Package ‘tfhub’

May 22, 2020

Type Package

Title Interface to 'TensorFlow' Hub

Version 0.8.0

Description 'TensorFlow' Hub is a library for the publication, discovery, and consumption of reusable parts of machine learning models. A module is a self-contained piece of a 'TensorFlow' graph, along with its weights and assets, that can be reused across different tasks in a process known as transfer learning. Transfer learning train a model with a smaller dataset, improve generalization, and speed up training.

License Apache License 2.0

URL https://github.com/rstudio/tfhub

BugReports https://github.com/rstudio/tfhub/issues

SystemRequirements TensorFlow >= 2.0 (https://www.tensorflow.org/)

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports reticulate (>= 1.9.0.9002), tensorflow (>= 1.8.0.9006), magrittr, rstudioapi (>= 0.7)

Suggests testthat (>= 2.1.0), knitr, tfestimators, keras, rmarkdown, callr, recipes, tibble, abind, fs, pins, magick

VignetteBuilder knitr

Config/reticulate list(packages = list(list(package = `tensorflow`, pip = TRUE), list(package = `tensorflow_hub`, pip = TRUE)))

NeedsCompilation no

Author Daniel Falbel [aut, cre], JJ Allaire [aut], RStudio [cph, fnd], Google Inc. [cph]

Maintainer Daniel Falbel <daniel@rstudio.com>

Repository CRAN

Date/Publication 2020-05-22 20:50:02 UTC
R topics documented:

- bake.step_pretrained_text_embedding
- hub_image_embedding_column
- hub_load
- hub_sparse_text_embedding_column
- hub_text_embedding_column
- install_tfhub
- layer_hub
- prep.step_pretrained_text_embedding
- step_pretrained_text_embedding

Index

bake.step_pretrained_text_embedding

Bake method for step_pretrained_text_embedding

Description

Bake method for step_pretrained_text_embedding

Usage

bake.step_pretrained_text_embedding(object, new_data, ...)

Arguments

- object: object
- new_data: new data to apply transformations
- ...: One or more selector functions to choose variables.

hub_image_embedding_column

Module to construct a dense 1-D representation from the pixels of images.

Description

Module to construct a dense 1-D representation from the pixels of images.

Usage

hub_image_embedding_column(key, module_spec)
hub_load

Arguments

- **key**
 A string or [feature_column](https://tensorflow.rstudio.com/tfestimators/articles/feature_columns.html) identifying the text feature.

- **module_spec**
 A string handle or a ModuleSpec identifying the module.

Details

This feature column can be used on images, represented as float32 tensors of RGB pixel data in the range [0,1].

hub_load

Hub Load

Description

Loads a module from a handle.

Usage

```r
hub_load(handle, tags = NULL)
```

Arguments

- **handle**
 (string) the Module handle to resolve.

- **tags**
 A set of strings specifying the graph variant to use, if loading from a v1 module.

Details

Currently this method is fully supported only with Tensorflow 2.x and with modules created by calling `export_savedmodel`. The method works in both eager and graph modes.

Depending on the type of handle used, the call may involve downloading a TensorFlow Hub module to a local cache location specified by the ‘TFHUB_CACHE_DIR’ environment variable. If a copy of the module is already present in the TFHUB_CACHE_DIR, the download step is skipped.

Currently, three types of module handles are supported: 1) Smart URL resolvers such as tfhub.dev, e.g.: https://tfhub.dev/google/nlm-en-dim128/1. 2) A directory on a file system supported by Tensorflow containing module files. This may include a local directory (e.g. /usr/local/mymodule) or a Google Cloud Storage bucket (gs://mymodule). 3) A URL pointing to a TGZ archive of a module, e.g. https://example.com/mymodule.tar.gz.
Examples

```r
# Not run:

model <- hub_load('https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4')

# End(Not run)
```

hub_sparse_text_embedding_column

Module to construct dense representations from sparse text features.

Description

The input to this feature column is a batch of multiple strings with arbitrary size, assuming the input is a SparseTensor.

Usage

```r
hub_sparse_text_embedding_column(
  key,
  module_spec,
  combiner,
  default_value,
  trainable = FALSE
)
```

Arguments

- `key`: A string or [feature_column](https://tensorflow.rstudio.com/tfestimators/articles/feature_columns.html) identifying the text feature.
- `module_spec`: A string handle or a _ModuleSpec identifying the module.
- `combiner`: A string specifying reducing op for embeddings in the same Example. Currently, 'mean', 'sqrtn', 'sum' are supported. Using `combiner = NULL` is undefined.
- `default_value`: default value for Examples where the text feature is empty. Note, it's recommended to have default_value consistent OOV tokens, in case there was special handling of OOV in the text module. If 'NULL', the text feature is assumed be non-empty for each Example.
- `trainable`: Whether or not the Module is trainable. 'FALSE' by default, meaning the pre-trained weights are frozen. This is different from the ordinary `tf.feature_column.embedding_column()`, but that one is intended for training from scratch.
Details

This type of feature column is typically suited for modules that operate on pre-tokenized text to produce token level embeddings which are combined with the combiner into a text embedding. The combiner always treats the tokens as a bag of words rather than a sequence.

The output (i.e., transformed input layer) is a DenseTensor, with shape [batch_size, num_embedding_dim].

hub_text_embedding_column

Module to construct a dense representation from a text feature.

Description

This feature column can be used on an input feature whose values are strings of arbitrary size.

Usage

hub_text_embedding_column(key, module_spec, trainable = FALSE)

Arguments

- **key**: A string or [feature_column](https://tensorflow.rstudio.com/tfestimators/articles/feature_columns.html) identifying the text feature.
- **module_spec**: A string handle or a _ModuleSpec identifying the module.
- **trainable**: Whether or not the Module is trainable. ‘FALSE’ by default, meaning the pre-trained weights are frozen. This is different from the ordinary ‘tf.feature_column.embedding_column()’, but that one is intended for training from scratch.

install_tfhub

Install TensorFlow Hub

Description

This function is used to install the TensorFlow Hub python module.

Usage

install_tfhub(version = "0.7.0", ..., restart_session = TRUE)

Arguments

- **version**: version of TensorFlow Hub to be installed.
- **...**: other arguments passed to [reticulate::py_install()](https://reticulate.rstudio.com/index.html#installing-python-packages)
- **restart_session**: Restart R session after installing (note this will only occur within RStudio).
Description

Wraps a Hub module (or a similar callable) for TF2 as a Keras Layer.

Usage

layer_hub(object, handle, trainable = FALSE, arguments = NULL, ...)

Arguments

- **object**: Model or layer object
- **handle**: a callable object (subject to the conventions above), or a string for which `hub_load()` returns such a callable. A string is required to save the Keras config of this Layer.
- **trainable**: Boolean controlling whether this layer is trainable.
- **arguments**: optionally, a list with additional keyword arguments passed to the callable. These must be JSON-serializable to save the Keras config of this layer.
- **...**: Other arguments that are passed to the TensorFlow Hub module.

Details

This layer wraps a callable object for use as a Keras layer. The callable object can be passed directly, or be specified by a string with a handle that gets passed to `hub_load()`.

The callable object is expected to follow the conventions detailed below. (These are met by TF2-compatible modules loaded from TensorFlow Hub.)

The callable is invoked with a single positional argument set to one tensor or a list of tensors containing the inputs to the layer. If the callable accepts a training argument, a boolean is passed for it. It is `TRUE` if this layer is marked trainable and called for training.

If present, the following attributes of callable are understood to have special meanings: variables: a list of all tf.Variable objects that the callable depends on. trainable_variables: those elements of variables that are reported as trainable variables of this Keras Layer when the layer is trainable. regularization_losses: a list of callables to be added as losses of this Keras Layer when the layer is trainable. Each one must accept zero arguments and return a scalar tensor.

Examples

```r
## Not run:
library(keras)

model <- keras_model_sequential() %>%
  layer_hub(
    handle = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4",
```
prep.step_pretrained_text_embedding

 input_shape = c(224, 224, 3)
) %>%
layer_dense(1)

End(Not run)

prep.step_pretrained_text_embedding

Prep method for step_pretrained_text_embedding

Description

Prep method for step_pretrained_text_embedding

Usage

prep.step_pretrained_text_embedding(x, training, info = NULL, ...)

Arguments

- **x**: object
- **training**: wether or not it's training
- **info**: variables state
- **...**: One or more selector functions to choose variables.

step_pretrained_text_embedding

Pretrained text-embeddings

Description

`step_pretrained_text_embedding` creates a *specification* of a recipe step that will transform text data into its numerical transformation based on a pretrained model.

Usage

step_pretrained_text_embedding(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 handle,
 args = NULL,
 skip = FALSE,
 id = recipes::rand_id("pretrained_text_embedding")
)
step_pretrained_text_embedding

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose variables.
- **role**: Role for the created variables
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **handle**: The Module handle to resolve.
- **args**: Other arguments passed to `hub_load()`.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`?
 While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g., processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.

Examples

```r
## Not run:
library(tibble)
library(recipes)
df <- tibble(text = c("hi", "heello", "goodbye"), y = 0)

rec <- recipe(y ~ text, df)
rec <- rec %>% step_pretrained_text_embedding(
  text,
  handle = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1"
)

## End(Not run)
```
Index

bake.step_pretrained_text_embedding, 2
hub_image_embedding_column, 2
hub_load, 3
hub_sparse_text_embedding_column, 4
hub_text_embedding_column, 5
install_tfhub, 5
layer_hub, 6
prep.step_pretrained_text_embedding, 7
step_pretrained_text_embedding, 7