=umf, chains=3, iter=300))
```

stan_pcount

Fit the N-mixture model of Royle (2004)

Description

This function fits the single season N-mixture model of Royle et al. (2004).
Usage

stan_pcount(formula, data, K = NULL, mixture = "P", ...)

Arguments

formula Double right-hand side formula describing covariates of detection and abundance in that order
data A unmarkedFramePCount object
K Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K.
mixture Character specifying mixture: "P" is only option currently.
... Arguments passed to the stan call, such as number of chains chains or iterations iter

Value

ubmsFitPcount object describing the model fit.

References

See Also

count, unmarkedFramePCount

Examples

data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs=mallard.site)

(fm_mallard <- stan_pcount(~1+elev+forest, mallardUMF, K=30, chains=3, iter=300))
summary.ubmsFit-method

Extract Summary Statistics from a ubmsFit Model

Description

Extract Summary Statistics from a ubmsFit Model

Usage

S4 method for signature 'ubmsFit'
summary(object, submodel, ...)

Arguments

object A ubmsFit model
submodel Name of submodel to summarize
... Currently ignored

Value

An object of class data.frame containing summary statistics for posterior distributions of parameters from the chosen submodel.

traceplot.ubmsFit-method

Markov Chain Traceplots

Description

Draws traceplots for chains from a ubmsFit object

Usage

S4 method for signature 'ubmsFit'
traceplot(object, ...)

Arguments

object A ubmsFit object
... Arguments passed to rstan::traceplot

Value

A ggplot object.
Description

Generate posterior draws of turnover probability from dynamic occupancy models. Turnover is calculated for each site and each primary period after the first.

Usage

turnover(object, ...)

S4 method for signature 'ubmsFitColext'
turnover(object, draws, re.form = NULL, ...)

Arguments

- **object**: A fitted dynamic occupancy model of class inheriting `ubmsFit`
- **...**: Currently ignored
- **draws**: Number of draws from the posterior to use in the check
- **re.form**: If `NULL`, any estimated group-level parameters ("random effects") are included. If `NA`, they are ignored

Value

A matrix of turnover values from the posterior predictive distribution. The dimensions are `draws` by number of sites x (primary periods - 1) in site-major order.

See Also

`stan_colext`

Description

Unmarked Bayesian Models using Stan

Author(s)

Ken Kellner
ubmsFitList-extractors

Extractors for ubmsFitList objects Extract parts of ubmsFitList objects.

Description

Extractors for ubmsFitList objects Extract parts of ubmsFitList objects.

Usage

S4 method for signature 'ubmsFitList'
x$name

S4 method for signature 'ubmsFitList,numeric,missing'
x[[i]]

S4 method for signature 'ubmsFitList,numeric,missing,missing'
x[i]

Arguments

x A list of ubmsFit models of class ubmsFitList
name, i The names or indices of ubmsFit models in the ubmsFitList

Value

A ubmsFit object or list of such objects.

waic,ubmsFit-method

Widely Applicable Information Criterion (WAIC)

Description

Widely Applicable Information Criterion (WAIC)

Usage

S4 method for signature 'ubmsFit'
waic(x, ...)

Arguments

x A ubmsFit model
... Currently ignored
Value
An object of class `waic` containing an estimate of WAIC and other parameters useful for model comparison. See `?loo::waic` for more information.

Extract a Submodel from a ubmsFit Model

Description
Extract a Submodel from a ubmsFit Model

Usage

```r
## S4 method for signature 'ubmsFit,character,missing,missing'
x[i]
```

Arguments

- `x` A ubmsFit model
- `i` The name of a submodel to extract

Value
An object of class `ubmsSubmodel`.

Extract a ubmsSubmodel From a ubmsSubmodelList Object

Description
Extract a ubmsSubmodel From a ubmsSubmodelList Object

Usage

```r
## S4 method for signature 'ubmsSubmodelList,character,missing,missing'
x[i]
```

Arguments

- `x` Object of class `ubmsSubmodelList`
- `i` The name of a submodel

Value
An object of class `ubmsSubmodel`.
Index

[,ubmsFit,character,missing,missing-method, 28
[,ubmsFitList,numeric,missing,missing-method
 (ubmsFitList-extractors), 27
[,ubmsSubmodelList,character,missing,missing-method, (plot_marginal,ubmsFit-method),
 9
[[,ubmsFitList,numeric,missing-method
 (ubmsFitList-extractors), 27
$,ubmsFitList-method
 (ubmsFitList-extractors), 27

coeef,ubmsFit-method, 3
colext, 17
distsamp, 18
extract,ubmsFit-method, 3
fitList (fitList,ubmsFit-method), 4
fitted,ubmsFit-method, 4
g getY,ubmsFit-method, 5
gof, 5
gof,ubmsFitAbun-method (gof), 5
gof,ubmsFitOccu-method (gof), 5

lo, 7
lo,ubmsFit-method, 6
loo_compare, 7
modSel,ubmsFitList-method, 7
multinomPois, 19

names,ubmsFit-method, 7
names,ubmsFitList-method, 8
nsamples,ubmsFit-method, 8

occu, 20
occuRN, 21
occuTTD, 23

pcount, 24
plot,ubmsFit,ANY-method, 9
plot,ubmsGOF,ANY-method (gof), 5
plot_marginal
plot_residuals
 (plot_residuals,ubmsFit-method), 10
plot_residuals,ubmsFit-method, 10
posterior_linpred
 (posterior_linpred,ubmsFit-method), 11
posterior_linpred,ubmsFit-method, 11
posterior_predict, 15
posterior_predict
 (posterior_predict,ubmsFit-method), 12
posterior_predict,ubmsFit-method, 12
predict (predict,ubmsFit-method), 13
predict,ubmsFit-method, 13
projected, 14
projected,ubmsFitColext-method
 (projected), 14

ranef, 15
ranef (ranef,ubmsFit-method), 15
ranef,ubmsFit-method, 15
residuals, 11
residuals,ubmsFit-method, 15

stan, 16, 18–22, 24
stan_colext, 14, 16, 26
stan_distsamp, 17
stan_multinomPois, 17
stan_occu, 20
stan_occuRN, 21
stan_occuTTD, 22
stan_pcount, 23
summary, `ubmsFit-method`, 25
traceplot, `ubmsFit-method`, 25
turnover, 26
turnover, `ubmsFitColext-method`
 (turnover), 26

`ubms`, 26
`ubmsFitList-extractors`, 27
`unmarkedFrameDS`, 17, 18
`unmarkedFrameMPOis`, 19
`unmarkedFrameOccu`, 20, 21
`unmarkedFrameOccuTTD`, 22, 23
`unmarkedFramePCount`, 24
`unmarkedMultFrame`, 16, 17

waic, `ubmsFit-method`, 27