Package ‘tmt’

July 5, 2019

Type Package
Title Estimation of the Rasch Model for Multistage Tests
Version 0.2.1-0
Date 2019-07-05
Author Jan Steinfeld [cre, aut] (<https://orcid.org/0000-0001-9853-8260>),
Alexander Robitzsch [aut] (<https://orcid.org/0000-0002-8226-3132>)
Maintainer Jan Steinfeld <jan.d.steinfeld@gmail.com>
URL https://jansteinfeld.github.io/tmt
BugReports https://github.com/jansteinfeld/tmt/issues
Description Provides conditional maximum likelihood (CML) estimation of item parameters in multi-
stage designs (Zwitser & Maris, 2013, <doi:10.1007/s11336-013-9369-6>) and CML estima-
tion for conventional designs. Additional features are the likelihood ratio test (Ander-
sen, 1973, <doi:10.1007/BF02291180>) and simulation of multistage designs.
License GPL-3
LazyLoad yes
LazyData true
VignetteBuilder knitr
Depends R (>= 3.0)
Encoding UTF-8
NeedsCompilation yes
Suggests roxygen2, eRm, knitr, prettydoc, psychotools, testthat,
rmardown, dexterMST
Imports parallel, ggplot2, Rcpp (>= 0.12.0), stats
LinkingTo Rcpp
RoxygenNote 6.1.1
Repository CRAN
Date/Publication 2019-07-05 19:00:03 UTC
R topics documented:

- tmt-package .. 2
- tmt_gmc .. 4
- tmt_lrtest .. 5
- tmt_mstdesign ... 6
- tmt_rm ... 8
- tmt_sim ... 12

Index 15

tmt-package
tmt: Estimation of the Rasch Model for Multistage Tests

Description

Details

In multistage tests different groups of items (modules) are presented to persons depending on their response behavior to previous item groups. Multistage testing is thus a simple form of adaptive testing. If data is collected on the basis of such a multistage design and the items are estimated using the Conditional Maximum Likelihood (CML) method, Glas (1989) <doi:10.3102/10769986013001045> has shown, that the item parameters are biased. Zwitser and Maris (2013) <doi:10.1007/s11336-013-9369-6> showed in their work, that taking the applied multistage design in consideration and including it in the estimation of the item parameters, the estimation of item parameters is not biased using the CML method. Their proposed solution is implemented in our package.

An application example can be found in the vignette by using the following command in the R console:

```
vignette("introduction_to_tmt")
```

Author(s)

Maintainer: Jan Steinfeld <jan.d.steinfeld@gmail.com> (0000-0001-9853-8260)

Authors:

- Alexander Robitzsch <robitzsch@ipn.uni-kiel.de> (0000-0002-8226-3132)
References

See Also

Useful links:

- https://jansteinfeld.github.io/tmt
- Report bugs at https://github.com/jansteinfeld/tmt/issues

Examples

```r
tmt:::tmt_ascii()
```
Function for the Graphical Model Check

Description

This function is a wrapper that processes the data of the likelihood ratio test for ggplot2. Items can be color coded and also excluded.

Usage

tmt_gmc(object, title = "graphical model check", xaxis = NULL, yaxis = NULL, lim = NULL, ellipse = FALSE, drop = NULL, alpha = 0.05, legendtitle = "split criteria", info = NULL)

Arguments

- **object**: object of the function tmt_lrtest
- **title**: of the plot
- **xaxis**: description of the x-axis
- **yaxis**: description of the y-axis
- **lim**: of the plot
- **ellipse**: should confidence-ellipse be plotted
- **drop**: which items should be excluded from the plot
- **alpha**: which alpha should be used for the ellipse
- **legendtitle**: Title of the Legend
- **info**: vector with further information for the Plot with names of submitted items

Author(s)

Jan Steinfeld

Examples

```r
# Example of Graphical Model Check
items <- seq(-3,3,length.out = 16)
names(items) <- paste0("i",1:16)
persons <- 500
mean <- 0
sd <- 1
dat <- tmt:::sim.rm(theta = persons, b = items, seed = 1234)
dat.rm <- tmt_rm(dat)
dat.lrt <- tmt_lrtest(dat.rm, split = "median")
info <- rep(c("group_a","group_b"),each = 8)
```
names(info) <- paste0("i",1:16)

drop <- c("i1","i18")

#library(ggplot2)
plot <- tmt_gmc(object = dat.lrt,
ellipse = TRUE,
info = info,
drop = drop,
title = "graphical model check",
alpha = 0.05,
legendtitle = "split criteria")

tmt_lrttest Computation of Andersen’s Likelihood-Ratio Test

Description

This function applies the Likelihood Ratio Test of Andersen. Note that all persons with raw score equal to "median" are assigned to lower group. It is also allowed to split after "mean" or submit any dichotomous vector.

Usage

tmt_lrttest(object, split = "median", cores = NULL, se = TRUE, ...)

Arguments

- **object**: it is necessary to submit an object of the function mst or nmst
- **split**: default is the split criteria "median" of the raw score, optional are "mean" or any dichotomous vector
- **cores**: submit integer of cores you would like to apply
- **se**: logical: if true, the standard error is estimated
- **...**: further arguments for the tmt_rm function

Value

List with following entries

- **data_orig**: Submitted data frame with item responses
- **betapars_subgroup**: List of item parameters (difficulty) for each subgroup
- **se.beta_subgroup**: List of standard errors of the estimated item parameters
- **model**: Used model ((mst) for Rasch model with multistage design)
tmt_mstdesign

LRvalue LR-value
df Degrees of freedoms for the test statistic
pvalue P-value of the likelihood ratio test
loglik_subgroup Log-likelihoods for the subgroups
split_subgroup List of split vector for each subgroup
call Submitted arguments for the function (matched call)
fitobj List of objects from subgroup estimation

Author(s)
Jan Steinfeld

References

See Also
tmt_rm

Examples

```r
# example for tmt_lrtest
# Example Rasch model and Likelihood Ratio Test
# dat <- tmt:::sim.rm(theta = 100, b = 10, seed = 1111)
dat.rm <- tmt_rm(dat = dat)
dat.lrt <- tmt_lrtest(dat.rm)
summary(dat.lrt)
```

tmt_mstdesign

Function to Translate the mstdesign Syntax

Description

This function translates the multistage design for different purposes.

Usage

```r
tmt_mstdesign(mstdesign, options = c("design", "simulation", "modules", "items"))
```
tmt_mstdesign

Arguments

mstdesign definition of desired multistage design
options vector of required output. ‘modules’ = Matrix with the classification of modules and items. ‘simulation’ = list of all stages. ‘design’ = matrix of all branches. ‘items’ vector of all Items.

Value

List with following entries

modules Matrix which contains each module with its corresponding items
simulation List of the multistage design. Each element within the list contains a matrix for each stage
design Matrix of all possible branches
items Vector of item names
start Items of the starting module(s)

Author(s)

Jan Steinfeld

Examples

example for tmt_mstdesign
Not run:
ABCD
Example-1
ABCD
mstdesign <- "
B1 <- c(11, 12, 13, 14, 15)
B2 <- c(16, 17, 18, 19, 20)
B3 <- c(111, 112, 113, 114, 115)
B4 <- c(116, 117, 118, 119, 120)
B5 <- c(121, 122, 123, 124, 125)
B6 <- c(126, 127, 128, 129, 130)

define starting module
Start = B4

define branches
b1 := Start(0, 2) + B2(0, 2) + B1(0, 5)
b2 := Start(0, 2) + B2(3, 5) + B3(0, 5)
b3 := Start(3, 5) + B5(0, 2) + B3(0, 5)
b4 := Start(3, 5) + B5(3, 5) + B6(0, 5)
"

for simulation purposes
tmt_mstdesign(mstdesign, options = "simulation")$simulation

summary of the submitted design
tmt_mstdesign(mstdesign, options = "design")$design

matrix of all modules with the containing items
tmt_mstdesign(mstdesign, options = "modules")$modules

vector of all items
tmt_mstdesign(mstdesign, options = "items")$items

list of all four elements
tmt_mstdesign(mstdesign, options = c("design", "simulation", "modules", "items"))

End(Not run)

mstdesign <- "
 B1 <- paste0('i',1:5)
 B2 <- paste0('i',6:10)
 B3 <- paste0('i',11:15)
 B4 <- paste0('i',16:20)
 B5 <- paste0('i',21:25)
 B6 <- paste0('i',26:30)

 # define starting module
 Start == B4

 # define branches
 b1 := Start(0,2) + B2(0,2) + B1
 b2 := Start(0,2) + B2(3,5) + B3
 b3 := Start(3,5) + B5(0,2) + B3
 b4 := Start(3,5) + B5(3,5) + B6

"
 designelements <- tmt_mstdesign(mstdesign,
 options = c("design", "simulation", "modules", "items"))

tmt_rm
Estimation (CML) of the Rasch model with or without Multistage-Designs.

Description

The `tmt_rm` function estimates the Rasch model if the data is collected within a multistage design (see Zwitser and Maris, 2015). If no `mstdesign` is submitted to the function, than a simple Rasch model will be estimated.
Usage

tmt_rm(dat, mstdesign = NULL, weights = NULL, start = NULL, sum0 = TRUE, se = TRUE, optimization = "nlminb", ...)

Arguments

dat a matrix of dichotomous (0/1) data or a list of the function tmt_designsim
mstdesign Model for the multistage design, if CML should be applied to multistage. If not, leave the default value
weights is optional for the weights of cases
start Vector of start values. If no vector is provided, the start values will be automatic generated
sum0 logical: If the item parameters should be normed to 'sum = 0' as recommended by Glas (2016, p. 208). Otherwise sum0=FALSE
se logical: should the standard error should be estimated?
optimization character: Per default 'nlminb' is used but 'optim' is also supported.
... optional further arguments for optim and nlminb use control = list() with arguments.

Details

According to Glas (1988) <doi:10.3102/10769986013001045> CML estimation of item parameters is biased if the data is collected in multistage designs and this design is not considered. Zwitser and Maris (2015) <doi:10.1007/s11336-013-9369-6> propose to use an additional design matrix to fragment the elementary-symmetric-function. Their approach is implemented in this package.

Value

List with following entries

betapar Estimated item difficulty parameters (if sum0=FALSE, than the first item is set to 0)
se.beta Standard errors of the estimated item parameters
loglik Conditional log-likelihood of the model
df Number of estimated parameters
N Number of Persons
i Number of items
data_orig Submitted data frame with item responses
data Used data frame with item responses
desmat Design matrix
convergence Convergence criterion
iterations Number of iterations
hessian Hessian-Matrix
model Used model ((mst) for Rasch model with multistage design)
call Submitted arguments for the function (matched call)
designelements If the multistage version is requested, the preprocessed design is returned, otherwise NULL
mstdesign If the multistage version is requested, the submitted design is returned, otherwise NULL

Author(s)
Jan Steinfeld

References

See Also
tmt_lrtest

Examples
```r
# example for tmt_rm
#---------------------------------------------------------------------------
# Example-1 simple Rasch model
#---------------------------------------------------------------------------
dat <- tmt:::sim.rm(theta = 100, b = 10, seed = 1111)
dat.rm <- tmt_rm(dat = dat)
summary(dat.rm)
```
Example-1 for multistage-design

```r
mstdesign <- "
M1 <- c(i1, i2, i3, i4, i5)
M2 <- c(i6, i7, i8, i9, i10)
M3 <- c(i11, i12, i13, i14, i15)

# define starting module
Start <- M2

# define path
p1 <- Start[0] + M1
p2 <- Start[0] + M3
```

```r
tm <- seq(-1, 1, length.out = 15)
names(items) <- paste0("i", 1:15)

persons <- 1000
mean <- 0
sd <- 1
dat <- tmt_sim(mstdesign = mstdesign,

items = items, persons = persons, mean = mean, sd = sd)
dat.rm <- tmt_rm(dat = dat, mstdesign = mstdesign)
snapshot(dat.rm)
```

```r
## Not run:
```n

Example-2 simple Rasch model

```r
dat <- tmt::sim.rm(theta = 100, b = 10, seed = 1111)
dat.rm <- tmt_rm(dat = dat)
snapshot(dat.rm)
```

Example-2 for multistage-design

```r
# also using 'paste' is possible
mstdesign <- "
M1 <- paste0('i', 1:5)
M2 <- paste0('i', 6:10)
M3 <- paste0('i', 11:15)
M4 <- paste0('i', 16:20)
M5 <- paste0('i', 21:25)
M6 <- paste0('i', 26:30)

# define starting module
Start <- M4

# define path
p1 <- Start[0] + M2[0] + M1
```
p4 := Start(3, 5) + M5(3, 5) + M6

items <- seq(-1, 1, length.out = 30)
names(items) <- paste0("i", 1:30)
persons = 1000
mean = 0
sd = 1
dat <- tmt_sim(mstdesign = mstdesign,
items = items, persons = persons, mean = mean, sd = sd)
dat.rm <- tmt_rm(dat = dat, mstdesign = mstdesign)
summary(dat.rm)

Example-3 for cumulative multistage-design
also using 'paste' is possible
mstdesign <- "
M1 <- paste0('i', 21:30)
M2 <- paste0('i', 11:20)
M3 <- paste0('i', 1:10)
M4 <- paste0('i', 31:40)
M5 <- paste0('i', 41:50)
M6 <- paste0('i', 51:60)

define starting module
Start = M1

define path
p1 := Start(0, 5) => M2(0, 10) => M3
p2 := Start(0, 5) => M2(11, 15) => M4
p3 := Start(6, 10) => M5(6, 15) => M4
p4 := Start(6, 10) => M5(16, 20) => M6

items <- seq(-1, 1, length.out = 60)
names(items) <- paste0("i", 1:60)
persons = 1000
mean = 0
sd = 1
dat <- tmt_sim(mstdesign = mstdesign,
items = items, persons = persons, mean = mean, sd = sd)
dat.rm <- tmt_rm(dat = dat, mstdesign = mstdesign)
summary(dat.rm)

End(Not run)
Description

This function simulates data after a multistage design. The subjects are drawn from a normal distribution with specified mean and standard deviation (default N(0,1)). As an additional argument, a seed can also be passed.

Usage

tmt_sim(mstdesign = NULL, items = NULL, persons = NULL, mean = 0, sd = 1, ...)

Arguments

mstdesign definition of desired multistage design
items vector of difficulty parameters for each items
persons amount of persons per starting module
mean optional mean for person parameter; default = 0
sd optional sd for person parameter; default = 1
... further optional arguments like set.seed

Value

List with following entries

data Matrix with item responses
data_mst Data frame with item responses and additional a vector of used modules per person
persons Generated and used person parameters
mstdesign Submitted multistage design

Author(s)

Jan Steinfeld

Examples

translate multistage model 1
mstdesign <- "
M1 <- c(i1, i2, i3, i4, i5)
M2 <- c(i6, i7, i8, i9, i10)
M3 <- c(i11, i12, i13, i14, i15)

define starting module
Start <- M2

define branches
p1 <- Start(0,2) + M1
p2 := Start(3,5) + M3
"
items <- seq(-3,3,length.out = 15)
names(items) <- paste0("i",1:15)

persons = 500
set.seed(1111)
data_1 <- tmt_sim(mstdesign = mstdesign,
items = items,
persons = persons,
mean = 0,
 sd = 1)

translate multistage model 2
mstdesign <- "
M1 <- c(i1, i2, i3, i4, i5)
M2 <- c(i6, i7, i8, i9, i10)
M3 <- c(i11, i12, i13, i14, i15)
M4 <- c(i16, i17, i18, i19, i20)
M5 <- c(i21, i22, i23, i24, i25)
M6 <- c(i26, i27, i28, i29, i30)

define starting module
Start == M4

define branches
p1 := Start(0,2) + M2(0,2) + M1
p2 := Start(0,2) + M2(3,5) + M3
p3 := Start(3,5) + M5(0,2) + M3
p4 := Start(3,5) + M5(3,5) + M6
"

items <- seq(-3,3,length.out = 30)
names(items) <- paste0("i",1:30)
persons = 500
set.seed(1111)
data_2 <- tmt_sim(mstdesign = mstdesign,
items = items,
persons = persons,
mean = 0,
 sd = 1)
Index

tmt (tmt-package), 2

tmt-package, 2

tmt_gmc, 4

tmt_lrtest, 4, 5, 10

tmt_mstdesign, 6

tmt_rm, 6, 8

tmt_sim, 12