Package ‘tune’

February 11, 2020

Title Tidy Tuning Tools
Version 0.0.1
Description The ability to tune models is important. 'tune' contains functions and
classes to be used in conjunction with other 'tidymodels' packages for
finding reasonable values of hyper-parameters in models, pre-processing
methods, and post-processing steps.
License MIT + file LICENSE
URL https://github.com/tidymodels/tune
Depends R (>= 2.10)
Imports dplyr (>= 0.8.3), rlang (>= 0.4.0), tibble (>= 2.1.3), purrr
(>= 0.3.2), dials (>= 0.0.4), recipes (>= 0.1.9), utils,
ggplot2, glue, cli (>= 2.0.0), crayon, yardstick, rsample,
tidy, GPfit, foreach, parsnip (>= 0.0.4), workflows (>=
0.1.0), hardhat (>= 0.1.0)
Suggests testthat, knitr, covr, kernlab, xml2, spelling
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2.9000
Language en-US
NeedsCompilation no
Author Max Kuhn [aut, cre],
 RStudio [cph]
Maintainer Max Kuhn <max@rstudio.com>
Repository CRAN
Date/Publication 2020-02-11 08:50:03 UTC

R topics documented:

 autoplot.tune_results .. 2
 collect_predictions .. 3
Description

Plot tuning search results

Usage

```r
## S3 method for class 'tune_results'
autoplot(
  object,
  type = c("marginals", "parameters", "performance"),
  metric = NULL,
  width = NULL,
  ...
)
```

Arguments

- **object**: A tibble of results from `tune_grid()` or `tune_bayes()`.
- **type**: A single character value. Choices are "marginals" (for a plot of each predictor versus performance), "parameters" (each parameter versus search iteration), or "performance" (performance versus iteration). The latter two choices are only used for `tune_bayes()`.
- **metric**: A character vector or NULL for which metric to plot. By default, all metrics will be shown via facets.
- **width**: A number for the width of the confidence interval bars when `type = "performance"`. A value of zero prevents them from being shown.
- **...**: Not currently used.
collect_predictions

Details

The parameters are currently represented in their natural units.
A single categorical tuning parameter is supported when other numeric parameters are also in the results. Any number of numeric tuning parameters can be used.

Value

A ggplot2 object.

See Also
tune_grid(), tune_bayes()

Examples

For grid search:
data("example_ames_knn")

Plot the tuning parameter values versus performance
autoplot(ames_grid_search, metric = "rmse")

For iterative search:
Plot the tuning parameter values versus performance
autoplot(ames_iter_search, metric = "rmse", type = "marginals")

Plot tuning parameters versus iterations
autoplot(ames_iter_search, metric = "rmse", type = "parameters")

Plot performance over iterations
autoplot(ames_iter_search, metric = "rmse", type = "performance")

collect_predictions Obtain and format results produced by tuning functions

Description

Obtain and format results produced by tuning functions

Usage

collect_predictions(x)

collect_metrics(x, summarize = TRUE)
Arguments

- **x**: The results of `tune_grid()`, `tune_bayes()`, `fit_resamples()`, or `last_fit()`. For `collect_predictions()`, the control option `save_pred = TRUE` should have been used.

- **summarize**: A logical; should metrics be summarized over resamples (TRUE) or return the values for each individual resample. Note that, if `x` is created by `last_fit()`, `summarize` has no effect.

Value

A tibble. The column names depend on the results and the mode of the model.

- For `collect_metrics()` and `collect_predictions()`, there are columns for each tuning parameter (using the id from `tune()`, if any).

- For `collect_predictions()`, there are additional columns for the resampling identifier(s), columns for the predicted values (e.g., `.pred`, `.pred_class`, etc.), and a column for the outcome(s) using the original column name(s) in the data.

- `collect_metrics()` also has columns `.metric` and `.estimator`. When the results are summarized, there are columns for `mean`, `n`, and `std_err`. When not summarized, the additional columns for the resampling identifier(s) and `.estimate`.

Examples

```r
data("example_ames_knn")

# Summarized over resamples
collect_metrics(ames_grid_search)

# Per-resample values
collect_metrics(ames_grid_search, summarize = FALSE)

# library(parsnip)
library(rsample)

lm_mod <- linear_reg() %>% set_engine("lm")
set.seed(93599150)
car_folds <- vfold_cv(mtcars)
ctrl <- control_resamples(save_pred = TRUE)

resampled <- fit_resamples(mpg ~ ., lm_mod, resamples = car_folds, control = ctrl)
collect_predictions(resampled)
```
Control aspects of the Bayesian search process

Usage

control_bayes(
 verbose = FALSE,
 no_improve = 10L,
 uncertain = Inf,
 seed = sample.int(10^5, 1),
 extract = NULL,
 save_pred = FALSE,
 time_limit = NA,
 pkgs = NULL
)

Arguments

verbose A logical for logging results as they are generated. Despite this argument, warnings and errors are always shown. If using a dark IDE theme, some logging messages might be hard to see. If this is the case, try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

uncertain The number of iterations with no improvement before an uncertainty sample is created where a sample with high predicted variance is chosen (i.e., in a region that has not yet been explored). The iteration counter is reset after each uncertainty sample. For example, if uncertain = 10, this condition is triggered every 10 samples with no improvement.

seed An integer for controlling the random number stream.

extract An optional function with at least one argument (or NULL) that can be used to retain arbitrary objects from the model fit object, recipe, or other elements of the workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should execute. The elapsed time is evaluated at internal checkpoints and, if over time, the results at that time are returned (with a warning). This means that the time_limit is not an exact limit, but a minimum time limit.

pkgs An optional character string of R package names that should be loaded (by namespace) during parallel processing.
Details

For `extract`, this function can be used to output the model object, the recipe (if used), or some components of either or both. When evaluated, the function’s sole argument has a fitted workflow. If the formula method is used, the recipe element will be `NULL`.

The results of the `extract` function are added to a list column in the output called `.extracts`. Each element of this list is a tibble with tuning parameter column and a list column (also called `.extracts`) that contains the results of the function. If no extraction function is used, there is no `.extracts` column in the resulting object. See `tune_bayes()` for more specific details.

Note that for `collect_predictions()`, it is possible that each row of the original data point might be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-validation are used, there will be multiple rows since the sample data point has been evaluated multiple times. This may cause issues when merging the predictions with the original data.

control_grid

Control aspects of the grid search process

Description

Control aspects of the grid search process

Usage

```r
control_grid(
  verbose = FALSE,
  allow_par = TRUE,
  extract = NULL,
  save_pred = FALSE,
  pkgs = NULL
)
```

```r
control_resamples(
  verbose = FALSE,
  allow_par = TRUE,
  extract = NULL,
  save_pred = FALSE,
  pkgs = NULL
)
```

Arguments

- **verbose**
 A logical for logging results as they are generated. Despite this argument, warnings and errors are always shown. If using a dark IDE theme, some logging messages might be hard to see. If this is the case, try setting the `tidymodels.dark` option with `options(tidymodels.dark = TRUE)` to print lighter colors.

- **allow_par**
 A logical to allow parallel processing (if a parallel backend is registered).
Details

For `extract`, this function can be used to output the model object, the recipe (if used), or some components of either or both. When evaluated, the function’s sole argument has a fitted workflow. If the formula method is used, the recipe element will be `NULL`

The results of the `extract` function are added to a list column in the output called `.extracts`. Each element of this list is a tibble with tuning parameter column and a list column (also called `.extracts`) that contains the results of the function. If no extraction function is used, there is no `.extracts` column in the resulting object. See `tune_bayes()` for more specific details.

Note that for `collect_predictions()`, it is possible that each row of the original data point might be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-validation are used, there will be multiple rows since the sample data point has been evaluated multiple times. This may cause issues when merging the predictions with the original data.

`control_resamples()` is an alias for `control_grid()` and is meant to be used with `fit_resamples()`.

Example Analysis of Ames Housing Data

These objects are the results of an analysis of the Ames housing data. A K-nearest neighbors model was used with a small predictor set that included natural spline transformations of the Longitude and Latitude predictors. The code used to generate these examples was:

```r
library(tidymodels)
library(tune)
library(AmesHousing)

# ------------------------------------------------------------------------------
ames <- make_ames()
set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")
```
ames_train <- training(data_split)

set.seed(2453)
rs_splits <- vfold_cv(ames_train, strata = "Sale_Price")

--

ames_rec <-
 recipe(Sale_Price ~ ., data = ames_train) %>%
 step_log(Sale_Price, base = 10) %>%
 step_YeoJohnson(Lot_Area, Gr_Liv_Area) %>%
 step_other(Neighborhood, threshold = .1) %>%
 step_dummy(all_nominal()) %>%
 step_zv(all_predictors()) %>%
 step_ns(Longitude, deg_free = tune("lon")) %>%
 step_ns(Latitude, deg_free = tune("lat"))

knn_model <-
 nearest_neighbor(
 mode = "regression",
 neighbors = tune("K"),
 weight_func = tune(),
 dist_power = tune()
) %>%
 set_engine("kknn")

ames_wflow <-
 workflow() %>%
 add_recipe(ames_rec) %>%
 add_model(knn_model)

ames_set <-
 parameters(ames_wflow) %>%
 update(K = neighbors(c(1, 50)))

set.seed(7014)
ames_grid <-
 ames_set %>%
 grid_max_entropy(size = 10)

ames_grid_search <-
 tune_grid(
 ames_wflow,
 resamples = rs_splits,
 grid = ames_grid
)
expo_decay

```r
set.seed(2082)
ames_iter_search <-
  tune_bayes(
    ames_wflow,
    resamples = rs_splits,
    param_info = ames_set,
    initial = ames_grid_search,
    iter = 15
  )
```

important note: Since the `rsample` split columns contain a reference to the same data, saving them to disk can result in large object sizes when the object is later used. In essence, R replaces all of those references with the actual data. For this reason, we saved zero-row tibbles in their place. This doesn’t affect how we use these objects in examples but be advised that using some `rsample` functions on them will cause issues.

Value

<table>
<thead>
<tr>
<th><code>ames_wflow</code></th>
<th>A workflow object</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ames_grid_search</code>, <code>ames_iter_search</code></td>
<td>Results of model tuning.</td>
</tr>
</tbody>
</table>

Examples

- `ames_grid_search`
- `ames_iter_search`

expo_decay

Exponential decay function

Description

`expo_decay()` can be used to increase or decrease a function exponentially over iterations. This can be used to dynamically set parameters for acquisition functions as iterations of Bayesian optimization proceed.

Usage

`expo_decay(iter, start_val, limit_val, slope = 1/5)`

Arguments

- `iter` An integer for the current iteration number.
- `start_val` The number returned for the first iteration.
- `limit_val` The number that the process converges to over iterations.
- `slope` A coefficient for the exponent to control the rate of decay. The sign of the slope controls the direction of decay.
Details

Note that, when used with the acquisition functions in `tune()`, a wrapper would be required since only the first argument would be evaluated during tuning.

Value

A single numeric value.

Examples

```r
library(tibble)
library(purrr)
library(ggplot2)
library(dplyr)
tibble(
  iter = 1:40,
  value = map_dbl(
    1:40,
    expo_decay,
    start_val = .1,
    limit_val = 0,
    slope = 1 / 5
  )
) %>%
  ggplot(aes(x = iter, y = value)) + geom_path()
```

extract_recipe

Convenience functions to extract model or recipe

Description

When extracting the fitted results, the workflow is easily accessible. If there is only interest in the recipe or model, these functions can be used as shortcuts.

Usage

```r
extract_recipe(x)
extract_model(x)
```

Arguments

- `x` A fitted workflow object.

Value

A fitted model or recipe. If a formula is used instead of a recipe, `extract_recipe()` returns `NULL`.
finalize_model

Splice final parameters into objects

Description

The finalize_* functions take a list or tibble of tuning parameter values and update objects with those values.

Usage

finalize_model(x, parameters)
finalize_recipe(x, parameters)
finalize_workflow(x, parameters)

Arguments

x A recipe, parsnip model specification, or workflow.
parameters A list or 1-row tibble of parameter values. Note that the column names of the tibble should be the id fields attached to tune(). For example, in the Examples section below, the model has tune("K"). In this case, the parameter tibble should be "K" and not "neighbors".

Value

An updated version of x.

Examples

```r
data("example_ames_knn")

library(parsnip)
knn_model <-
  nearest_neighbor(
    mode = "regression",
    neighbors = tune("K"),
    weight_func = tune(),
    dist_power = tune()
  ) %>%
  set_engine("kknn")

lowest_rmse <- select_best(ames_grid_search, metric = "rmse", maximize = FALSE)
lowest_rmse

knn_model
finalize_model(knn_model, lowest_rmse)
```
fit_resamples

Fit multiple models via resampling

Description

`fit_resamples()` computes a set of performance metrics across one or more resamples. It does not perform any tuning (see `tune_grid()` and `tune_bayes()` for that), and is instead used for fitting a single model+recipe or model+formula combination across many resamples.

Usage

```r
fit_resamples(object, ...)  
## S3 method for class \'recipe\'
fit_resamples(
  object,
  model,
  resamples,
  ...,  
  metrics = NULL,
  control = control_resamples()
)

## S3 method for class \'formula\'
fit_resamples(
  formula,
  model,
  resamples,
  ...,  
  metrics = NULL,
  control = control_resamples()
)

## S3 method for class \'workflow\'
fit_resamples(
  object,
  resamples,
  ...,  
  metrics = NULL,
  control = control_resamples()
)
```

Arguments

- `object`: A workflow, formula, or recipe.
- `...`: Currently unused.
model A parsnip model specification.
resamples A resample rset created from an rsample function such as \texttt{rsample::vfold_cv()}.
metrics A \texttt{yardstick::metric_set()} or NULL to compute a standard set of metrics.
control A \texttt{control_resamples()} object used to fine tune the resampling process.
formula A formula specifying the terms of the model.

Performance Metrics

To use your own performance metrics, the \texttt{yardstick::metric_set()} function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the metrics argument could be given:

\begin{verbatim}
metrics = metric_set(roc_auc, sens, spec)
\end{verbatim}

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

\begin{itemize}
 \item For regression models, the root mean squared error and coefficient of determination are computed.
 \item For classification, the area under the ROC curve and overall accuracy are computed.
\end{itemize}

Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This tibble contains a row for each metric and columns for the value, the estimator type, and so on. \texttt{collect_metrics()} can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When \texttt{control(save_preds = TRUE)}, the output tibble contains a list column called .predictions that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object (.row), the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this function generates a column called .pred and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using \texttt{tidyr::unnest()} or using the convenience function \texttt{collect_predictions()}.

Extracting Information

The extract control option will result in an additional function to be returned called .extracts. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument. The value of the argument that is given to the function in each resample is a workflow object (see workflows::workflow() for more information). There are two helper functions that can be used to easily pull out the recipe (if any) and/or the model: extract_recipe() and extract_model().

As an example, if there is interest in getting each model back, one could use:

```r
extract = function (x) extract_model(x)
```

Note that the function given to the extract argument is evaluated on every model that is fit (as opposed to every model that is evaluated). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

See Also

control_resamples(), collect_predictions(), collect_metrics()

Examples

```r
library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
  step_ns(disp) %>%
  step_ns(wt)

lin_mod <- linear_reg() %>%
  set_engine("lm")

control <- control_resamples(save_pred = TRUE)

spline_res <- fit_resamples(spline_rec, lin_mod, folds, control = control)

spline_res

show_best(spline_res, metric = "rmse", maximize = FALSE)
```
last_fit

Fit the final best model to the training set and evaluate the test set

Description

`last_fit()` emulates the process where, after determining the best model, the final fit on the entire training set is needed and is then evaluated on the test set.

Usage

```r
last_fit(object, ...)  
## S3 method for class 'recipe'
last_fit(object, model, split, ..., metrics = NULL)  
## S3 method for class 'formula'
last_fit(formula, model, split, ..., metrics = NULL)  
## S3 method for class 'workflow'
last_fit(object, split, ..., metrics = NULL)
```

Arguments

- `object`: A workflow, formula, or recipe. No tuning parameters are allowed.
- `...`: Currently unused.
- `model`: A `parsnip` model specification. No tuning parameters are allowed.
- `split`: An `rsplit` object created from `rsample::initial_split()`.
- `metrics`: A `yardstick::metric_set()`, or `NULL` to compute a standard set of metrics.
- `formula`: A formula specifying the terms of the model.

Details

This function is intended to be used after fitting a variety of models and the final tuning parameters (if any) have been finalized. The next step would be to fit using the entire training set and verify performance using the test data.

Value

A single row tibble that emulates the structure of `fit_resamples()`. However, a list column called `.workflow` is also attached with the fitted model (and recipe, if any) that used the training set.
Examples

library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)
spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
 step_ns(disp)
lin_mod <- linear_reg() %>%
 set_engine("lm")
spline_res <- last_fit(spline_rec, lin_mod, split = tr_te_split)
spline_res

test set results
spline_res$.metrics[[1]]

or use a workflow

library(workflows)
spline_wfl <-
 workflow() %>%
 add_recipe(spline_rec) %>%
 add_model(lin_mod)

last_fit(spline_wfl, split = tr_te_split)

prob_improve Acquisition function for scoring parameter combinations

Description

These functions can be used to score candidate tuning parameter combinations as a function of their predicted mean and variation.

Usage

prob_improve(trade_off = 0, eps = .Machine$double.eps)

exp_improve(trade_off = 0, eps = .Machine$double.eps)

conf_bound(kappa = 0.1)
Arguments

- **trade_off**: A number or function that describes the trade-off between exploitation and exploration. Smaller values favor exploitation.
- **eps**: A small constant to avoid division by zero.
- **kappa**: A positive number (or function) that corresponds to the multiplier of the standard deviation in a confidence bound (e.g., 1.96 in normal-theory 95 percent confidence intervals). Smaller values lean more towards exploitation.

Details

The acquisition functions often combine the mean and variance predictions from the Gaussian process model into an objective to be optimized.

For this documentation, we assume that the metric in question is better when *maximized* (e.g., accuracy, the coefficient of determination, etc).

The expected improvement of a point x is based on the predicted mean and variation at that point as well as the current best value (denoted here as x_b). The vignette linked below contains the formulas for this acquisition function. When the `trade_off` parameter is greater than zero, the acquisition function will down-play the effect of the `mean` prediction and give more weight to the variation. This has the effect of searching for new parameter combinations that are in areas that have yet to be sampled.

Note that for `exp_improve()` and `prob_improve()`, the `trade_off` value is in the units of the outcome. The functions are parameterized so that the `trade_off` value should always be non-negative.

The confidence bound function does not take into account the current best results in the data.

If a function is passed to `exp_improve()` or `prob_improve()`, the function can have multiple arguments but only the first (the current iteration number) is given to the function. In other words, the function argument should have defaults for all but the first argument. See `expo_decay()` as an example of a function.

Value

An object of class `prob_improve`, `exp_improve`, or `conf_bounds` along with an extra class of `acquisition_function`.

See Also

- `tune_bayes()`, `expo_decay()`

Examples

- `prob_improve()`
Investigate best tuning parameters

Description

show_best() displays the top sub-models and their performance estimates.

Usage

show_best(x, metric, n = 5, maximize = TRUE)

select_best(x, metric, maximize = TRUE)

select_by_pct_loss(x, ..., metric, maximize = TRUE, limit = 2)

select_by_one_std_err(x, ..., metric, maximize = TRUE)

Arguments

x The results of tune_grid() or tune_bayes().

metric A character value for the metric that will be used to sort the models. (See https://tidymodels.github.io/yardstick/articles/metric-types.html for more details). Not required if a single metric exists in x.

n An integer for the number of top results/rows to return.

maximize A logical value (TRUE/FALSE).

... For select_by_one_std_err() and select_by_pct_loss(), this argument is passed directly to dplyr::arrange() so that the user can sort the models from most simple to most complex. See the examples below. At least one term is required for these two functions.

limit The limit of loss of performance that is acceptable (in percent units). See details below.

Details

select_best() finds the tuning parameter combination with the best performance values.

select_by_one_std_err() uses the "one-standard error rule" (Breiman _el at, 1984) that selects the most simple model that is within one standard error of the numerically optimal results.

select_by_pct_loss() selects the most simple model whose loss of performance is within some acceptable limit.

For percent loss, suppose the best model has an RMSE of 0.75 and a simpler model has an RMSE of 1. The percent loss would be (1.00 - 0.75)/1.00 * 100, or 25 percent. Note that loss will always be non-negative.
Value

A tibble with columns for the parameters. `show_best()` also includes columns for performance metrics.

References

Examples

data("example_ames_knn")

show_best(ames_iter_search, metric = "rmse", maximize = FALSE)

select_best(ames_iter_search, metric = "rsq")

To find the least complex model within one std error of the numerically optimal model, the number of nearest neighbors are sorted from the largest number of neighbors (the least complex class boundary) to the smallest (corresponding to the most complex model).

select_by_one_std_err(ames_grid_search, metric = "rmse", maximize = FALSE, desc(K))

Now find the least complex model that has no more than a 5% loss of RMSE:
select_by_pct_loss(ames_grid_search, metric = "rmse", maximize = FALSE, limit = 5, desc(K))

tune

A placeholder function for argument values that are to be tuned.

Description

`tune()` is used when a parameter will be specified at a later date.

Usage

tune(id = "")

Arguments

id A single character value that can be used to differentiate parameters that are used in multiple places but have the same name, or if the user wants a note associated with the parameter.
Value

A call object that echos the user input.

See Also

tune_grid(), tune_bayes()

Examples

tune()
class(tune())
tune("your name here")

How `tune()` is used in practice:

library(parsnip)
nearest_neighbor(
 neighbors = tune("K"),
 weight_func = tune(),
 dist_power = tune()
)

tune_bayes

Bayesian optimization of model parameters.

Description

tune_bayes() uses models to generate new candidate tuning parameter combinations based on previous results.

Usage

tune_bayes(object, ...)

Default S3 method:
tune_bayes(object, ...)

S3 method for class 'recipe'
tune_bayes(
 object,
 model,
 resamples,
 ...,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 objective = exp_improve(),
 initial = 5,
control = control_bayes()

S3 method for class 'formula'

tune_bayes(
 formula,
 model,
 resamples,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 objective = exp_improve(),
 initial = 5,
 control = control_bayes()
)

S3 method for class 'workflow'

tune_bayes(
 object,
 resamples,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 objective = exp_improve(),
 initial = 5,
 control = control_bayes()
)

Arguments

- **object**: A model workflow, R formula or recipe object.
- **...**: Not currently used.
- **model**: A `parsnip` model specification (or NULL when object is a workflow).
- **resamples**: An `rset()` object.
- **iter**: The maximum number of search iterations.
- **param_info**: A `dials::parameters()` object or NULL. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **metrics**: A `yardstick::metric_set()` object containing information on how models will be evaluated for performance. The first metric in `metrics` is the one that will be optimized.
- **objective**: A character string for what metric should be optimized or an acquisition function object.
initial: An initial set of results in a tidy format (as would result from `tune_grid()`) or a positive integer. It is suggested that the number of initial results be greater than the number of parameters being optimized.

control: A control object created by `control_bayes()`.

formula: A traditional model formula.

Details

The optimization starts with a set of initial results, such as those generated by `tune_grid()`. If none exist, the function will create several combinations and obtain their performance estimates.

Using one of the performance estimates as the model outcome, a Gaussian process (GP) model is created where the previous tuning parameter combinations are used as the predictors.

A large grid of potential hyperparameter combinations is predicted using the model and scored using an acquisition function. These functions usually combine the predicted mean and variance of the GP to decide the best parameter combination to try next. For more information, see the documentation for `exp_improve()` and the corresponding package vignette.

The best combination is evaluated using resampling and the process continues.

Value

A tibble of results that mirror those generated by `tune_grid()`. However, these results contain an `.iter` column and replicate the `rset` object multiple times over iterations (at limited additional memory costs).

Parallel Processing

The `foreach` package is used here. To execute the resampling iterations in parallel, register a parallel backend function. See the documentation for `foreach::foreach()` for examples.

For the most part, warnings generated during training are shown as they occur and are associated with a specific resample when `control(verbose = TRUE)`. They are (usually) not aggregated until the end of processing.

For Bayesian optimization, parallel processing is used to estimate the resampled performance values once a new candidate set of values are estimated.

Initial Values

The results of `tune_grid()`, or a previous run of `tune_bayes()` can be used in the initial argument. `initial` can also be a positive integer. In this case, a space-filling design will be used to populate a preliminary set of results. For good results, the number of initial values should be more than the number of parameters being optimized.

Parameter Ranges and Values

In some cases, the tuning parameter values depend on the dimensions of the data. For example, `mtry` in random forest models depends on the number of predictors. In this case, the default tuning parameter object requires an upper range. `dials::finalize()` can be used to derive the data-dependent parameters. Otherwise, a parameter set can be created (via `dials::parameters()` and
the dials `update()` function can be used to change the ranges or values. This updated parameter set can be passed to the function via the `param_info` argument.

Performance Metrics

To use your own performance metrics, the `yardstick::metric_set()` function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the `metrics` argument could be given:

```r
metrics = metric_set(roc_auc, sens, spec)
```

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

- For regression models, the root mean squared error and coefficient of determination are computed.
- For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called `.metrics`. This tibble contains a row for each metric and columns for the value, the estimator type, and so on. `collect_metrics()` can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When `control(save_preds = TRUE)`, the output tibble contains a list column called `.predictions` that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object (`.row`), the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this function generates a column called `.pred` and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using `tidyr::unnest()` or using the convenience function `collect_predictions()`.

Extracting Information

The `extract` control option will result in an additional function to be returned called `.extracts`. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (`extract`) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument.
The value of the argument that is given to the function in each resample is a workflow object (see `workflows::workflow()` for more information). There are two helper functions that can be used to easily pull out the recipe (if any) and/or the model: `extract_recipe()` and `extract_model()`. As an example, if there is interest in getting each model back, one could use:

```r
equal = function (x) extract_model(x)
```

Note that the function given to the `extract` argument is evaluated on every model that is `fit` (as opposed to every model that is `evaluated`). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

See Also

- `control_bayes()`, `tune()`, `autoplot.tune_results()`, `show_best()`, `select_best()`, `collect_predictions()`, `collect_metrics()`, `prob_improve()`, `exp_improve()`, `conf_bound()`, `fit_resamples()`

Description

`tune_grid()` computes a set of performance metrics (e.g., accuracy or RMSE) for a pre-defined set of tuning parameters that correspond to a model or recipe across one or more resamples of the data.

Usage

```r
tune_grid(object, ...)
```

```r
## Default S3 method:
tune_grid(object, ...)
```

```r
## S3 method for class 'recipe'
tune_grid(
  object,
  model,
  resamples,
  ..., 
  param_info = NULL,
  grid = 10,
  metrics = NULL,
  control = control_grid()
)
```

```r
## S3 method for class 'formula'
tune_grid(
  formula,
```
```
tune_grid(model, resamples, ..., param_info = NULL, grid = 10, metrics = NULL, control = control_grid())
```

S3 method for class 'workflow'
tune_grid(object, resamples, ..., param_info = NULL, grid = 10, metrics = NULL, control = control_grid())

Arguments

- **object**: A model workflow, R formula or recipe object.
- **...**: Not currently used.
- **model**: A parsnip model specification (or NULL when object is a workflow).
- **resamples**: An rset() object.
- **param_info**: A dials::parameters() object or NULL. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **grid**: A data frame of tuning combinations or a positive integer. The data frame should have columns for each parameter being tuned and rows for tuning parameter candidates. An integer denotes the number of candidate parameter sets to be created automatically.
- **metrics**: A yardstick::metric_set() or NULL.
- **control**: An object used to modify the tuning process.
- **formula**: A traditional model formula.

Details

Suppose there are m tuning parameter combinations. `tune_grid()` may not require all m model/recipe fits across each resample. For example:

- In cases where a single model fit can be used to make predictions for different parameter values in the grid, only one fit is used. For example, for some boosted trees, if 100 iterations of boosting are requested, the model object for 100 iterations can be used to make predictions on iterations less than 100 (if all other parameters are equal).
When the model is being tuned in conjunction with pre-processing and/or post-processing parameters, the minimum number of fits are used. For example, if the number of PCA components in a recipe step are being tuned over three values (along with model tuning parameters), only three recipes are are trained. The alternative would be to re-train the same recipe multiple times for each model tuning parameter.

The `foreach` package is used here. To execute the resampling iterations in parallel, register a parallel backend function. See the documentation for `foreach::foreach()` for examples.

For the most part, warnings generated during training are shown as they occur and are associated with a specific resample when `control(verbose = TRUE)`. They are (usually) not aggregated until the end of processing.

Value

An updated version of `resamples` with extra list columns for `.metrics` and `.notes` (optional columns are `.predictions` and `.extracts`). `.notes` contains warnings and errors that occur during execution.

Parameter Grids

If no tuning grid is provided, a semi-random grid (via `dials::grid_latin_hypercube()`) is created with 10 candidate parameter combinations.

When provided, the grid should have column names for each parameter and these should be named by the parameter name or id. For example, if a parameter is marked for optimization using `penalty = tune()`, there should be a column named `tune`. If the optional identifier is used, such as `penalty = tune(id = 'lambda')`, then the corresponding column name should be `lambda`.

In some cases, the tuning parameter values depend on the dimensions of the data. For example, `mtry` in random forest models depends on the number of predictors. In this case, the default tuning parameter object requires an upper range. `dials::finalize()` can be used to derive the data-dependent parameters. Otherwise, a parameter set can be created (via `dials::parameters()` and the `dials update()` function can be used to change the values. This updated parameter set can be passed to the function via the `param_info` argument.

Performance Metrics

To use your own performance metrics, the `yardstick::metric_set()` function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the `metrics` argument could be given:

```r
metrics = metric_set(roc_auc, sens, spec)
```

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

- For regression models, the root mean squared error and coefficient of determination are computed.
- For classification, the area under the ROC curve and overall accuracy are computed.
Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called `.metrics`. This tibble contains a row for each metric and columns for the value, the estimator type, and so on. `collect_metrics()` can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When `control(save_preds = TRUE)`, the output tibble contains a list column called `.predictions` that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object (`.row`), the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this function generates a column called `.pred` and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using `tidyr::unnest()` or using the convenience function `collect_predictions()`.

Extracting Information

The `extract` control option will result in an additional function to be returned called `.extracts`. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument. The value of the argument that is given to the function in each resample is a workflow object (see `workflows::workflow()` for more information). There are two helper functions that can be used to easily pull out the recipe (if any) and/or the model: `extract_recipe()` and `extract_model()`.

As an example, if there is interest in getting each model back, one could use:

```r
extract = function (x) extract_model(x)
```

Note that the function given to the `extract` argument is evaluated on every model that is fit (as opposed to every model that is evaluated). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

See Also

`control_grid()`, `tune()`, `fit_resamples()`, `autoplot.tune_results()`, `show_best()`, `select_best()`, `collect_predictions()`, `collect_metrics()`
Examples

```r
library(recipes)
library(rsample)
library(parsnip)

# set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

# tuning recipe parameters:
spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
                step_ns(disp, deg_free = tune("disp")) %>%
                step_ns(wt, deg_free = tune("wt"))

lin_mod <- linear_reg() %>%
           set_engine("lm")

# manually create a grid
spline_grid <- expand.grid(disp = 2:5, wt = 2:5)

spline_res <- tune_grid(spline_rec, model = lin_mod, resamples = folds, grid = spline_grid)

spline_res

show_best(spline_res, metric = "rmse", maximize = FALSE)

# tune model parameters only (example requires the `kernlab` package)

car_rec <- recipe(mpg ~ ., data = mtcars) %>%
            step_normalize(all_predictors())

svm_mod <- svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
           set_engine("kernlab") %>%
           set_mode("regression")

# Use a space-filling design with 7 points
set.seed(3254)
svm_res <- tune_grid(car_rec, model = svm_mod, resamples = folds, grid = 7)
```
tune_grid

svm_res

show_best(svm_res, metric = "rmse", maximize = FALSE)

autoplot(svm_res, metric = "rmse") +
 scale_x_log10()
Index

+Topic datasets
 example_ames_knn, 7
 ames_grid_search(example_ames_knn), 7
 ames_iter_search(example_ames_knn), 7
 ames_wflow(example_ames_knn), 7
 autoplot.tune_results(), 2
 autoplot.tune_results(), 24, 27
 collect_metrics(collect_predictions), 3
 collect_metrics(), 4, 13, 14, 23, 24, 27
 collect_predictions, 3
 collect_predictions(), 4, 6, 7, 13, 14, 23, 24, 27
 conf_bound(prob_improve), 16
 conf_bound(), 24
 control_bayes(), 5
 control_bayes(), 22, 24
 control_grid, 6
 control_grid(), 7, 27
 control_resamples(control_grid), 6
 control_resamples(), 7, 13, 14
 dials::finalize(), 22, 26
 dials::grid_latin_hypercube(), 26
 dials::parameters(), 21, 22, 25, 26
 dplyr::arrange(), 18
 example_ames_knn, 7
 exp_improve(prob_improve), 9
 exp_improve(), 17, 22, 24
 expo_decay, 9
 expo_decay(), 9, 17
 extract_model(extract_recipe), 10
 extract_model(), 14, 24, 27
 extract_recipe, 10
 extract_recipe(), 14, 24, 27
 finalize_model, 11
 finalize_recipe(finalize_model), 11
 finalize_workflow(finalize_model), 11
 fit_resamples, 12
 fit_resamples(), 4, 7, 12, 24, 27
 foreach::foreach(), 22, 26
 last_fit, 15
 last_fit(), 4, 15
 prob_improve, 16
 prob_improve(), 17, 24
 rsample::initial_split(), 15
 rsample::vfold_cv(), 13
 select_best(show_best), 18
 select_best(), 18, 24, 27
 select_by_one_std_err(show_best), 18
 select_by_one_std_err(), 18
 select_by_pct_loss(show_best), 18
 select_by_pct_loss(), 18
 show_best, 18
 show_best(), 18, 19, 24, 27
 tidyr::unnest(), 13, 23, 27
 tune, 19
 tune(), 4, 10, 19, 24, 27
 tune_bayes, 20
 tune_bayes(), 2–4, 6, 7, 12, 17, 18, 20, 22
 tune_grid, 24
 tune_grid(), 2–4, 12, 18, 20, 22, 24, 25
 workflows::workflow(), 14, 24, 27
 yardstick::metric_set(), 13, 15, 21, 23, 25, 26