Package ‘svars’

August 6, 2021

Type Package
Title Data-Driven Identification of SVAR Models
Version 1.3.8
Date 2021-08-06
Author Alexander Lange [aut, cre],
 Bernhard Dalheimer [aut],
 Helmut Herwartz [aut],
 Simone Maxand [aut],
 Hannes Riebl [ctb]
Maintainer Alexander Lange <alexander.lange@uni-goettingen.de>
Description Implements data-driven identification methods for structural vector autoregres-
sive (SVAR) models as described in Lange et al. (2021) <doi:10.18637/jss.v097.i05>. Based on an existing VAR model object (provided by e.g. VAR() from the 'vars' pack-
age), the structural impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) <doi:10.1162/003465303772815727>), patterns of GARCH (Nor-
smooth transition in variances (Luetkepohl, H., Netsune-
jev, A. (2017) <doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum likeli-
Depends R (>= 2.10), vars (>= 1.5.3)
Imports expm, reshape2, ggplot2, copula, clue, pbapply, steadyICA,
 DEoptim, zoo, strucchange, Rcpp
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
License MIT + file LICENSE
LazyData TRUE
RoxygenNote 7.1.1
Suggests testthat (>= 2.1.0), tsDyn
Description

Bootstrap intervals based on bias-adjusted estimators

Usage

```r
ba.boot(x, nc = 1)
```

Arguments

- `x` : SVAR object of class "sboot"
- `nc` : Integer. Number of processor cores
Value

A list of class "sboot" with elements

- **true**: Point estimate of impulse response functions
- **bootstrap**: List of length "nboot" holding bootstrap impulse response functions
- **SE**: Bootstrapped standard errors of estimated covariance decomposition (only if "x" has method "Cramer von-Mises", or "Distance covariances")
- **nboot**: Number of bootstrap iterations
- **b_length**: Length of each block
- **point_estimate**: Point estimate of covariance decomposition
- **boot_mean**: Mean of bootstrapped covariance decompositions
- **signrest**: Evaluated sign pattern
- **sign_complete**: Frequency of appearance of the complete sign pattern in all bootstrapped covariance decompositions
- **sign_part**: Frequency of bootstrapped covariance decompositions which conform the complete predetermined sign pattern. If signrest=NULL, the frequency of bootstrapped covariance decompositions that hold the same sign pattern as the point estimate is provided.
- **sign_part**: Frequency of single shocks in all bootstrapped covariance decompositions which accord to a specific predetermined sign pattern
- **cov_bs**: Covariance matrix of bootstrapped parameter in impact relations matrix
- **method**: Used bootstrap method
- **VAR**: Estimated input VAR object

References

See Also

- `mb.boot`, `wild.boot`

Examples

```r
# data contains quarterly observations from 1965Q1 to 2008Q3
# x = output gap
# pi = inflation
# i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
summary(x1)

# Bootstrap
```
bb <- mb.boot(x1, b.length = 15, n.boot = 300, n.ahead = 30, nc = 1, signrest = NULL)
summary(bb)
plot(bb, lowerq = 0.16, upperq = 0.84)

Bias-adjusted bootstrap
bb2 <- ba.boot(bb, nc = 1)
plot(bb2, lowerq = 0.16, upperq = 0.84)

cf

Counterfactuals for SVAR Models

Description

Calculation of Counterfactuals for an identified SVAR object 'svars' derived by function `id.st()`, `id.cvm()`, `id.cv()`, `id.dc()` or `id.ngml()`.

Usage

```
cf(x, series = 1, transition = 0)
```

Arguments

- `x` : SVAR object of class "svars"
- `series` : Integer. indicating the series for which the counterfactuals should be calculated.
- `transition` : Numeric. Value from [0, 1] indicating how many initial values should be discarded, i.e., 0.1 means that the first 10 per cent observations of the sample are considered as transient.

Value

A list with class attribute "hd" holding the Counterfactuals as data frame.

References

See Also

`id.cvm`, `id.dc`, `id.ngml`, `id.cv`, `id.garch` or `id.st`
Examples

```r
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
x2 <- cf(x1, series = 2)
plot(x2)
```

chow.test
Chow Test for Structural Break

Description

The Chow test for structural change is implemented as sample-split and break-point test (see Luetkepohl and Kraetzig, 2004, p. 135). An estimated VAR model and the presupposed structural break need to be provided.

Usage

```r
chow.test(
  x,
  SB,
  nboot = 500,
  start = NULL,
  end = NULL,
  frequency = NULL,
  format = NULL,
  dateVector = NULL
)
```

Arguments

- `x`: An object of class `vars`, `vec2var`, `nlVar`. Estimated VAR object. Or an object of class `chowpretest` from `stability()`
- `SB`: Integer, vector or date character. The structural break is specified either by an integer (number of observations in the pre-break period), a vector of ts() frequencies if a ts object is used in the VAR or a date character. If a date character is provided, either a date vector containing the whole time line in the corresponding format or common time parameters need to be provided
- `nboot`: Integer. Number of bootstrap iterations to calculate quantiles and p-values
- `start`: Character. Start of the time series (only if `dateVector` is empty)
- `end`: Character. End of the time series (only if `dateVector` is empty)
- `frequency`: Character. Frequency of the time series (only if `dateVector` is empty)
- `format`: Character. Date format (only if `dateVector` is empty)
- `dateVector`: Vector. Vector of time periods containing `SB` in corresponding format
Value

A list of class "chow" with elements

- **lambda_bp**: Test statistic of the Chow test with break point
- **testcrit_bp**: Critical value of the test statistic lambda_bp
- **p.value_bp**: p-value of the test statistic lambda_bp
- **lambda_sp**: Test statistic of the Chow test with sample split
- **testcrit_sp**: Critical value of the test statistic lambda_sp
- **p.value_sp**: p-value of the test statistic lambda_sp
- **SB**: Structural break tested
- **SBcharacter**: Structural break tested as character
- **p**: Number of lags used

References

See Also

- **stability**

Examples

```r
# Testing for structural break in USA data
# data contains quartlery observations from 1965Q1 to 2008Q2
# assumed structural break in 1979Q3
# x = output gap
# pi = inflation
# i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
z1 <- chow.test(v1, SB = 59)
summary(z1)

#Using stability() to find potential break point and sample split
x1 <- stability(v1, type = "mv-chow-test")
plot(x1)
z1.1 <- chow.test(x1)
summary(z1.1)

#Or using sample split as benchmark
x1$break_point <- FALSE
z1.1 <- chow.test(x1)
summary(z1.1)

#Structural brake via Dates
```
given that time series vector with dates is available
dateVector <- seq(as.Date("1965/1/1"), as.Date("2008/7/1"), "quarter")
z2 <- chow.test(v1, SB = "1979-07-01", format = "%Y-%m-%d", dateVector = dateVector)
summary(z2)

alternatively pass sequence arguments directly
z3 <- chow.test(v1, SB = "1979-07-01", format = "%Y-%m-%d",
 start = "1965-01-01", end = "2008-07-01",
 frequency = "quarter")
summary(z3)

or provide ts date format (For quarterly, monthly, weekly and daily frequencies only)
z4 <- chow.test(v1, SB = c(1979,3))
summary(z4)

fevd

Forecast error variance decomposition for SVAR Models

Description

Calculation of forecast error variance decomposition for an identified SVAR object 'svars' derived by function id.st(), id.cvm(),id.cv(),id.dc() or id.ngml().

Usage

```r
## S3 method for class 'svars'
fevd(x, n.ahead = 10, ...)
```

Arguments

- **x**: SVAR object of class "svars".
- **n.ahead**: Integer specifying the steps.
- **...**: Currently not used.

Value

A list with class attribute "svarfevd" holding the forecast error variance decompositions as data frames.

References

See Also

id.cvm, id.garch, id.dc, id.ngml, id.cv or id.st
Examples

v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
x2 <- fevd(x1, n.ahead = 30)
plot(x2)

hd

Historical decomposition for SVAR Models

Description

Calculation of historical decomposition for an identified SVAR object 'svars' derived by function id.st(), id.cvm(), id.cv(), id.dc() or id.ngml().

Usage

hd(x, series = 1, transition = 0)

Arguments

x SVAR object of class "svars"
series Integer. indicating the series that should be decomposed.
transition Numeric. Value from [0, 1] indicating how many initial values should be discarded, i.e., 0.1 means that the first 10 per cent observations of the sample are considered as transient.

Value

A list with class attribute "hd" holding the historical decomposition as data frame.

References

See Also

id.cvm, id.dc, id.ngml, id.cv, id.garch or id.st
Examples

v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
x2 <- hd(x1, series = 2)
plot(x2)

id.chol

Recursive identification of SVAR models via Cholesky decomposition

Description

Given an estimated VAR model, this function uses the Cholesky decomposition to identify the structural impact matrix \(B\) of the corresponding SVAR model

\[
y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t.
\]

Matrix \(B\) corresponds to the decomposition of the least squares covariance matrix \(\Sigma_u = B \Lambda_t B'\).

Usage

id.chol(x, order_k = NULL)

Arguments

\(x\) An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object

\(order_k\) Vector. Vector of characters or integers specifying the assumed structure of the recursive causality. Change the causal ordering in the instantaneous effects without permuting variables and re-estimating the VAR model.

Value

A list of class "svars" with elements

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>Estimated structural impact matrix (B), i.e. unique decomposition of the covariance matrix of reduced form residuals</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of observations</td>
</tr>
<tr>
<td>method</td>
<td>Method applied for identification</td>
</tr>
<tr>
<td>order_k</td>
<td>Ordering of the variables as assumed for recursive causality</td>
</tr>
<tr>
<td>(A_hat)</td>
<td>Estimated VAR parameter</td>
</tr>
<tr>
<td>type</td>
<td>Type of the VAR model, e.g. 'const'</td>
</tr>
<tr>
<td>(y)</td>
<td>Data matrix</td>
</tr>
<tr>
<td>(p)</td>
<td>Number of lags</td>
</tr>
<tr>
<td>(K)</td>
<td>Dimension of the VAR</td>
</tr>
<tr>
<td>VAR</td>
<td>Estimated input VAR object</td>
</tr>
</tbody>
</table>
References

See Also
For alternative identification approaches see id.st, id.cvm, id.cv, id.dc or id.ngml

Examples

data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.chol(v1)
x2 <- id.chol(v1, order_k = c("pi", "x", "i")) # order_k = c(2,1,3)
summary(x1)

impulse response analysis
i1 <- irf(x1, n.ahead = 30)
i2 <- irf(x2, n.ahead = 30)
plot(i1, scales = 'free_y')
plot(i2, scales = 'free_y')

id.cv

Identification of SVAR models based on Changes in volatility (CV)

Description
Given an estimated VAR model, this function applies changes in volatility to identify the structural impact matrix B of the corresponding SVAR model

$$y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t.$$

Matrix B corresponds to the decomposition of the pre-break covariance matrix $\Sigma_1 = BB'$, where Λ is the estimated unconditional heteroskedasticity matrix.
Usage

```r
id.cv(
  x, 
  SB,
  SB2 = NULL,
  start = NULL,
  end = NULL,
  frequency = NULL,
  format = NULL,
  dateVector = NULL,
  max.iter = 50,
  crit = 0.001,
  restriction_matrix = NULL
)
```

Arguments

- **x**: An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object
- **SB**: Integer, vector or date character. The structural break is specified either by an integer (number of observations in the pre-break period), a vector of ts() frequencies if a ts object is used in the VAR or a date character. If a date character is provided, either a date vector containing the whole time line in the corresponding format (see examples) or common time parameters need to be provided
- **SB2**: Integer, vector or date character. Optional if the model should be estimated with two volatility regimes. The structural break is specified either by an integer (number of observations in the pre-break period), a vector of ts() frequencies if a ts object is used in the VAR or a date character. If a date character is provided, either a date vector containing the whole time line in the corresponding format (see examples) or common time parameters need to be provided
- **start**: Character. Start of the time series (only if dateVector is empty)
- **end**: Character. End of the time series (only if dateVector is empty)
- **frequency**: Character. Frequency of the time series (only if dateVector is empty)
- **format**: Character. Date format (only if dateVector is empty)
- **dateVector**: Vector. Vector of time periods containing SB in corresponding format
- **max.iter**: Integer. Number of maximum GLS iterations
- **crit**: Numeric. Critical value for the precision of the GLS estimation
- **restriction_matrix**: Matrix. A matrix containing presupposed entries for matrix B, NA if no restriction is imposed (entries to be estimated). Alternatively, a K^2*K^2 matrix can be passed, where ones on the diagonal designate unrestricted and zeros restricted coefficients. (as suggested in Luetkepohl, 2017, section 5.2.1).

Value

A list of class "svars" with elements
Lambda Estimated unconditional heteroscedasticity matrix \(\Lambda \)

Lambda_SE Matrix of standard errors of Lambda

\(B \) Estimated structural impact matrix \(B \), i.e. unique decomposition of the covariance matrix of reduced form residuals

B_SE Standard errors of matrix \(B \)

\(n \) Number of observations

Fish Observed Fisher information matrix

Lik Function value of likelihood

wald_statistic Results of sequential Wald-type identification test on equal eigenvalues as described in Luetkepohl et. al. (2021). In case of more than two regimes, pairwise Wald-type tests of equal diagonal elements in the Lambda matrices are performed.

iteration Number of GLS estimations

method Method applied for identification

SB Structural break (number of observations)

A_hat Estimated VAR parameter via GLS

type Type of the VAR model, e.g. 'const'

SB_character Structural break (date; if provided in function arguments)

restrictions Number of specified restrictions

restriction_matrix Specified restriction matrix

\(y \) Data matrix

\(p \) Number of lags

\(K \) Dimension of the VAR

VAR Estimated input VAR object

References

See Also

For alternative identification approaches see id.st, id.garch, id.cvm, id.dc or id.ngml
Examples

#' # data contains quarterly observations from 1965Q1 to 2008Q2
#' # assumed structural break in 1979Q3
#' # x = output gap
#' # pi = inflation
#' # i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.cv(v1, SB = 59)
summary(x1)

switching columns according to sign pattern
x1$B <- x1$B[,c(3,2,1)]
x1$B[,3] <- x1$B[,3]*(-1)

Impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = 'free_y')

Restrictions
Assuming that the interest rate doesn’t influence the output gap on impact
restMat <- matrix(rep(NA, 9), ncol = 3)
restMat[1,3] <- 0
x2 <- id.cv(v1, SB = 59, restriction_matrix = restMat)
summary(x2)

In alternative Form
restMat <- diag(rep(1,9))
restMat[7,7] <- 0
x2 <- id.cv(v1, SB = 59, restriction_matrix = restMat)
summary(x2)

Structural brake via Dates
given that time series vector with dates is available
dateVector = seq(as.Date("1965/1/1"), as.Date("2008/7/1"), "quarter")
x3 <- id.cv(v1, SB = "1979-07-01", format = "%Y-%m-%d", dateVector = dateVector)
summary(x3)

or pass sequence arguments directly
x4 <- id.cv(v1, SB = "1979-07-01", format = "%Y-%m-%d", start = "1965-01-01", end = "2008-07-01",
frequency = "quarter")
summary(x4)

or provide ts date format (For quarterly, monthly, weekly and daily frequencies only)
x5 <- id.cv(v1, SB = c(1979, 3))
summary(x5)

#-----# Example with three covariance regimes
x6 <- id.cv(v1, SB = 59, SB2 = 110)
summary(x6)
id.cvm

Independence-based identification of SVAR models via Cramer-von Mises (CVM) distance

Description

Given an estimated VAR model, this function applies independence-based identification for the structural impact matrix B of the corresponding SVAR model

\[y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t. \]

Matrix B corresponds to the unique decomposition of the least squares covariance matrix \(\Sigma_u = BB' \) if the vector of structural shocks \(\epsilon_t \) contains at most one Gaussian shock (Comon, 1994). A nonparametric dependence measure, the Cramer-von Mises distance (Genest and Remillard, 2004), determines least dependent structural shocks. The minimum is obtained by a two step optimization algorithm similar to the technique described in Herwartz and Ploedt (2016).

Usage

```r
id.cvm(x, dd = NULL, itermax = 500, steptol = 100, iter2 = 75)
```

Arguments

- **x**: An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object
- **dd**: Object of class 'indepTestDist' (generated by 'indepTest' from package 'copula'). A simulated independent sample of the same size as the data. If not supplied, it will be calculated by the function
- **itermax**: Integer. Maximum number of iterations for DEoptim
- **steptol**: Numeric. Tolerance for steps without improvement for DEoptim
- **iter2**: Integer. Number of iterations for the second optimization

Value

A list of class "svars" with elements

- **B**: Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form errors
- **A_hat**: Estimated VAR parameter
- **method**: Method applied for identification
- **n**: Number of observations
- **type**: Type of the VAR model, e.g. 'const'
- **y**: Data matrix
- **p**: Number of lags
- **K**: Dimension of the VAR
rotation_angles
Rotation angles, which lead to maximum independence
inc
Indicator. 1 = second optimization increased the estimation precision. 0 = second optimization did not increase the estimation precision
test.stats
Computed test statistics of independence test
iter1
Number of iterations of first optimization
test1
Minimum test statistic from first optimization
test2
Minimum test statistic from second optimization
VAR
Estimated input VAR object

References

See Also
For alternative identification approaches see id.st, id.garch, id.cv, id.dc or id.ngml

Examples

data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
cob <- copula::indepTestSim(v1$obs, v1$K, verbose=FALSE)
x1 <- id.cvm(v1, dd = cob)
summary(x1)

switching columns according to sign pattern
x1$B <- x1$B[,c(3,2,1)]
x1$B[,3] <- x1$B[,3]*(-1)

impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = 'free_y')
id.dc

Independence-based identification of SVAR models build on distance covariances (DC) statistic

Description

Given an estimated VAR model, this function applies independence-based identification for the structural impact matrix B of the corresponding SVAR model

$$y_t = c_t + A_1 y_{t-1} + ... + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + ... + A_p y_{t-p} + B \epsilon_t.$$

Matrix B corresponds to the unique decomposition of the least squares covariance matrix $$\Sigma_u = BB'$$ if the vector of structural shocks $$\epsilon_t$$ contains at most one Gaussian shock (Comon, 1994). A nonparametric dependence measure, the distance covariance (Szekely et al, 2007), determines least dependent structural shocks. The algorithm described in Matteson and Tsay (2013) is applied to calculate the matrix B.

Usage

id.dc(x, PIT = FALSE)

Arguments

x An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object

PIT Logical. If PIT='TRUE', the distribution and density of the independent components are estimated using gaussian kernel density estimates

Value

A list of class "svars" with elements

B Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form errors

A_hat Estimated VAR parameter

method Method applied for identification

n Number of observations

type Type of the VAR model, e.g. 'const'

y Data matrix

p Number of lags

K Dimension of the VAR

PIT Logical, if PIT is used

VAR Estimated input VAR object
References
Matteson, D. S. & Tsay, R. S., 2013. Independent Component Analysis via Distance Covariance, pre-print

See Also
For alternative identification approaches see id.st, id.garch, id.cvm, id.cv or id.ngml

Examples
data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
summary(x1)

switching columns according to sign pattern
x1$B <- x1$B[,c(3,2,1)]
x1$B[,3] <- x1$B[,3]*(-1)

impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = 'free_y')

Description
Given an estimated VAR model, this function uses GARCH-type variances to identify the structural impact matrix B of the corresponding SVAR model

\[y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t. \]

Matrix B corresponds to the decomposition of the least squares covariance matrix \(\Sigma_u = B \Lambda_t B' \), where \(\Lambda_t \) is the estimated conditional heteroskedasticity matrix.
Usage

\[
id.garch(
 x,
 max.iter = 5,
 crit = 0.001,
 restriction_matrix = NULL,
 start_iter = 50
)
\]

Arguments

- **x** An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object
- **max.iter** Integer. Number of maximum likelihood optimizations
- **crit** Numeric. Critical value for the precision of the iterative procedure
- **restriction_matrix** Matrix. A matrix containing presupposed entries for matrix B, NA if no restriction is imposed (entries to be estimated). Alternatively, a \(K^2 \times K^2 \) matrix can be passed, where ones on the diagonal designate unrestricted and zeros restricted coefficients. (as suggested in Luetkepohl, 2017, section 5.2.1).
- **start_iter** Numeric. Number of random candidate initial values for univariate GRACH(1,1) optimization.

Value

A list of class "svars" with elements

- **B** Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form residuals
- **B_SE** Standard errors of matrix B
- **GARCH_parameter** Estimated GARCH parameters of univariate GARCH models
- **GARCH_SE** Standard errors of GARCH parameters
- **n** Number of observations
- **Fish** Observed Fisher information matrix
- **Lik** Function value of likelihood
- **iteration** Number of likelihood optimizations
- **method** Method applied for identification
- **A_hat** Estimated VAR parameter via GLS
- **type** Type of the VAR model, e.g. 'const'
- **restrictions** Number of specified restrictions
- **restriction_matrix** Specified restriction matrix
- **y** Data matrix
- **p** Number of lags
id.garch

- **K**
 Dimension of the VAR

- **VAR**
 Estimated input VAR object

- **I_test**
 Results of a series of sequential tests on the number of heteroskedastic shocks present in the system as described in Luetkepohl and Milunovich (2016).

References

See Also

For alternative identification approaches see `id.st`, `id.cvm`, `id.cv`, `id.dc` or `id.ngml`

Examples

```r
# data contains quarterly observations from 1965Q1 to 2008Q2
# assumed structural break in 1979Q3
# x = output gap
# pi = inflation
# i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.garch(v1)
summary(x1)

# Impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = "free_y")

# Restrictions
# Assuming that the interest rate doesn't influence the output gap on impact
restMat <- matrix(rep(NA, 9), ncol = 3)
restMat[1,3] <- 0
x2 <- id.garch(v1, restriction_matrix = restMat)
summary(x2)
```
Non-Gaussian maximum likelihood (NGML) identification of SVAR models

Description

Given an estimated VAR model, this function applies identification by means of a non-Gaussian likelihood for the structural impact matrix B of the corresponding SVAR model

\[y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t. \]

Matrix B corresponds to the unique decomposition of the least squares covariance matrix \(\Sigma_u = BB' \) if the vector of structural shocks \(\epsilon_t \) contains at most one Gaussian shock (Comon, 94). A likelihood function of independent t-distributed structural shocks \(\epsilon_t = B^{-1} u_t \) is maximized with respect to the entries of B and the degrees of freedom of the t-distribution (Lanne et al., 2017).

Usage

\texttt{id.ngml(x, stage3 = FALSE, restriction_matrix = NULL)}

Arguments

\texttt{x} An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object

\texttt{stage3} Logical. If stage3="TRUE", the VAR parameters are estimated via non-gaussian maximum likelihood (computationally demanding)

\texttt{restriction_matrix} Matrix. A matrix containing presupposed entries for matrix B, NA if no restriction is imposed (entries to be estimated). Alternatively, a \(K^2 \times K^2 \) matrix can be passed, where ones on the diagonal designate unrestricted and zeros restricted coefficients. (as suggested in Luetkepohl, 2017, section 5.2.1).

Value

A list of class "svars" with elements

\texttt{B} Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form errors

\texttt{sigma} Estimated scale of the standardized matrix B_stand, i.e. \(B = B_{stand} \times diag(\sigma_1, \ldots, \sigma_K) \)

\texttt{sigma_SE} Standard errors of the scale

\texttt{df} Estimated degrees of freedom

\texttt{df_SE} Standard errors of the degrees of freedom

\texttt{Fish} Observed Fisher information matrix

\texttt{A_hat} Estimated VAR parameter via ML

\texttt{B_stand} Estimated standardized structural impact matrix

\texttt{B_stand_SE} Standard errors of standardized matrix B_stand
id.ngml

<table>
<thead>
<tr>
<th>Lik</th>
<th>Function value of likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>Method applied for identification</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations</td>
</tr>
<tr>
<td>type</td>
<td>Type of the VAR model, e.g. 'const'</td>
</tr>
<tr>
<td>y</td>
<td>Data matrix</td>
</tr>
<tr>
<td>p</td>
<td>Number of lags</td>
</tr>
<tr>
<td>K</td>
<td>Dimension of the VAR</td>
</tr>
<tr>
<td>restrictions</td>
<td>Number of specified restrictions</td>
</tr>
<tr>
<td>restriction_matrix</td>
<td>Specified restriction matrix</td>
</tr>
<tr>
<td>stage3</td>
<td>Logical, whether Stage 3 is performed</td>
</tr>
<tr>
<td>VAR</td>
<td>Estimated input VAR object</td>
</tr>
</tbody>
</table>

References

See Also

For alternative identification approaches see id.st, id.garch, id.cvm, id.dc or id.cv

Examples

data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.ngml(v1)
summary(x1)

switching columns according to sign pattern
x1$B <- x1$B[,c(3,2,1)]
x1$B[,3] <- x1$B[,3]*(-1)

impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = 'free_y')
Identification of SVAR models by means of a smooth transition (ST) in covariance

Description

Given an estimated VAR model, this function uses a smooth transition in the covariance to identify the structural impact matrix B of the corresponding SVAR model

$$y_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t = c_t + A_1 y_{t-1} + \ldots + A_p y_{t-p} + B \epsilon_t.$$

Matrix B corresponds to the decomposition of the pre-break covariance matrix $\Sigma_1 = BB'$. The post-break covariance corresponds to $\Sigma_2 = BAB'$ where Λ is the estimated heteroskedasticity matrix.

Usage

```r
id.st(x, 
  c_lower = 0.3, 
  c_upper = 0.7, 
  c_step = 5, 
  c_fix = NULL, 
  transition_variable = NULL, 
  gamma_lower = -3, 
  gamma_upper = 2, 
  gamma_step = 0.5, 
  gamma_fix = NULL, 
  nc = 1, 
  max.iter = 5, 
  crit = 0.001, 
  restriction_matrix = NULL, 
  lr_test = FALSE)
```

Arguments

- `x` An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object
- `c_lower` Numeric. Starting point for the algorithm to start searching for the volatility shift. Default is $0.3 \times ($Total number of observations$)$
- `c_upper` Numeric. Ending point for the algorithm to stop searching for the volatility shift. Default is $0.7 \times ($Total number of observations$)$. Note that in case of a stochastic transition variable, the input requires an absolute value
- `c_step` Integer. Step width of c. Default is 5. Note that in case of a stochastic transition variable, the input requires an absolute value
- `c_fix` Numeric. If the transition point is known, it can be passed as an argument where transition point = Number of observations - c_fix
transition_variable
A numeric vector that represents the transition variable. By default (NULL), the time is used as transition variable. Note that c_lower, c_upper, c_step and/or c_fix have to be adjusted to the specified transition variable.

gamma_lower
Numeric. Lower bound for gamma. Small values indicate a flat transition function. Default is -3

gamma_upper
Numeric. Upper bound for gamma. Large values indicate a steep transition function. Default is 2

gamma_step
Numeric. Step width of gamma. Default is 0.5

gamma_fix
Numeric. A fixed value for gamma, alternative to gamma found by the function

nc
Integer. Number of processor cores Note that the smooth transition model is computationally extremely demanding.

max.iter
Integer. Number of maximum GLS iterations

crit
Numeric. Critical value for the precision of the GLS estimation

restriction_matrix
Matrix. A matrix containing presupposed entries for matrix B, NA if no restriction is imposed (entries to be estimated). Alternatively, a K^2*K^2 matrix can be passed, where ones on the diagonal designate unrestricted and zeros restricted coefficients. (as suggested in Luetkepohl, 2017, section 5.2.1).

lr_test
Logical. Indicates whether the restricted model should be tested against the unrestricted model via a likelihood ratio test

Value
A list of class "svars" with elements

Lambda
Estimated heteroscedasticity matrix Λ

Lambda_SE
Matrix of standard errors of Lambda

B
Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form residuals

B_SE
Standard errors of matrix B

n
Number of observations

Fish
Observed Fisher information matrix

Lik
Function value of likelihood

wald_statistic
Results of pairwise Wald tests

iteration
Number of GLS estimations

method
Method applied for identification

est_c
Structural break (number of observations)

est_g
Transition coefficient

transition_variable
Vector of transition variable

comb
Number of all grid combinations of gamma and c
transition_function
 Vector of transition function

A_hat
 Estimated VAR parameter via GLS

type
 Type of the VAR model e.g., 'const'

y
 Data matrix

p
 Number of lags

K
 Dimension of the VAR

restrictions
 Number of specified restrictions

restriction_matrix
 Specified restriction matrix

lr_test
 Logical, whether a likelihood ratio test is performed

lrRatioTest
 Results of likelihood ratio test

VAR
 Estimated input VAR object

References

in variances. Journal of Economic Dynamics and Control, 84, 43 - 57. ISSN 0165-1889.

See Also

For alternative identification approaches see id.cv, id.garch, id.cvm, id.dc, or id.ngml

Examples

data contains quartlery observations from 1965Q1 to 2008Q2
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.st(v1, c_fix = 80, gamma_fix = 0)
summary(x1)
plot(x1)

switching columns according to sign patter
x1$B <- x1$B[,c(3,2,1)]
x1$B[,3] <- x1$B[,3]*(-1)

Impulse response analysis
i1 <- irf(x1, n.ahead = 30)
plot(i1, scales = "free_y")

Example with same data set as in Luetkepohl and Nestunajev 2017
v1 <- vars::VAR(LN, p = 3, type = "const")
x1 <- id.st(v1, c_fix = 167, gamma_fix = -2.77)
summary(x1)
plot(x1)

Using a lagged endogenous transition variable
In this example inflation with two lags
inf <- LN[-c(1, 449, 450), 2]*(1/sd(LN[-c(1, 449, 450), 2]))
x1_inf <- id.st(v1, c_fix = 4.41, gamma_fix = 0.49, transition_variable = inf)
summary(x1_inf)
plot(x1_inf)

irf
Impulse Response Functions for SVAR Models

Description

Calculation of impulse response functions for an identified SVAR object 'svars' derived by function id.cvm(), id.cv(), id.dc(), id.ngml() or id.st().

Usage

```r
## S3 method for class 'svars'
irf(x, ..., n.ahead = 20)
```

Arguments

- `x`
 SVAR object of class "svars".
- `...`
 Currently not used.
- `n.ahead`
 Integer specifying the steps.

Value

A list with class attribute "svarirf" holding the impulse response functions as data frame.

References

See Also

id.cvm, id.dc, id.ngml, id.cv or id.st
Examples

```r
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.ngml(v1)
x2 <- irf(x1, n.ahead = 20)
plot(x2)
```

js.test

Chi-square test for joint hypotheses

Description

Based on an existing bootstrap object, the test statistic allows to test joint hypotheses for selected entries of the structural matrix \(B \). The test statistic reads as

\[
(Rvec(\hat{B}) - r)' R(\hat{\text{Cov}}[v\text{ec}(B^*)])^{-1} R'(Rvec(\hat{b} - r)) \sim \chi^2_J,
\]

where \(\hat{\text{Cov}}[v\text{ec}(B^*)] \) is the estimated covariance of vectorized bootstrap estimates of structural parameters. The composite null hypothesis is \(H_0 : Rvec(B) = r \).

Usage

```r
js.test(x, R, r = NULL)
```

Arguments

- `x` Object of class 'sboot'
- `R` A \(J*K^2 \) selection matrix, where \(J \) is the number of hypotheses and \(K \) the number of time series.
- `r` A \(J*1 \) vector of restrictions

Value

A list of class "jstest" with elements

- `test_statistic` Test statistic
- `p_value` P-value
- `R` Selection matrix
- `r` Vector of restrictions

References

See Also

mb.boot, wild.boot

Examples

data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)

Bootstrapping of SVAR
bb <- wild.boot(x1, nboot = 1000, n.ahead = 30)

Testing the hypothesis of a lower triangular matrix as
relation between structural and reduced form errors
R <- rbind(c(0,0,0,1,0,0,0,0,0), c(0,0,0,0,0,0,1,0,0),
 c(0,0,0,0,0,0,0,1,0))
c.test <- js.test(bb, R)
summary(c.test)

Interaction between monetary policy and the stock market

Description

A five dimensional time series model which is commonly used to analyze the interaction between
monetary policy and the stock market.
Monthly observations from 1970M1 to 2007M6:

q Linearly detrended log of an industrial production index
pi Annual change in the log of consumer prices (CPI index) (x100)
c Annual change in the log of the World Bank (non energy) commodity price index (x100)
s Log of the real S&P500 stock price index deflated by the consumer price index to measure the real stock prices; the series
r Interest rate on Federal funds

All series, with exception of the commodity price index (c), are taken from the FRED database and
transformed as in Luetkepohl & Netsunajev (2017). The commodity price index comes from the
World Bank. A more detailed description of the data and a corresponding VAR model implementa-
tion can be found in Luetkepohl & Netsunajev (2017).
Usage
LN
Format
A data.frame containing 450 observations on 5 variables.

Source
Journal of Economic Dynamics and Control, 84, 43 - 57. ISSN 0165-1889.

mb.boot

Moving block bootstrap for IRFs of identified SVARs

Description
Calculating confidence bands for impulse response via moving block bootstrap

Usage
mb.boot(x,
 design = "recursive",
 b.length = 15,
 n.ahead = 20,
 nboot = 500,
 nc = 1,
 dd = NULL,
 signrest = NULL,
 signcheck = TRUE,
 itermax = 300,
 steptol = 200,
 iter2 = 50)

Arguments

x
 SVAR object of class "svars"

design
 character. If design="fixed", a fixed design bootstrap is performed. If design="recursive", a recursive design bootstrap is performed.

b.length
 Integer. Length of each block

n.ahead
 Integer specifying the steps

nboot
 Integer. Number of bootstrap iterations
nc Integer. Number of processor cores

dd Object of class 'indepTestDist'. A simulated independent sample of the same size as the data. If not supplied, it will be calculated by the function

signrest A list with vectors containing 1 and -1, e.g. c(1,-1,1), indicating a sign pattern of specific shocks to be tested with the help of the bootstrap samples.

signcheck Boolean. Whether the sign pattern should be checked for each bootstrap iteration. Note that this procedure is computationally extremely demanding for high dimensional VARs, since the number of possible permutations of B is K!, where K is the number of variables in the VAR.

itermax Integer. Maximum number of iterations for DEoptim

steptol Numeric. Tolerance for steps without improvement for DEoptim

iter2 Integer. Number of iterations for the second optimization

Value

A list of class "sboot" with elements

ture Point estimate of impulse response functions

bootstrap List of length "nboot" holding bootstrap impulse response functions

SE Bootstrapped standard errors of estimated covariance decomposition (only if "x" has method "Cramer von-Mises", or "Distance covariances")

nboot Number of bootstrap iterations

design character. Whether a fixed design or recursive design bootstrap is performed

b_length Length of each block

point_estimate Point estimate of covariance decomposition

boot_mean Mean of bootstrapped covariance decompositions

signrest Evaluated sign pattern

sign_complete Frequency of appearance of the complete sign pattern in all bootstrapped covariance decompositions

sign_part Frequency of bootstrapped covariance decompositions which conform the complete predetermined sign pattern. If signrest=NULL, the frequency of bootstrapped covariance decompositions that hold the same sign pattern as the point estimate is provided.

sign_part Frequency of single shocks in all bootstrapped covariance decompositions which accord to a specific predetermined sign pattern

cov Bs Covariance matrix of bootstrapped parameter in impact relations matrix

method Used bootstrap method

VAR Estimated input VAR object

References

See Also

`id.cvm, id.dc, id.ngml, id.garch, id.cv` or `id.st`

Examples

```r
# data contains quarterly observations from 1965Q1 to 2008Q3
# x = output gap
# pi = inflation
# i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
summary(x1)

# impulse response analysis with confidence bands
# Checking how often theory based impact relations appear
signrest <- list(demand = c(1,1,1), supply = c(-1,1,1), money = c(-1,-1,1))
bb <- mb.boot(x1, b.length = 15, nboot = 500, n.ahead = 30, nc = 1, signrest = signrest)
summary(bb)

# Plotting IRFs with confidence bands
plot(bb, lowerq = 0.16, upperq = 0.84)

# With different confidence levels
plot(bb, lowerq = c(0.05, 0.1, 0.16), upperq = c(0.95, 0.9, 0.84))

# Halls percentile
plot(bb, lowerq = 0.16, upperq = 0.84, percentile = 'hall')

# Bonferroni bands
plot(bb, lowerq = 0.16, upperq = 0.84, percentile = 'bonferroni')
```

stability

Structural stability of a VAR(p)

Description

Computes an empirical fluctuation process according to a specified method from the generalized fluctuation test framework. The test utilises the function `efp()` and its methods from package 'strucchange'. Additionally, the function provides the option to compute a multivariate chow test.

Usage

```r
## S3 method for class 'varest'
stability(
  x,
```
stability

type = c("OLS-CUSUM", "Rec-CUSUM", "Rec-MOSUM", "OLS-MOSUM", "RE", "ME",
"Score-CUSUM", "Score-MOSUM", "fluctuation", "mv-chow-test"),
h = 0.15,
dynamic = FALSE,
rescale = TRUE,
...
)

Arguments

- **x**: Object of class ‘varest’; generated by VAR().
- **type**: Specifies which type of fluctuation process will be computed, the default is ‘OLS-CUSUM’. For details see: efp and chow.test.
- **h**: A numeric from interval (0,1) specifying the bandwidth. Determines the size of the data window relative to sample size (for ‘MOSUM’, ‘ME’ and ‘mv-chow-test’ only).
- **dynamic**: Logical. If ‘TRUE’ the lagged observations are included as a regressor (not if ‘type’ is ‘mv-chow-test’).
- **rescale**: Logical. If ‘TRUE’ the estimates will be standardized by the regressor matrix of the corresponding subsample; if ‘FALSE’ the whole regressor matrix will be used. (only if ‘type’ is either ‘RE’ or ‘E’).
- **...**: Ellipsis, is passed to strucchange::sctest(), as default.

Details

For details, please refer to documentation efp and chow.test.

Value

A list with either class attribute ‘varstabil’ or ‘chowpretest’ holding the following elements in case of class ‘varstabil’:

- **stability**: A list with objects of class ‘efp’; length is equal to the dimension of the VAR.
- **names**: Character vector containing the names of the endogenous variables.
- **K**: An integer of the VAR dimension.

In case of class ‘chowpretest’ the list consists of the following elements:

- **teststat_bp**: A vector containing the calculated break point test statistics for all considered break points.
- **teststat_sp**: A vector containing the calculated sample split test statistics for all considered sample splits.
- **from**: An integer specifying the first observation as possible break date.
- **to**: An integer specifying the last observation as possible break date.
- **var**: A list with objects of class ‘varest’
- **break_point**: Logical, if the break point test should be the benchmark for later analysis.
Author(s)
Bernhard Pfaff, Alexander Lange, Bernhard Dalheimer, Simone Maxand, Helmut Herwartz

References

and see the references provided in the reference section of efp and chow.test, too.

See Also
VAR, plot, efp, chow.test

Examples

```r
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
var.2c.stabil <- stability(var.2c, type = "OLS-CUSUM")
var.2c.stabil
plot(var.2c.stabil)

data(USA)
v1 <- VAR(USA, p = 6)
x1 <- stability(v1, type = "mv-chow-test")
plot(x1)
```

svars: Data-driven identification of structural VAR models

Description
This package implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) doi: 10.18637/jss.v097.i05. Based on an existing VAR model object, the structural impact matrix B may be obtained via different forms of heteroskedasticity or independent components.

Details
The main functions to retrieve structural impact matrices are:

- `id.cv` Identification via changes in volatility,
id.cvm Independence-based identification of SVAR models based on Cramer-von Mises distance,

id.dc Independence-based identification of SVAR models based on distance covariances,

id.garch Identification through patterns of conditional heteroskedasticity,

id.ngml Identification via Non-Gaussian maximum likelihood,

id.st Identification by means of smooth transition in covariance.

All of these functions require an estimated var object. Currently the classes 'vars' and 'vec2var' from the vars package, 'nlVar', which includes both VAR and VECM, from the tsDyn package as well as the list from MTS package are supported. Besides these core functions, additional tools to calculate confidence bands for impulse response functions using bootstrap techniques as well as the Chow-Test for structural changes are implemented. The USA dataset is used to showcase the functionalities in examples throughout the package.

Author(s)

- Alexander Lange <alexander.lange@uni-goettingen.de>
- Bernhard Dalheimer <bernhard.dalheimer@uni-goettingen.de>
- Helmut Herwartz <hherwartz@uni-goettingen.de>
- Simone Maxand <simone.maxand@helsinki.fi>

Description

The time series of output gap (x), inflation (pi) and interest rate (r) are taken from the FRED database and transformed as in Herwartz & Ploedt (2016). The trivariate time series model is commonly used to analyze monetary policy shocks. Quarterly observations from 1965Q1 to 2008Q3:
x Percentage log-deviation of real GDP wrt the estimate of potential output by the Congressional Budget Office
pi Annualized quarter-on-quarter growth of the GDP deflator
i Interest rate on Federal funds

A more detailed description of the data and a corresponding VAR model implementation can be found in Herwartz & Ploedt (2016).

Usage

USA

Format

A `data.frame` containing 174 observations on 3 variables.

Source

Data originally from FRED database of the Federal Reserve Bank of St. Louis.

Description

Calculating confidence bands for impulse response functions via wild bootstrap techniques (Goncalves and Kilian, 2004).

Usage

```r
wild.boot(
  x,
  design = "fixed",
  distr = "rademacher",
  n.ahead = 20,
  nboot = 500,
  nc = 1,
  dd = NULL,
  signrest = NULL,
  signcheck = TRUE,
  itermax = 300,
  steptol = 200,
  iter2 = 50,
  rademacher = "deprecated"
)
```
Arguments

- **x**: SVAR object of class "svars"
- **design**: character. If design="fixed", a fixed design bootstrap is performed. If design="recursive", a recursive design bootstrap is performed.
- **distr**: character. If distr="rademacher", the Rademacher distribution is used to generate the bootstrap samples. If distr="mammen", the Mammen distribution is used. If distr = "gaussian", the gaussian distribution is used.
- **n.ahead**: Integer specifying the steps
- **nboot**: Integer. Number of bootstrap iterations
- **nc**: Integer. Number of processor cores
- **dd**: Object of class 'indepTestDist'. A simulated independent sample of the same size as the data. roxIf not supplied, it will be calculated by the function
- **signrest**: A list with vectors containing 1 and -1, e.g. c(1,-1,1), indicating a sign pattern of specific shocks to be tested with the help of the bootstrap samples.
- **signcheck**: Boolean. Whether the sign pattern should be checked for each bootstrap iteration. Note that this procedure is computationally extremely demanding for high dimensional VARs, since the number of possible permutations of B is K!, where K is the number of variables in the VAR.
- **itermax**: Integer. Maximum number of iterations for DEoptim
- **steptol**: Integer. Tolerance for steps without improvement for DEoptim
- **iter2**: Integer. Number of iterations for the second optimization
- **rademacher**: deprecated, use "design" instead.

Value

A list of class "sboot" with elements

- **true**: Point estimate of impulse response functions
- **bootstrap**: List of length "nboot" holding bootstrap impulse response functions
- **SE**: Bootstrapped standard errors of estimated covariance decomposition (only if "x" has method "Cramer von-Mises", or "Distance covariances")
- **nboot**: Number of bootstrap iterations
- **distr**: Character, whether the Gaussian, Rademacher or Mammen distribution is used in the bootstrap
- **design**: character. Whether a fixed design or recursive design bootstrap is performed
- **point_estimate**: Point estimate of covariance decomposition
- **boot_mean**: Mean of bootstrapped covariance decompositions
- **signrest**: Evaluated sign pattern
- **sign_complete**: Frequency of appearance of the complete sign pattern in all bootstrapped covariance decompositions
sign_part Frequency of bootstrapped covariance decompositions which conform the complete predetermined sign pattern. If signrest=NULL, the frequency of bootstrapped covariance decompositions that hold the same sign pattern as the point estimate is provided.

sign_part Frequency of single shocks in all bootstrapped covariance decompositions which accord to a specific predetermined sign pattern

cov_bs Covariance matrix of bootstrapped parameter in impact relations matrix

method Used bootstrap method

VAR Estimated input VAR object

References

See Also

id.cvm, id.dc, id.garch, id.ngml, id.cv or id

Examples

data contains quarterly observations from 1965Q1 to 2008Q3
x = output gap
pi = inflation
i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC")
x1 <- id.dc(v1)
summary(x1)

impulse response analysis with confidence bands
Checking how often theory based impact relations appear
signrest <- list(demand = c(1,1,1), supply = c(-1,1,1), money = c(-1,-1,1))
bb <- wild.boot(x1, nboot = 500, n.ahead = 30, nc = 1, signrest = signrest)
summary(bb)

Plotting IRFs with confidence bands
plot(bb, lowerq = 0.16, upperq = 0.84)

With different confidence levels
plot(bb, lowerq = c(0.05, 0.1, 0.16), upperq = c(0.95, 0.9, 0.84))

Halls percentile
plot(bb, lowerq = 0.16, upperq = 0.84, percentile = 'hall')

Bonferroni bands
plot(bb, lowerq = 0.16, upperq = 0.84, percentile = 'bonferroni')
Index

* Empirical
 stability, 30
* Fluctuation
 stability, 30
* Structural
 stability, 30
* VAR
 stability, 30
* Vector
 stability, 30
* autoregressive
 stability, 30
* regression
 stability, 30

ba.boot, 2

cf, 4
chow.test, 5, 31, 32

efp, 31, 32

fevd, 7

hd, 8

id.chol, 9
id.cv, 4, 7, 8, 10, 10, 15, 17, 19, 21, 24, 25, 30, 32, 36
id.cvm, 4, 7, 8, 10, 12, 14, 17, 19, 21, 24, 25, 30, 33, 36
id.dc, 4, 7, 8, 10, 12, 15, 16, 19, 21, 24, 25, 30, 33, 36
id.garch, 4, 7, 8, 12, 15, 17, 17, 21, 24, 30, 33, 36
id.ngml, 4, 7, 8, 10, 12, 15, 17, 19, 20, 24, 25, 30, 33, 36
id.st, 4, 7, 8, 10, 12, 15, 17, 19, 21, 22, 25, 30, 33, 36

irf, 25

js.test, 26

LN, 27

mb.boot, 3, 27, 28

plot, 32

stability, 6, 30
svars, 32

USA, 33

VAR, 32

wild.boot, 3, 27, 34