Package ‘tsfkn’

May 31, 2019

Type Package
Title Time Series Forecasting Using Nearest Neighbors
Version 0.3.0
Description Allows to forecast time series using nearest neighbors regression
 Francisco Martinez, Maria P. Frias, Maria D. Perez-Godoy and Antonio J.
 Rivera (2017) <doi:10.1007/s10462-017-9593-z>. When the forecasting horizon
 is higher than 1, two multi-step ahead forecasting strategies can be used.
 The model built is autoregressive, that is, it is only based on the
 observations of the time series. The nearest neighbors used in a prediction
 can be consulted and plotted.
Maintainer Francisco Martinez <fmartin@ujaen.es>
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 3.6.0)
Suggests knitr, rmarkdown, testthat (>= 2.0.1)
Imports ggplot2 (>= 3.1.1), graphics, stats, utils
VignetteBuilder knitr
URL https://github.com/franciscomartinezdelrio/tsfkn

BugReports https://github.com/franciscomartinezdelrio/tsfkn/issues

NeedsCompilation no
Author Francisco Martinez [aut, cre]
Repository CRAN
Date/Publication 2019-05-31 11:20:03 UTC
R topics documented:

- autoplot.knnForecast .. 2
- knn_examples ... 3
- knn_forecasting .. 3
- nearest_neighbors .. 4
- n_training_examples ... 5
- plot.knnForecastRO ... 6
- predict.knnForecast .. 6
- rolling_origin ... 7
- tsfknassandra

autoplot.knnForecast

Create a ggplot object from a knnForecast object

Description

It uses a knnForecast object to create a ggplot object that plots a time series and its forecast using KNN regression.

Usage

```r
## S3 method for class 'knnForecast'
autoplot(forecast, highlight = "none",
         faceting = TRUE)
```

Arguments

- `forecast` The knnForecast object.
- `highlight` A string value indicating what elements should be highlighted. Possible values are "none", "points" and "neighbors".
- `faceting` Logical. This applies only if the `highlight` parameter is set to "neighbors". It indicates whether the different nearest neighbors should be seen in different plots (TRUE) or in one plot.

Value

The ggplot object representing a graph with the forecast.

Examples

```r
pred <- knn_forecasting(USAccDeaths, h = 12, lags = 1:12, k = 2)
library(ggplot2)
autoplot(pred)
autoplot(pred, highlight = "neighbors")
```
knn_examples

Examples of the model associated with a prediction

Description

It allows to see the examples of the model associated to a knnForecast object.

Usage

knn_examples(forecast)

Arguments

forecast A knnForecast object.

Value

A matrix including the features and targets of the examples associated with the model associated with a knnForecast object.

Examples

pred <- knn_forecasting(ts(1:8), h = 1, lags = 1:2, k = 2)
knn_examples(pred)

knn_forecasting

Time series forecasting using KNN regression

Description

It applies KNN regression to forecast the future values of a time series. The lags used as autoregressive variables are set with the lags parameter. If the user does not set the number of nearest neighbors or the lags, these values are selected automatically.

Usage

knn_forecasting(timeS, h, lags = NULL, k = c(3, 5, 7),
 msas = c("MIMO", "recursive"), cf = c("mean", "median", "weighted"))
nearest_neighbors

Arguments

- `times`: A numeric vector or time series of class `ts`.
- `h`: A positive integer. Number of values to forecast.
- `lags`: An integer vector in increasing order expressing the lags used as autoregressive variables.
- `k`: A positive integer. The k parameter in KNN regression. A vector of k values can also be used. In that case, the forecast is the average of the forecasts produced by the different models with the different k parameters.
- `msas`: A string indicating the Multiple-Step Ahead Strategy used when more than one value is predicted. It can be "recursive" or "MIMO" (the default).
- `cf`: A string. It indicates the combination function used to aggregate the targets associated with the nearest neighbors. It can be "median", "weighted" or "mean" (the default).

Value

An object of class "knnForecast". The function `summary` can be used to obtain or print a summary of the results.

An object of class "knnForecast" is a list containing at least the following components:

- `call`: the matched call.
- `prediction`: a time series with the forecast.
- `model`: an object of class "knnModel" with the KNN model

Examples

```r
pred <- knn_forecasting(USAccDeaths, h = 12, lags = 1:12, k = 2)
pred$prediction # To see a time series with the forecasts
plot(pred) # To see a plot with the forecast
```

Description

It allows to check the new instances and their nearest neighbors used in a prediction associated with a "knnForecast" object.

Usage

`nearest_neighbors(forecast)`
n_training_examples

Arguments

forecast A knnForecast object.

Value

A list including the new instances used in KNN regression and their nearest neighbors.

Examples

pred <- knn_forecasting(ukgas, h = 4, lags = 1:4, k = 2, msas = "MIMO")
nearest_neighbors(pred)

n_training_examples Number of training examples

Description

It computes the number of training examples that would have a KNN model with the specified parameters.

Usage

n_training_examples(timeS, h, lags, msas = c("MIMO", "recursive"))

Arguments

timeS A numeric vector or time series of class ts.

h A positive integer. Number of values to forecast.

lags An integer vector in increasing order expressing the lags used as autoregressive variables.

msas A string indicating the Multiple-Step Ahead Strategy used when more than one value is predicted. It can be "recursive" or "MIMO" (the default).

Value

An integer.

Examples

n_training_examples(ts(1:10), h = 2, lags = 1:3, msas = "MIMO")
n_training_examples(ts(1:10), h = 2, lags = 1:3, msas = "recursive")
plot.knnForecastRO

Plot a prediction of a test set

Description

It uses a test set generated with the function `rolling_origin` and plots its forecast.

Usage

```r
## S3 method for class 'knnForecastRO'
plot(x, h = NULL, ...)
```

Arguments

- `x`: the object obtained from a call to `rolling_origin`.
- `h`: an integer. The forecasting horizon. If `NULL`, the maximum forecasting horizon of all the test sets is used.
- `...`: Other plotting parameters to affect the plot.

predict.knnForecast

Predict method for KNN models for time series forecasting.

Description

Predicted values based on a KNN model for time series forecasting.

Usage

```r
## S3 method for class 'knnForecast'
predict(object, h, ...)
```

Arguments

- `object`: a `knnForecast` object obtained by a call to the `knn_forecasting` function.
- `h`: an integer. The forecasting horizon.
- `...`: further arguments passed to or from other methods.

Details

If the models uses the MIMO strategy for multiple-step ahead prediction, the forecasting horizon is fixed to the model forecasting horizon.

Value

A `knnForecast` object with the prediction and information about the KNN model, see the documentation of `knn_forecasting` for the structure of `knnForecast` objects.
rolling_origin

Examples

```r
pred <- knn_forecasting(UKgas, h = 4, k = 1, msas = "recursive")
new_pred <- predict(pred, h = 6)
print(new_pred$prediction)
plot(new_pred) # To see a plot with the forecast
```

rolling_origin

Assessing forecasting accuracy with rolling origin

Description

It uses the model and the time series associated to the `knnForecast` object to asses the forecasting accuracy of the model using the last h values of the time series to build test sets applying a rolling origin evaluation.

Usage

```r
rolling_origin(knnf, h = NULL, rolling = TRUE)
```

Arguments

- `knnf`: A `knnForecast` object.
- `h`: A positive integer. The forecast horizon. If `NULL` the prediction horizon of the `knnForecast` object is used.
- `rolling`: A logical. If `TRUE` (the default), forecasting horizons from 1 to h are used. Otherwise, only horizon h is used.

Details

This function assess the forecast accuracy of the model used by the `knnForecast` object. It uses h different test and training sets. The first test set consists of the last h values of the time series (the training set is formed by the previous values). The next test set consists of the last $h - 1$ values of the time series and so on (the last test set is formed by the last value of the time series).

Value

A list containing at least the following fields:

- `test_sets`: a matrix containing the test sets used in the evaluation. Every row contains a different test set.
- `predictions`: The predictions for the test sets.
- `errors`: The errors for the test sets.
- `global_accu`: Different measures of accuracy applied to all the errors.
- `h_accu`: Different measures of accuracy applied to all the errors for every forecasting horizon.
Examples

```r
pred <- knn_forecasting(UKgas, h = 4, lags = 1:4, k = 2)
ro <- rolling_origin(pred)
print(ro$global_accu)
```

tsfknn

tsfknn: A package for time series forecasting using KNN regression.

Description

The tsfknn package allows univariate time series forecasting using KNN regression.

Functions

- **knnForecasting** It is used to forecast a time series
- **n_training_examples** To compute how many training examples would have a model
- **nearest_neighbors** To see the nearest neighbors used to forecast a times series
- **predict** To make new forecasts
- **knn_examples** To see the examples used by the KNN model
- **rolling_origin** To assess forecasting accuracy using rolling origin evaluation
- **autoplot** To plot a prediction and the nearest neighbors used in the prediction
Index

autplot.knnForecast, 2
knn_examples, 3
knn_forecasting, 3, 6
n_training_examples, 5
nearest_neighbors, 4
plot.knnForecastRO, 6
predict.knnForecast, 6
rolling_origin, 6, 7
summary, 4
tsfknn, 8
tsfknn-package (tsfknn), 8