Package ‘traipse’

July 2, 2019

Title Shared Tools for Tracking Data
Version 0.1.0
Description A collection of commonly used tools for animal movement and other tracking data. Variously distance, angle, bearing, distance-to, bearing-to and speed are provided for geographic data that can be used directly or within ‘tidyverse’ syntax. Distances and bearings are calculated using modern geodesic methods as provided by Charles F. F. Karney (2013) <doi:10.1007/s00190-012-0578-z> via the ‘geodist’ and ‘geosphere’ packages.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 2.10)
Imports magrittr, geodist, geosphere
URL https://github.com/Trackage/traipse
BugReports https://github.com/Trackage/traipse/issues
Suggests covr, testthat (>= 2.1.0), dplyr, tibble, spelling
Language en-US
NeedsCompilation no
Author Michael Sumner [aut, cre] (<https://orcid.org/0000-0002-2471-7511>)
Maintainer Michael Sumner <mdsumner@gmail.com>
Repository CRAN
Date/Publication 2019-07-02 12:10:02 UTC

R topics documented:

 track_angle .. 2
 track_bearing ... 3
 track_bearing_to ... 3
track_angle

Description

Calculate internal track angle on longitude, latitude input vectors.

Usage

\[
\text{track_angle}(x, y)
\]

Arguments

- \(x\) longitude
- \(y\) latitude

Details

By convention the first and last values are set to \(NA\) missing value, because the angle applies to the location between each previous and next location.

To use this on multiple track ids, use a grouped data frame with tidyverse code like \(\text{data} \%\% \text{group_by(id)} \%\% \text{mutate(angle = track_angle(lon, lat))}\).

The maximum possible value is 180 and the minimum is 0.

Value

a numeric vector of the relative internal angle between sequential locations in degrees, see Details

Examples

\[
\text{track_angle(trips0\$x, trips0\$y)[1:10]}
\]

maximum value
\[
\text{track_angle(c(0, 0, 0), c(0, 1, 2))}
\]

minimum value
\[
\text{track_angle(c(0, 0, 0), c(0, 1, 0))}
\]
track_bearing

Track bearing

Description

Calculate sequential bearing on longitude, latitude input vectors.

Usage

```r
track_bearing(x, y)
```

Arguments

- `x` : longitude
- `y` : latitude

Details

By convention the last value is set to `NA` missing value, because the bearing applies to the segment extending from the current location.

To use this on multiple track ids, use a grouped data frame with tidyverse code like data ```%>% group_by(id) %>% mutate(turn = track_bearing(lon, lat))```.

Absolute bearing is relative to North (0), and proceeds clockwise positive and anti-clockwise negative, `N = \theta, E = 90, S = +/\pm 180, W = -90`.

The last value will be `NA` as the bearing is relative to the first point of each segment.

Value

- a numeric vector of absolute bearing in degrees, see Details

Examples

```r
track_bearing(trips$x, trips$y)[1:10]
```

track_bearing_to

Track bearing to location/s

Description

Calculate geodesic bearing to a location or locations based on longitude, latitude (from) input vectors and longitude, latitude (to) input vectors. The `to` values may be a single value or individual to each from location.

Usage

```r
track_bearing_to(x, y, to_x, to_y)
```
track_distance

Arguments

- **x** longitude
- **y** latitude
- **to_x** longitude vector of to location/s
- **to_y** latitude vector of to locations/s

Details

No missing values are required as padding, but input data with NAs will incur an NA in the output.

To use this on multiple track ids, use a grouped data frame with tidyverse code like data %>% group_by(id) %>% mutate(bearing_to = track_bearing_to(x, y, to_x, to_y)).

Absolute bearing is relative to North (0), and proceeds clockwise positive and anti-clockwise negative. N = 0, E = 90, S = +/-180, W = -90.

There is no NA padding in the output value (though missing values in the input will be mirrored in the output).

Value

A numeric vector of absolute bearing-to in degrees, see Details

Examples

```r
track_bearing_to(trips0$x, trips0$y, to_x = 174, to_y = -42)[1:10]
# N E S W
track_bearing_to(0,0, c(0, 10, 0, -10), c(5, 0, -5, 0))
# maximum and minimum value are the same direction (due south)
track_bearing(c(0, -0.00001), c(0, -1))
track_bearing(c(0, 0.00001), c(0, -1))
# the absolute minimum is north
track_bearing(c(0, 0), c(0, 1))
```

track_distance *Track distance*

Description

Calculate geodesic distance on longitude, latitude input vectors.

Usage

```r
track_distance(x, y)
```

Arguments

- **x** longitude
- **y** latitude
track_distance_to

Details

By convention the first value is set to NA missing value, because the distance applies to each sequential pair of locations.

To use this on multiple track ids, use a grouped data frame with tidyverse code like:

```r
data %>% group_by(id) %>% mutate(distance = track_distance_to(lon, lat))
```

Value

numeric vector of distances between sequential pairs of x, y in metres, see Details

Examples

```r
track_distance(trips0$x, trips0$y)[1:10]
```

track_distance_to

Track distance to location/s

Description

Calculate geodesic distance to a location or locations based on longitude, latitude (from) input vectors and longitude, latitude (to) input vectors. The to values may be a single value or individual to each from location.

Usage

```r
track_distance_to(x, y, to_x, to_y)
```

Arguments

- `x` longitude
- `y` latitude
- `to_x` longitude vector of to location/s
- `to_y` latitude vector of to locations/s

Details

No missing values are required as padding, but input data with NAs will incur an NA in the output.

To use this on multiple track ids, use a grouped data frame with tidyverse code like:

```r
data %>% group_by(id) %>% mutate(distance = track_distance_to(lon, lat))
```

Value

a numeric vector of distance-to values in metres

Examples

```r
track_distance_to(trips0$x, trips0$y, to_x = 147, to_y = -42)[1:10]
```
track_speed

Description
Calculate speed (m/s) based on geodesic distance with longitude, latitude, date-time input vectors.

Usage
track_speed(x, y, date)

Arguments
x longitude
y latitude
date date-time in POSIXct

Details
By convention the first value is set to NA missing value, because the difference applies to each sequential pair of locations.
To use this on multiple track ids, use a grouped data frame with tidyverse code like data %>% group_by(id) %>% mutate(speed = track_speed(lon, lat, date))

Value
numeric vector of sequential distances in metres per second, see Details

Examples
track_speed(trips$x, trips$y, trips$date)[1:10]

track_time

Description
Calculate time duration based on sequential difference of date-time input.

Usage
track_time(date)

Arguments
date date-time in POSIXct
track_turn

Details

By convention the first value is set to NA missing value, because the difference applies to each sequential pair of locations.

To use this on multiple track ids, use a grouped data frame with tidyverse code like data %>% group_by(id) %>% mutate(duration = track_time(date)).

Value

numeric vector of duration between sequential date-time values in seconds, see Details

Examples

```r
track_time(trips$date)[1:10]
```

track_turn
Track turn angle

Description

Calculate relative track turning angle on longitude, latitude input vectors.

Usage

```r
track_turn(x, y)
```

Arguments

- **x**: longitude
- **y**: latitude

Details

By convention the last value is set to NA missing value, because the angle applies to the relative turn from the current location.

To use this on multiple track ids, use a grouped data frame with tidyverse code like data %>% group_by(id) %>% mutate(turn = track_turn(lon, lat)).

The maximum possible value is 180 degrees and the minimum is -180, although these particular values are a special case and will probably always be positive. Turn angle is a signed quantity with negative values for a left turn and positive values for a right turn.

Value

a numeric vector of absolute turn angles, in degrees
Examples

```
track_turn(trips0$x, trips0$y)[1:10]
```

maximum turn angle
```
track_turn(c(0, 0, 0), c(0, 1, 0))
```

minimum turn angle
```
track_turn(c(0, 0, 0), c(0, 1, 2))
```

trips0

Simulated track data

Description

`trips0` is an ungrouped data frame of x, y, date, id
Index

track_angle, 2
track_bearing, 3
track_bearing_to, 3
track_distance, 4
track_distance_to, 5
track_speed, 6
track_time, 6
track_turn, 7
trips0, 8