Package ‘tbrf’

November 15, 2019

Type Package
Title Time-Based Rolling Functions
Version 0.1.3
Maintainer Michael Schramm <michael.schramm@ag.tamu.edu>
Description Provides rolling statistical functions based on date and time windows instead of n-lagged observations.

URL https://mps9506.github.io/tbrf/
BugReports https://github.com/mps9506/tbrf/issues
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 2.10)
Imports boot, dplyr, lubridate, purrr, rlang, tibble, tidyr
Suggests covr, ggalt, ggplot2, testthat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Michael Schramm [aut, cre] (<https://orcid.org/0000-0003-1876-6592>), Frank Harrell [ctb]
Repository CRAN
Date/Publication 2019-11-15 21:30:02 UTC

R topics documented:

Dissolved_Oxygen .. 2
tbr_binom ... 3
tbr_gmean ... 4
tbr_mean ... 5
tbr_median ... 6
Dissolved_Oxygen

Data from the Texas Commission on Environmental Quality Surface Water Quality Monitoring Information System. The AverageDO field is the mean of dissolved oxygen concentrations (mg/L) measured at a field site at that day. The MinDO is the minimum dissolved oxygen concentration measured at that site on that day.

Usage

data(Dissolved_Oxygen)

Format

A data frame with 236 rows and 6 variables:

- **Station_ID** unique water quality monitoring station identifier
- **Date** sampling date in yyyy-mm-dd format
- **Param_Code** unique parameter code
- **Param_Desc** parameter description with units
- **Average_DO** mean of dissolved oxygen measurement, in mg/L
- **Min_DO** minimum of dissolved oxygen measurement, in mg/L

Source

https://www80.tceq.texas.gov/SwqmispPublic/public/default.htm
tbr_binom

Time-Based Rolling Binomial Probability

Description

Produces a rolling time-window based vector of binomial probability and confidence intervals.

Usage

```r
tbr_binom(.tbl, x, tcolumn, unit = "years", n, alpha = 0.05)
```

Arguments

- `.tbl` dataframe with two variables.
- `x` indicates the variable column containing "success" and "failure" observations coded as 1 or 0.
- `tcolumn` indicates the variable column containing Date or Date-Time values.
- `unit` character, one of "years", "months", "weeks", "days", "hours", "minutes", "seconds"
- `n` numeric, describing the length of the time window in the selected units.
- `alpha` numeric, probability of a type 1 error, so confidence coefficient = 1-alpha

Value

tibble with binomial point estimate and confidence intervals.

See Also

- `binom_ci`

Examples

```r
## Generate Sample Data
df <- tibble::data_frame(
  date = sample(seq(as.Date("2000-01-01"), as.Date("2015/12/30"), by = "day"), 100),
  value = rbinom(100, 1, 0.25)
)

## Run Function
tbr_binom(df, x = value,
tcolumn = date, unit = "years", n = 5,
alpha = 0.1)
```
Description

Produces a rolling time-window based vector of geometric means and confidence intervals.

Usage

tbr_gmean(.tbl, x, tcolumn, unit = "years", n, ...)

Arguments

.tbl a data frame with at least two variables; time column formatted as date, date/time and value column.

x column containing the values to calculate the geometric mean.

tcolumn formatted time column.

unit character, one of "years", "months", "weeks", "days", "hours", "minutes", "seconds"

n numeric, describing the length of the time window.

... additional arguments passed to gm_mean_ci

Value

tibble with columns for the rolling geometric mean and upper and lower confidence levels.

See Also

gm_mean_ci

Examples

Return a tibble with new rolling geometric mean column
 tbr_gmean(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5)

Not run:

Return a tibble with rolling geometric mean and 95% CI
 tbr_gmean(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5, conf = .95)
 ## End(Not run)
tbr_mean

Time-Based Rolling Mean

Description

Produces a rolling time-window based vector of means and confidence intervals.

Usage

```
tbr_mean(.tbl, x, tcolumn, unit = "years", n, ...)```

**Arguments**

- `.tbl` a data frame with at least two variables; time column formatted as date, date/time and value column.
- `x` column containing the numeric values to calculate the mean.
- `tcolumn` formatted time column.
- `unit` character, one of "years", "months", "weeks", "days", "hours", "minutes", "seconds"
- `n` numeric, describing the length of the time window.
- `...` additional arguments passed to `mean_ci`.

**Value**

tibble with columns for the rolling mean and upper and lower confidence intervals.

**See Also**

`mean_ci`

**Examples**

```r
tbr_mean(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5)
```

```r
Not run:
tbr_mean(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5, conf = .95)
```

```r
End(Not run)
```
# tbr_median

## Time-Based Rolling Median

### Description

Produces a rolling time-window based vector of medians and confidence intervals.

### Usage

```r
tbr_median(.tbl, x, tcolumn, unit = "years", n, ...)
```

### Arguments

- **.tbl**: a data frame with at least two variables; time column formatted as date, date/time and value column.
- **x**: column containing the numeric values to calculate the mean.
- **tcolumn**: formatted time column.
- **unit**: character, one of "years", "months", "weeks", "days", "hours", "minutes", "seconds"
- **n**: numeric, describing the length of the time window.
- **...**: additional arguments passed to `median_ci`

### Value

A tibble with columns for the rolling median and upper and lower confidence intervals.

### See Also

- `median_ci`

### Examples

```r
Return a tibble with new rolling median column
tbr_median(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5)
```

```r
Not run:
Return a tibble with rolling median and 95% CI
Not run
```

```r
tbr_median(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5, conf = .95)
```

```r
End(Not run)
```
Use Generic Functions with Time Windows

**tbr_misc(.tbl, x, tcolumn, unit = "years", n, func, ...)**

**Arguments**
- `.tbl`  
  a data frame with at least two variables; time column formatted as date, date/time and value column.
- `x`  
  column containing the values the function is applied to.
- `tcolumn`  
  formatted time column.
- `unit`  
  character, one of "years", "months", "weeks", "days", "hours", "minutes", "seconds"
- `n`  
  numeric, describing the length of the time window.
- `func`  
  specified function
- `...`  
  optional additional arguments passed to function `func`

**Value**

tibble

**Examples**

```r
tbr_misc(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5, func = mean)
```

Time-Based Rolling Standard Deviation

**tbr_sd(.tbl, x, tcolumn, unit = "years", n, na.rm = FALSE)**

**Description**

Time-Based Rolling Standard Deviation

**Usage**

```r
tbr_sd(.tbl, x, tcolumn, unit = "years", n, na.rm = FALSE)
```
Arguments
.

<table>
<thead>
<tr>
<th>.tbl</th>
<th>a data frame with at least two variables; time column formatted as date, date/time and value column.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>column containing the values to calculate the standard deviation.</td>
</tr>
<tr>
<td>tcolumn</td>
<td>formatted time column.</td>
</tr>
<tr>
<td>unit</td>
<td>character, one of &quot;years&quot;, &quot;months&quot;, &quot;weeks&quot;, &quot;days&quot;, &quot;hours&quot;, &quot;minutes&quot;, &quot;seconds&quot;</td>
</tr>
<tr>
<td>n</td>
<td>numeric, describing the length of the time window.</td>
</tr>
<tr>
<td>na.rm</td>
<td>logical. Should missing values be removed?</td>
</tr>
</tbody>
</table>

Value
tibble with column for the rolling sd.

See Also
sd

Examples
tbr_sd(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5)
**tbr_sum**

**Value**

dataframe with column for the rolling sum.

**See Also**

`sum`

**Examples**

tbr_sum(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5)
Index

*Topic datasets

  Dissolved_Oxygen, 2

binom_ci, 3

Dissolved_Oxygen, 2

gm_mean_ci, 4

mean_ci, 5

median_ci, 6

sd, 8

sum, 9

tbr_binom, 3

tbr_gmean, 4

tbr_mean, 5

tbr_median, 6

tbr_misc, 7

tbr_sd, 7

tbr_sum, 8