Package ‘survSens’

April 29, 2020

Type Package
Title Sensitivity Analysis with Time-to-Event Outcomes
Version 0.1.0
Date 2020-04-16
Author Rong Huang
Maintainer Rong Huang <roh019@ucsd.edu>
License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.4.0)
Imports survival, ggplot2, directlabels
NeedsCompilation no
URL https://github.com/Rong0707/survSens
Repository CRAN
Date/Publication 2020-04-29 15:20:05 UTC

R topics documented:

comprdata ... 2
comprSensitivity ... 2
plotsens ... 4
survdata ... 5
survSensitivity ... 5
tau.res ... 7

Index 8
comprdata

An example dataset with competing risks outcomes.

Description

An example dataset with competing risks outcomes that can be used for comprSensitivity.

Usage

data("comprdata")

Format

The format is a list of 5, corresponding to t, d, Z, X, U, respectively.

References

Examples

data(comprdata)

compSensitivity

Sensitivity analysis of treatment effect to unmeasured confounding with competing risks outcomes.

Description

compSensitivity performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding in observational studies with competing risks outcomes.

Usage

compSensitivity(t, d, Z, X, method, zetaT = seq(-2,2,by=0.5),
 zetat2 = 0, zetaZ = seq(-2,2,by=0.5), theta = 0.5, B = 50, Bem = 200)
Arguments

\(t \)
- survival outcomes with competing risks.

\(d \)
- indicator of occurrence of event, with \(d = 0 \) denotes right censoring, \(d = 1 \) denotes event of interest, \(d = 2 \) denotes competing risk.

\(Z \)
- indicator of treatment.

\(X \)
- pre-treatment covariates that will be included in the model as measured founders.

\texttt{method}
- needs to be one of "stoEM_reg", "stoEM_IPW" and "EM_reg".

\texttt{zetaT}
- range of coefficient of \(U \) in the event of interest response model.

\texttt{zetat2}
- value of coefficient of \(U \) in the competing risk response model.

\texttt{zetaZ}
- range of coefficient of \(U \) in the treatment model.

\texttt{theta}
- marginal probability of \(U = 1 \).

\texttt{B}
- iteration in the stochastic EM algorithm.

\texttt{Bem}
- iteration used to estimate the variance-covariance matrix in the EM algorithm.

Details

This function performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding by either drawing simulated potential confounders \(U \) from the conditional distribution of \(U \) given observed response, treatment and covariates or the Expectation-Maximization algorithm.

We assume \(U \) is following \(Bernoulli(\pi) \) (default 0.5). Given \(Z, X \) and \(U \), the hazard rate of the \(j \)th type of failure is modeled using the Cox proportional hazards (PH) regression:

\[
\lambda_j(t|Z,X,U) = \lambda_{j0}(t) \exp(\tau_j Z + X' \beta_j + \zeta_j U).
\]

Given \(X \) and \(U \), \(Z \) follows a generalized linear model:

\[
P(Z = 1|X,U) = \Phi(X' \beta_z + \zeta_z U).
\]

Value

\texttt{tau1}
- a data.frame with \texttt{zetaz}, \texttt{zetat1}, \texttt{zetat2}, \texttt{tau1}, \texttt{tau1.se} and \texttt{t statistic} in the event of interest response model.

\texttt{tau2}
- a data.frame with \texttt{zetaz}, \texttt{zetat}, \texttt{zetat2}, \texttt{tau2}, \texttt{tau2.se} and \texttt{t statistic} in the competing risks response model.

Author(s)

Rong Huang

References

Examples

load the dataset included in the package
data(comprdata)
stochastic EM with regression
tau.sto = comprSensitivity(comprdata$t, comprdata$d, comprdata$Z, comprdata$X,
 "stoEM_reg", zetaT = 0.5, zetaZ = 0.5, B = 3)

EM with regression
tau.em = comprSensitivity(comprdata$t, comprdata$d, comprdata$Z, comprdata$X,
 "EM_reg", zetaT = 0.5, zetaZ = 0.5, Bem = 50)

plotsens

A contour plot of sensitivity analysis results.

Description

A contour plot of sensitivity analysis results.

Usage

plotsens(tau.res, zetaz, zetat, tau1, coeff0)

Arguments

- `tau.res`: a data.frame that can be generated from either `survSensitivity` or `comprSensitivity`.
- `zetaz`: the name of sensitivity parameter in the treatment model.
- `zetat`: the name of sensitivity parameter in the response model.
- `tau1`: the name of estimated treatment effect.
- `coeff0`: the value of estimated treatment effect ignoring any confounding.

Details

This function gives a contour plot in order to visualize results from either `survSensitivity` or `comprSensitivity`.

Value

A contour plot corresponding to the output from either `survSensitivity` or `comprSensitivity`.

Author(s)

Rong Huang

Examples

data(tau.res) # an example output
plotsens(tau.res, "zetaz", "zetat", "tau1", coeff0 = 1.131)
survdata

An example dataset with survival outcomes.

Description

An example dataset with survival outcomes that can be used for survSensitivity.

Usage

data("survdata")

Format

The format is a list of 5, corresponding to t, d, Z, X, U, respectively.

References

Examples

data(survdata)

survSensitivity

Sensitivity analysis of treatment effect to unmeasured confounding with survival outcomes.

Description

survSensitivity performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival outcomes.

Usage

survSensitivity(t, d, Z, X, method, zetaT = seq(-2,2,by=0.5), zetaZ = seq(-2,2,by=0.5), theta = 0.5, B = 50, Bem = 200)
Arguments

t survival outcomes.
d indicator of occurrence of event, with \(d = 0 \) denotes right censoring.
Z indicator of treatment.
X pre-treatment covariates that will be included in the model as measured confounders.
method needs to be one of "stoEM_reg", "stoEM_IPW", and "EM_reg".
zetaT range of coefficient of \(U \) in the response model.
zetaZ range of coefficient of \(U \) in the treatment model.
theta marginal probability of \(U = 1 \).
B iteration in the stochastic EM algorithm.
Bem iteration used to estimate the variance-covariance matrix in the EM algorithm.

Details

This function performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding by either drawing simulated potential confounders \(U \) from the conditional distribution of \(U \) given observed response, treatment and covariates or the Expectation-Maximization algorithm. We assume \(U \) is following Bernoulli(\(\pi \)) (default 0.5). Given \(Z, X \) and \(U \), the hazard rate is modeled using the Cox proportional hazards (PH) regression:

\[
\lambda(t|Z, X, U) = \lambda_0(t) \exp(\tau Z + X' \beta + \zeta U).
\]

Given \(X \) and \(U \), \(Z \) follows a generalized linear model:

\[
P(Z = 1|X, U) = \Phi(X' \beta_z + \zeta_z U).
\]

Value
tau a data.frame with zetaz, zetat, tau1, tau1.se and t statistic.

Author(s)
Rong Huang

References

Examples

#load the dataset included in the package.
data(survdata)
#stochastic EM with regression
tau.sto = survSensitivity(survdata$t, survdata$d, survdata$Z, survdata$X,
 "stoEM_reg", zetaT = 0.5, zetaZ = 0.5, B = 3)

#EM with regression
tau.em = survSensitivity(survdata$t, survdata$d, survdata$Z, survdata$X,
 "EM_reg", zetaT = 0.5, zetaZ = 0.5, Bem = 50)

tau.res

Sensitivity analysis output example

Description

An example output from survSensitivity.

Usage

data("tau.res")

Format

A data frame with 81 observations on the following 5 variables.

zetaz a numeric vector, corresponding to the sensitivity parameter in the treatment model.
zetat a numeric vector, corresponding to the sensitivity parameter in the response model.
tau1 a numeric vector, corresponding to the estimated treatment effect.
tau1.se a numeric vector, corresponding to the standard error of the estimated treatment effect.
t a numeric vector, corresponding to the t statistic.

Examples

data(tau.res)
Index

*Topic **competing risks outcomes**
 comprSensitivity, 2
*Topic **contour plot**
 plotsens, 4
*Topic **datasets**
 comprdata, 2
 survdata, 5
 tau.res, 7
*Topic **sensitivity analysis**
 comprSensitivity, 2
 survSensitivity, 5
*Topic **survival outcomes**
 survSensitivity, 5

comprdata, 2
comprSensitivity, 2

plotsens, 4

survdata, 5
survSensitivity, 5

tau.res, 7