Package ‘tidyindex’

November 16, 2023

Type Package
Title A Tidy Data Pipeline to Construct, Compare, and Analyse Indexes
Version 0.1.0
Description Construct and analyse indexes in a pipeline tidy workflow. ‘tidyindex’ contains modules for transforming variables, aggregating variables across time, reducing data dimension through weighting, and fitting distributions. A manuscript describing the methodology can be found at <https://github.com/huizezhang-sherry/paper-tidyindex>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://github.com/huizezhang-sherry/tidyindex
BugReports https://github.com/huizezhang-sherry/tidyindex/issues
Imports cli, dplyr, generics, ggplot2, glue, purrr, rlang (>= 1.1.0), tidyr, tidyselect, tsibble, vctrs
RoxygenNote 7.2.3
Suggests covr, knitr, lmomco, lubridate, rmarkdown, slider, SPEI, testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation no
Author H. Sherry Zhang [aut, cre, cph] (<https://orcid.org/0000-0002-7122-1463>), Dianne Cook [aut] (<https://orcid.org/0000-0002-3813-7155>), Ursula Laa [aut] (<https://orcid.org/0000-0002-0249-6439>), Nicolas Langrené [aut] (<https://orcid.org/0000-0001-7601-4618>), Patricia Menéndez [aut] (<https://orcid.org/0000-0003-0701-6315>)
Maintainer H. Sherry Zhang <huize.zhang@monash.edu>
Repository CRAN
Date/Publication 2023-11-16 11:20:02 UTC
R topics documented:

- add_paras . 2
- compute_indexes . 3
- dimension_reduction . 4
- distribution_fit . 5
- ggni . 6
- hdi . 7
- init . 8
- normalise . 8
- rescaling . 9
- swap_values . 10
- temporal_aggregate . 11
- tenterfield . 12
- theme_benchmark . 13
- trans_thornthwaite . 13
- variable_trans . 16

Index

| add_paras | Add parameters to an index table object |

Description

The function joins the parameter table to the 'paras' element of an index table object.

Usage

```
add_paras(data, para_tbl, by)
```

Arguments

- `data` a idx_tbl object
- `para_tbl` a tibble or data frame object with parameter of variables
- `by` a single column name (support tidyselect) in the 'para_tbl' that maps to the variable name in the data

Value

an index object

Examples

```
init(gggi) |> add_paras(gggi_weights, by = "variable")
```
compute_indexes

Calculate multiple indexes at once

Description

Calculate multiple indexes at once

Usage

```r
compute_indexes(.data, ...)  
```

Arguments

- `.data` an `idx_tbl` object
- `...` Unused, included for generic consistency only
- `x` an `idx_res` object, calculated from `compute_indexes`
- `.id` a character string, the name of the first column

Value

an `idx_res` object

Examples

```r
library(dplyr)  
library(lmomco)  
library(generics)  
res <- tenterfield |>
  mutate(month = lubridate::month(ym)) |>
  init(id = id, time = ym, group = month) |>
  compute_indexes(  
    spi = idx_spi(),  
    spei = idx_spei(.lat = lat, .tavg = tavg),  
    edi = idx_edi()  
  )
```

dimension_reduction
The dimension reduction module

Description

The module combines multiple variables into a new variable. The new variable can be a linear combination of the original variables, `aggregate_linear()`, or a geometric mean of the original variables, `aggregate_geometry()`, or created from an user formula input, `aggregate_manual()`.

Usage

```r
dimension_reduction(data, ...)  
aggregate_linear(formula, weight)  
aggregate_geometry(formula)  
aggregate_manual(formula)
```

Arguments

- `data` used in `dimension_reduction()`, an `idx_tbl` object, see `tidyindex::init()`
- `...` used in `dimension_reduction()`, a dimension reduction object of `dim_red` class, currently one of `aggregate_linear()`, `aggregate_geometrical()`, or `aggregate_manual()`.
- `formula` the formula to evaluate
- `weight` used in `aggregate_linear()`, the column of the linear weights from the `roles` element in an index table object. See `tidyindex::add_paras()`

Value

an index table object

Examples

```r
dt <- gggi |>
dplyr::select(country, sex_ratio_at_birth:healthy_life_expectancy) |>
init()

dt |>  
dimension_reduction(health = aggregate_manual(  
  ~sex_ratio_at_birth * 0.693 + healthy_life_expectancy * 0.307))

dt |>
add_paras(gggi_weights, by = variable) |>
dimension_reduction(health = aggregate_linear(  
  ~sex_ratio_at_birth:healthy_life_expectancy, weight = var_weight))

dt |>
dimension_reduction(health = aggregate_geometrical(  
  ~sex_ratio_at_birth:healthy_life_expectancy, weight = var_weight))
```
distribution_fit

—the_ratio_at_birth:healthy_life_expectancy)
)

distribution_fit The distribution fit module

Description

This module fits a distribution to the variable of interest. Currently implemented distributions are: gamma, dist_gamma(), generalized logistic, dist_glo(), generalized extreme value, dist_gev(), and Pearson Type III, dist_pe3()

Usage

distribution_fit(data, ...)
dist_gamma(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_glo(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_gev(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_pe3(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)

Arguments

data an index table object
...
a distribution fit object, currently implemented are dist_gamma(), dist_glo(), dist_gev(), and dist_pe3()
var used in dist_*() functions, the variable to fit
method used in dist_*() functions, the fitting method, currently support "lmoms" for L-moment fit
.n_boot the number of bootstrap replicate, default to 1
.boot_seed the seed to generate bootstrap replicate, default to 123

Value

an index table object
Examples

```r
library(dplyr)
library(lmomco)
tenterfield |>
  mutate(month = lubridate::month(ym)) |>
  init(id = id, time = ym, group = month) |>
  temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12)) |>
  distribution_fit(.fit = dist_gamma(.agg, method = "lmoms"))
```

Global Gender Gap Index (2023)

Description

The Global Gender Gap Index combines 14 variables from four dimensions to measure the gender parity across 146 countries in the world.

Usage

```r
gggi

gggi_weights
```

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 146 rows and 22 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 14 rows and 7 columns.

Details

The dataset includes country, region, GGGI score and rank, the combined four dimensions (Economic Participation and Opportunity, Educational Attainment, Health and Survival, and Political Empowerment), and variables under each dimensions. The variable composition of each dimension is as follows:

* Economic Participation and Opportunity: Labour force participation, Wage equality for similar work, Estimated earned income, Legislators, senior officials and managers, and Professional and technical workers
* Educational attainment: Literacy rate, Enrolment in primary education, Enrolment in secondary education, Enrolment in tertiary education
* Health and survival: Sex ratio at birth and Healthy life expectancy
* Political empowerment: Women in parliament, Women in ministerial positions, and Years with female head of state

Variable names are cleaned with `janitor::clean_names()`.

The weight data is extracted from page 65 of the Global Gender Gap Report (see reference), see page 61 for the region classification.
References

hd

Human Development Index (2022)

Description

Human Development Index (2022)

Usage

- `hd`
- `hd_scales`

Format

A tibble with three columns:

- **id** the row number
- **country** 191 countries with computed HDI
- **hdi** the HDI index value
- **life_exp** life expectancy
- **exp_sch** expected schooling
- **avg_sch** average schooling
- **gni_pc** GNI per capital, logged

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 4 rows and 5 columns.

References

init

Initialise the tidyindex pipeline

Description

Initialise an index table object with a data frame or a tibble.

Usage

```r
init(data, ...)  
```

```r
## S3 method for class 'idx_tbl'  
print(x, ...)
```

Arguments

- `data` a tibble or data frame to be converted into a index object
- `...` arguments to give variables roles, recorded in the `paras` element of the index table object, currently used for `id` and `time`
- `x` an index object

Value

an index table object

Examples

```r
init(hdi)  
init(gggi)
```

normalise

The normalise module

Description

The normalise module takes a probability value from a distribution fit `norm_quantile()` to convert based on the normal quantile function

Usage

```r
normalise(data, ...)  
```

```r
norm_quantile(var)
```
Arguments

- **data**: an index table object
- **...**: the expression to be evaluated
- **var**: used in `norm_quantile()`, the variable to be converted

Value

- an index table object

Examples

```r
code
```

Description

The rescaling module changes the scale of the variable(s) using one of the available rescaling functions: `rescale_zscore()`, `rescale_minmax()`, and `rescale_center()`.

Usage

```r
rescaling(data, ...)
rescale_zscore(var, na.rm = TRUE)
rescale_minmax(var, min = NULL, max = NULL, na.rm = TRUE, censor = TRUE)
rescale_center(var, na.rm = TRUE)
```

Arguments

- **data**: an index table object, see `tidyindex::init()`
- **...**: used in rescaling, a rescaling object of class `rescale`, currently one of the `rescale_zscore()`, `rescale_minmax()`, and `rescale_center()`
- **var**: the variable(s) to rescale, accept tidyselect syntax
- **na.rm**: used in `rescale_*()`, logical, whether to remove NAs
- **min, max**: used in `rescale_minmax()`, the minimum and maximum value
- **censor**: used in `rescale_minmax()`, logical; whether to censor points outside min and max, if provided
swap_values

Value
an index table object

Examples

```r
dt <- hdi |> init()
dt |> rescaling(life_exp = rescale_zscore(life_exp))
dt |> rescaling(life_exp2 = rescale_minmax(life_exp, min = 20, max = 85))
```

swap_values Testing alternatives

Description
The two functions allows you to substitute a value/expression in the pipeline with other options. These functions will evaluate the modified pipeline step, as well as its prior and subsequent steps to create different versions of the index.

Usage

```r
swap_values(data, .var, .param, .values)
```

```r
swap_exprs(data, .var, .exprs)
```

Arguments
data an idx_tbl object
.var the name of the variable, which the step is tested for alternatives
.param the name of the parameter to swap
.values, .exprs a list of values or expressions

Value
an index table

Examples

```r
library(generics)
hdi_paras <- hdi_scales |> dplyr::add_row(dimension = "Education", name = "Education",
  var = "sch", min = 0, max = 0) |> dplyr::mutate(weight = c(1/3, 0, 0, 1/3, 1/3),
  weight2 = c(0.1, 0, 0, 0.8, 0.1),
  weight3 = c(0.8, 0, 0, 0.1, 0.1),
  weight4 = c(0.1, 0, 0, 0.1, 0.8))
```
The temporal processing module

The temporal processing module is used to aggregate data along the temporal dimension. Current available aggregation recipe includes `temporal_rolling_window`.

Usage

```r
temporal_aggregate(data, ...)

temporal_rolling_window(
  var,
  scale,
  .before = 0L,
  .step = 1L,
  .complete = TRUE,
  rm.na = TRUE,
  ...)
```

Arguments

- `data` an index table object, see `[tidyindex::init()]`
- `...` an temporal processing object of class `temporal_agg`
var the variable to aggregate
scale numeric, the scale (window) of the aggregation
.before, .step, .complete see slide dbl
rm.na logical, whether to remove the first few rows with NAs

Value
an index table object

Examples

tenterfield |>
 init(time = ym) |>
 temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12))

multiple ids (groups), and multiple scales
queensland |>
dplyr::filter(id %in% c("ASN00029038", "ASN00029127")) |>
 init(id = id, time = ym) |>
 temporal_aggregate(temporal_rolling_window(prcp, scale = c(12, 24)))

tenterfield
Weather data for in-situ stations in Queensland from 1990 to 2020

Description
Weather data for in-situ stations in Queensland from 1990 to 2020

Usage
tenterfield
aus_climate
queensland

Format
A tibble with 9 columns:

- **id** station ID, ASN000xxxxx
- **ym** date in ‘tsibble::yearmonth’ format
- **prcp** aggregated monthly precipitation from daily data
- **tmax, tmin, tavg** maximum/minimum/ average temperature
- **long, lat** longitude and latitude of the station
name station name

An object of class tbl_df (inherits from tbl, data.frame) with 52373 rows and 9 columns.
An object of class tbl_df (inherits from tbl, data.frame) with 11252 rows and 9 columns.

theme_benchmark

A ggplot2 theme for benchmarking the index series

Description

A ggplot2 theme for benchmarking the index series

Usage

```r
theme_benchmark(yintercept = -2, linetype = "dashed")
```

Arguments

- **yintercept**
 - intercept

- **linetype**
 - linetype

Value

a ggplot2 object

Examples

```r
if (require("ggplot2", quietly = TRUE) ){
  dplyr::tibble(x = 1:100, y = rnorm(100, sd = 2)) |> 
    ggplot(aes(x = x, y = y )) + 
    geom_line() + 
    theme_benchmark()
}
```

trans_thornthwaite

Drought-related index functions

Description

The functions are used for quick computing of some common drought indexes built from wrappers of the underlying modules. For more customised needs, users may build their own indexes from the modules.
trans_thornthwaite

Usage
trans_thornthwaite(var, lat, na.rm = FALSE, verbose = TRUE)

idx_spi(data, .prcp, .dist = dist_gamma(), .scale = 12)

idx_spei(
data,
.tavg,
.lat,
.prcp,
.pet_method = trans_thornthwaite(),
.scale = 12,
.dist = dist_glo()
)

idx_rdi(
data,
.tavg,
.lat,
.prcp,
.pet_method = trans_thornthwaite(),
.scale = 12
)

idx_edi(data, .tavg, .lat, .prcp, .scale = 12)

Arguments

var the variable to be transformed, see [tidyindex::variable_trans] and [SPEI::thornthwaite]
lat, na.rm, verbose see [SPEI::thornthwaite]
data an id_tbl object
.dist the distribution used for distribution fit, see [tidyindex::distribution_fit]
.scale the temporal aggregation scale, see [tidyindex::temporal_aggregation]
.tavg, .lat, .prcp variables to be used in the index calculation, see Details
.pet_method the method used for calculating potential evapotranspiration, currently only trans_thornthwaite

Details

Below explains the steps wrapped in each index and the intermediate variables created.

The idx_spi() function performs

1. a temporal aggregation on the input precipitation series, .prcp, as .agg.
2. a distribution fit step on the aggregated precipitation, .agg, as .fit, and
3. a normalising step on the fitted values, .fit, as .index
The `idx_spei()` function performs

1. a variable transformation step on the input average temperature, `.tavg`, to obtain the potential evapotranspiration, `.pet`,
2. a dimension reduction step to calculate difference series, `.diff`, between the input precipitation series, `.prcp`, and `.pet`,
3. a temporal aggregation step on the difference series, `.diff`, as `.agg`,
4. a distribution fit step on the aggregated series, `.agg`, as `.fit`, and
5. a normalising step on the fitted value, `.fit`, to obtain `.index`.

The `idx_rdi()` function performs

1. a variable transformation step on the input average temperature, `.tavg`, to obtain potential evapotranspiration `.pet`,
2. a dimension reduction step to calculate the ratio of input precipitation, `.prcp`, to `.pet` as `.ratio`,
3. a temporal aggregation step on the ratio series, `.ratio`, as `.agg`,
4. a variable transformation step to take the log10 of the aggregated series, `.agg`, as `.y`, and
5. a rescaling step to rescale `.y` by zscore to obtain `.index`.

The `idx_edi()` function performs

1. a dimension reduction step to aggregate the input precipitation series, `.prcp`, as `.mult`,
2. a temporal aggregation step on the aggregated precipitation series (.mult) as `.ep`, and
3. a rescaling step to rescale `.ep` by zscore to obtain `.index`.

Value

an index table object

Examples

```r
library(dplyr)
library(lmomco)
dt <- tenterfield |> mutate(month = lubridate::month(ym)) |> init(id = id, time = ym, group = month)
dt |> idx_spi()
dt |> idx_spi(.scale = c(12, 24))
dt |> idx_spei(.lat = lat, .tavg = tavg)
dt |> idx_rdi(.lat = lat, .tavg = tavg)
dt |> idx_edi(.lat = lat, .tavg = tavg)
```
variable_trans

The variable transformation module

Description

The variable transformation module is used to transform a single variable in the index table object. The transformation is specified by a variable transformation object of class `var_trans`, created by `trans_*` functions. Currently, the following transformation functions are supported: `trans_log10`, `trans_quadratic`, `trans_square_root`, and `trans_cubic_root`.

Usage

```r
variable_trans(data, ...)
```

```r
trans_log10(var)
```

```r
trans_quadratic(var)
```

```r
trans_square_root(var)
```

```r
trans_cubic_root(var)
```

Arguments

- **data**: an index table object
- **...**: an variable transformation recipe of class `var_trans`, created by `trans_*` function, the transformation recipe to be evaluated
- **var**: used in `trans_*` functions, the variable to be transformed

Value

an index table object

Examples

```r
hdi |> init() |> variable_trans(gni_pc = trans_log10(gni_pc))
```
Index

* datasets
 - gggii, 6
 - hdi, 7
 - tenterfield, 12

add_paras, 2
aggregate_geometrical (dimension_reduction), 4
aggregate_linear (dimension_reduction), 4
aggregate_manual (dimension_reduction), 4
augment.idx_res (compute_indexes), 3
aus_climate (tenterfield), 12
compute_indexes, 3
dimension_reduction, 4
dist_gamma (distribution_fit), 5
dist_gev (distribution_fit), 5
dist_glo (distribution_fit), 5
dist_pe3 (distribution_fit), 5
distribution_fit, 5

gggii, 6
gggii_weights (gggi), 6
hdi, 7
hdi_scales (hdi), 7
idx_edi (trans_thornthwaite), 13
idx_rdi (trans_thornthwaite), 13
idx_spei (trans_thornthwaite), 13
idx_spi (trans_thornthwaite), 13
init, 8
norm_quantile (normalise), 8
normalise, 8
print.idx_tbl (init), 8
queensland (tenterfield), 12

rescale_center (rescaling), 9
rescale_minmax (rescaling), 9
rescale_zscore (rescaling), 9
rescaling, 9
slide_dbl, 12
swap_exprs (swap_values), 10
swap_values, 10
temporal_aggregate, 11
temporal_rolling_window (temporal_aggregate), 11
tenterfield, 12
theme_benchmark, 13
trans_cubic_root (variable_trans), 16
trans_log10 (variable_trans), 16
trans_quadratic (variable_trans), 16
trans_square_root (variable_trans), 16
trans_thornthwaite, 13

variable_trans, 16