Package `triangle`

December 13, 2022

Title Distribution Functions and Parameter Estimates for the Triangle Distribution

Version 1.0

Description Provides the "r, q, p, and d" distribution functions for the triangle distribution. Also includes maximum likelihood estimation of parameters.

License GPL (>= 2)

URL https://bertcarnell.github.io/triangle/

BugReports https://github.com/bertcarnell/triangle/issues

Encoding UTF-8

RoxygenNote 7.2.2

Depends R (>= 2.14.1)

 ‘rtriangle.r’

Imports assertthat, stats4, methods

Suggests testthat, knitr, rmarkdown, MASS

VignetteBuilder knitr

NeedsCompilation no

Author Rob Carnell [aut, cre]

Maintainer Rob Carnell <bertcarnell@gmail.com>

Repository CRAN

Date/Publication 2022-12-13 03:50:02 UTC

R topics documented:

 compare_triangle_fit ... 2
 ltriangle .. 3
 qqtriangle .. 4
 standard_triangle_mle ... 5
compare_triangle_fit

Compare multiple triangle distributions fits

Description

Compare multiple triangle distributions fits

Usage

```r
compare_triangle_fit(
  y,
  cols = c("red", "blue", "green"),
  main = "Triangle Fit Comparison",
  ...
)
```

Arguments

- `y`: the triangle distributed sample
- `cols`: the colors of the CDF-based estimates, the maximum likelihood estimates, and the method of moments estimates
- `main`: the plot title
- `...`: other parameters passed to `plot.ecdf`

Examples

```r
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
compare_triangle_fit(xtest)
```
The Log-Triangle Distribution

Description

These functions provide information about the triangle distribution on the logarithmic interval from a to b with a maximum at c. `dltriangle` gives the density, `pltriangle` gives the distribution function, `qltriangle` gives the quantile function, and `rltriangle` generates n random deviates.

Usage

```r
dltriangle(x, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)
pltriangle(q, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)
qltriangle(p, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)
rltriangle(n = 1, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)
```

Arguments

- `n`: number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `a`: lower limit of the distribution.
- `b`: upper limit of the distribution.
- `c`: mode of the distribution.
- `logbase`: the base of the logarithmic scale to use (default to 10)
- `x, q`: vector of quantiles.
- `p`: vector of probabilities.

Details

All probabilities are lower tailed probabilities. a, b, and c may be appropriate length vectors except in the case of `rltriangle`.

Value

dltriangle gives the density, pltriangle gives the distribution function, qltriangle gives the quantile function, and rltriangle generates random deviates. Invalid arguments will result in return value NaN or NA.
References

See Also

.Random.seed about random number generation, runif, etc for other distributions.

Examples

tri <- rltriangle(100000, 1, 100, 10)
hist(log10(tri), breaks=100, main="Triangle Distribution", xlab="x")
dltriangle(10, 1, 100, 10) # 2/(log10(b)-log10(a)) = 1
qltriangle(pltriangle(10)) # 10

qqtriangle

Quantile-Quantile Plot for Triangle Distributed Data

Description

Quantile-Quantile Plot for Triangle Distributed Data

Usage

qqtriangle(
 y,
a,
b,
c,
 main = "Triangle Q-Q Plot",
 xlab = "Theoretical Quantiles",
 ylab = "Sample Quantiles",
 ...
)

Arguments

y the triangle distributed sample
a the theoretical distribution triangle minimum parameter
b the theoretical distribution triangle maximum parameter
c the theoretical distribution triangle mode parameter
main the plot title
xlab the x-axis label
ylab the y-axis label
... other parameters passed to qqplot
standard_triangle_mle

Value

a list of x-y coordinates on the plot

Examples

```r
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
theta <- coef(triangle_mle(xtest))
qqtriangle(xtest, theta[1], theta[2], theta[3])
```

standard_triangle_mle Maximum likelihood estimate of the standard triangle distribution mode

Description

Maximum likelihood estimate of the standard triangle distribution mode

Usage

```r
standard_triangle_mle(x, debug = FALSE)
```

Arguments

- `x`: sample from a triangle distribution
- `debug`: if TRUE then the function will check the input parameters

Value

an object of S3 class triangle_mle containing a list with the call, coefficients, variance co-variance matrix, minimum negative log likelihood, number of observations, and the sample

References

Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720

Examples

```r
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
standard_triangle_mle(xtest)
```
Utility Methods for S3 class triangle_mle

Description
Utility Methods for S3 class triangle_mle

Usage

```r
## S3 method for class 'triangle_mle'
summary(object, ...)

## S3 method for class 'triangle_mle'
print(x, ...)

## S3 method for class 'triangle_mle'
coef(object, ...)

## S3 method for class 'triangle_mle'
logLik(object, ...)

## S3 method for class 'triangle_mle'
AIC(object, ..., k = 2)

## S3 method for class 'triangle_mle'
BIC(object, ...)

## S3 method for class 'triangle_mle'
vcov(object, ...)

## S3 method for class 'triangle_mle'
profile(fitted, ...)

## S3 method for class 'triangle_mle'
confint(object, parm, level = 0.95, ...)
```

Arguments

- **object**
 - class triangle_mle from a call to `triangle_mle()`
- **...**
 - not used except for `print` (other arguments passed to `printCoefmat`)
- **x**
 - the `triangle_mle` object
- **k**
 - the penalty per parameter to be used; the default `k = 2`
- **fitted**
 - an object of class `triangle_mle`
- **parm**
 - parameters
- **level**
 - confidence interval level
Value

- an object of class summary.mle
- x invisibly
- a vector of coefficients
- an object of class logLik
- the AIC
- the BIC
- the variance co-variance matrix
- an object of class profile.mle
- an object of class profile.mle

Examples

```r
set.seed(1234)
x <- rtriangle(100, 0, 1, 0.5)
mle1 <- triangle_mle(x)
summary(mle1)
print(mle1)
coef(mle1)
logLik(mle1)
AIC(mle1)
BIC(mle1)
vcov(mle1)
## Not run:
prof <- profile(mle1)
stats4::plot(prof)
confint(mle1, 1:3, level = 0.95)
## End(Not run)
```

triangle

The Triangle Distribution

Description

These functions provide information about the triangle distribution on the interval from a to b with a maximum at c. dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates n random deviates.

Usage

```r
dtriangle(x, a = 0, b = 1, c = (a + b)/2)
ptriangle(q, a = 0, b = 1, c = (a + b)/2)
```
qtriangle(p, a = 0, b = 1, c = (a + b)/2)

rtriangle(n = 1, a = 0, b = 1, c = (a + b)/2)

Arguments

x, q vector of quantiles.
a lower limit of the distribution.
b upper limit of the distribution.
c mode of the distribution.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

All probabilities are lower tailed probabilities. a, b, and c may be appropriate length vectors except in the case of rtriangle. rtriangle is derived from a draw from runif. The triangle distribution has density:

\[f(x) = \frac{2(x - a)}{(b - a)(c - a)} \]

for \(a \leq x < c \).

\[f(x) = \frac{2(b - x)}{(b - a)(b - c)} \]

for \(c \leq x \leq b \). \(f(x) = 0 \) elsewhere. The mean and variance are:

\[E(x) = \frac{(a + b + c)}{3} \]

\[V(x) = \frac{1}{18}(a^2 + b^2 + c^2 - ab - ac - bc) \]

Value
dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates random deviates. Invalid arguments will result in return value NaN or NA.

References

See Also

.Random.seed about random number generation, runif, etc for other distributions.
Examples

```r
## view the distribution
tri <- rtriangle(100000, 1, 5, 3)
hist(tri, breaks=100, main="Triangle Distribution", xlab="x")
mean(tri) # 1/3*(1 + 5 + 3) = 3
var(tri) # 1/18*(1^2 + 3^2 + 5^2 - 1*5 - 1*3 - 5*3) = 0.666667
dtriangle(0.5, 0, 1, 0.5) # 2/(b-a) = 2
qtriangle(ptriangle(0.7)) # 0.7
```

triangle_cdfe

Triangle parameter estimates using a non-linear fit of the empirical CDF

Description

Triangle parameter estimates using a non-linear fit of the empirical CDF

Usage

```r
triangle_cdfe(x, control = stats::nls.control(maxiter = 100, warnOnly = TRUE))
```

Arguments

- `x` the triangle distributed sample
- `control` an object created by `stats::nls.control`

Value

an object of class `nls`

Examples

```r
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
cdfe <- triangle_cdfe(xtest)
print(cdfe)
summary(cdfe)
coef(cdfe)
## Not run:
confint(cdfe)
## End(Not run)

## End(Not run)
```
triangle_mle

Maximum likelihood estimate of the triangle distribution parameters

Description
Maximum likelihood estimate of the triangle distribution parameters

Usage
triangle_mle(x, debug = FALSE, maxiter = 100)

Arguments
- x: sample from a triangle distribution
- debug: if TRUE then the function will check the input parameters
- maxiter: the maximum number of cycles of optimization between maximizing a and b given c and maximizing c given a and b

Value
an object of S3 class triangle_mle containing a list with the call, coefficients, variance co-variance matrix, minimum negative log likelihood, details of the optimization number of observations, and the sample

References
Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720

Examples
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
triangle_mle(xtest)

triangle_mom
Triangle distribution method of moments estimate

Description
Triangle distribution method of moments estimate

Usage
triangle_mom(x)
triangle_mom

Arguments

x triangle distribution sample

Value

a vector of the parameter estimates

Examples

set.seed(1204)
x <- rtriangle(20, 0, 2, 1.5)
triangle_mom(x)
Index

- distribution
 - ltriangle, 3
 - triangle, 7
 - .Random.seed, 4, 8

AIC.triangle_mle
 (summary.triangle_mle), 6

BIC.triangle_mle
 (summary.triangle_mle), 6

coef.triangle_mle
 (summary.triangle_mle), 6

compare_triangle_fit, 2

confint.triangle_mle
 (summary.triangle_mle), 6

dltriangle(ltriangle), 3

dtriangle(triangle), 7

logLik.triangle_mle
 (summary.triangle_mle), 6

ltriangle, 3

pltriangle(ltriangle), 3

print.triangle_mle
 (summary.triangle_mle), 6

profile.triangle_mle
 (summary.triangle_mle), 6

ptriangle(triangle), 7

qltriangle(ltriangle), 3

qqtriangle, 4

qtriangle(triangle), 7

rltriangle(ltriangle), 3

rtriangle(triangle), 7

runif, 4, 8

standard_triangle_mle, 5

summary.triangle_mle, 6