Package ‘survRatio’

November 19, 2020

Type Package
Title Estimating, Comparing and Visualising Time to Event Data
Version 0.1
Description The ‘survRatio’, provides numerical and graphical summaries for time to event data. In this release functions are provided to estimate and compare estimated survivor functions, the ratio of survivor functions and the difference of survivor functions in independent and paired time to event problems. Time intervals where the survival prospects may differ are identified using pointwise confidence bands. See “Survival ratio plots with permutation envelopes in survival data problems” by Newell J, et al. (2006) <doi:10.1016/j.compbiomed.2005.03.005>.

License GPL-3
Depends survival (>= 2.38-3), ggplot2 (> 2.1.0)
Imports stats, methods, gridExtra, ggpubr
Suggests knitr, rmarkdown, markdown
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1.9000
NeedsCompilation no
Author Jalali Amirhossein [aut, cre] (<https://orcid.org/0000-0001-7227-8261>),
Roshan Davood [aut] (<https://orcid.org/0000-0002-6553-640X>),
Moghaddam Shirin [aut] (<https://orcid.org/0000-0002-9965-1510>),
Newell John [aut] (<https://orcid.org/0000-0001-7685-6655>)
Maintainer Jalali Amirhossein <amir.jalali@ucc.ie>
Repository CRAN
Date/Publication 2020-11-19 08:50:02 UTC

R topics documented:

drsurv ... 2

3
Description

Estimate the survival ratio and survival difference accompanied by their pointwise confidence bands to provide a comparison of the survival prospects \((S(t))\) for independent and paired survival problems.

Usage

\[
drsurv(time, status, factor, ref = NULL, tgrid = NULL, paired = FALSE, id = NULL, clevel = 0.95, nboot = 1000)
\]

Arguments

- **time**: a vector of the observed survival times.
- **status**: a binary vector indicating the censoring status (typically 0 = 'censored', 1 = 'event').
- **factor**: a binary vector indicating the group levels.
- **ref**: the reference level (typically a string) used as the level to compare the survival prospects with.
- **tgrid**: a sequence of follow-up time points to calculate survival estimates for.
- **paired**: a logical indicator whether the survival data is paired. The defaults is paired = FALSE.
- **id**: a pair identifier variable which must be provided for paired survival data problems (i.e. when paired = TRUE).
- **clevel**: the confidence level used for constructing the pointwise confidence bands. The default is clevel = 0.95.
- **nboot**: an integer indicating the number of bootstrap replicates. The defaults is nboot = 1000.

Value

A list of objects including a data frame of the estimates of survival ratio and survival difference accompanied by their pointwise confidence bands. In addition, it includes the confidence level used, the factor levels, the number of bootstrap replicates, whether an independent or paired design was used and the p-value from the log-ranke test of equality for independent designs.

Author(s)

Amirhossein Jalali, Shirin Moghaddam, Davood Roshan, John Newell
References

See Also

Surv, ggsurv

Examples

require(survival)

Independent survival data

data(lung)
fit1 <- drsurv(time = lung$time, status = lung$status, factor = lung$sex)
ggsurv(fit1)

Paired survival data

data(retinopathy)
fit2 <- drsurv(retinopathy$futime, retinopathy$status, retinopathy$trt, paired = TRUE, id = retinopathy$id)
head(fit2$surv)
ggsurv(fit2, statistics = "all")

Description

ggsurv is a generic function to plot survival functions, difference in survival functions and ratios of survivor using ggplot2. The function plots or all plots as generated by the drsurv() function.

Usage

ggsurv(fit,
 statistics = c("surv", "diff", "ratio", "all"),
 palette = NULL,
 xlab = NULL, ylab = NULL,
 theme = NULL,
 table = FALSE,
 p.value = FALSE,
 flag = NULL,
 flag.col = NULL,
 break.times.by = NULL)
Arguments

fit
a `drsurv()` object.

statistics
the statistics of interest to be plotted. The default is `statistics = "ratio"`.

- If `statistics = "surv"`, the Kaplan Meier estimated survivor function with confidence intervals will be plotted.
- If `statistics = "diff"`, the difference in survival functions with the associated bootstrap pointwise confidence bands will be plotted.
- If `statistics = "ratio"`, the ratio of survival functions with the associated bootstrap pointwise confidence bands will be plotted.
- If `statistics = "all"` is selected, all of the survival, difference and ratio functions will be plotted in a single labelled graphic.

palette
the color palette to be used for coloring or filling the survival, difference and ratio curves.

- If `statistics = "surv"`, the palette should consist of two colors that correspond to the levels of the factor variable in the `drsurv()` object. The defaults is `palette = c("red","blue")`.
- If `statistics = "diff"`, the palette should consist of one color. The defaults is `palette = "black"`.
- If `statistics = "ratio"`, the palette should consist of one color. The defaults is `palette = "black"`.
- If `statistics = "all"`, the palette should consist of four colors where the first two colors correspond to the levels of the factor variable in the `drsurv()` object. The third color indicates the color for the difference plot and the forth color indicates the color for the ratio plot. The defaults are `palette = c("red","blue","black","black")`.

xlab
a character specifying the x axis label. The default is `xlab = "Follow up times"`.

ylab
a character specifying y axis label.

- If `statistics = "surv"`, the ylab should consist of only one character indicating the y axis label for the Kaplan Meier plot. The default is `ylab = "Estimated Survival Probability"`.
- If `statistics = "diff"`, the ylab should consist of only one character indicating the y axis label for the Survival Difference plot. The default is `ylab = "Estimated Survival Difference"`.
- If `statistics = "ratio"`, the ylab should consist of only one character indicating the y axis label for the Survival Ratio plot. The default is `ylab = "Estimated Survival Ratio"`.
- If `statistics = "all"`, the ylab should consist of three characters indicating the y axis labels for the survival, difference and ratio plots, respectively. The default is `ylab = c("Estimated Survival Probability","Estimated Survival Difference","Estimated Survival Ratio")`.

theme
ggplot2 themes. Allowed values include ggplot2 official themes: "bw" for `theme_bw()`, "classic" for `theme_classic()`, "dark" for `theme_dark()`, "gray" for `theme_gray()", "light" for `theme_light()", "linedraw" for `theme_linedraw()", "minimal" for `theme_minimal()`. The default is `theme = "minimal"`.
table
Allowed values include TRUE or FALSE specifying whether to display the table of the number of subjects at risk over time. Default is `table = FALSE`.

p.value
Allowed values include TRUE or FALSE specifying whether to display the p-value for the log-ranke test of equality for independent designs. Default is `p.value = FALSE`.

flag
Allowed values include TRUE or FALSE specifying whether or not to show regions where survival is different from 1 for the ratio and 0 for the difference. Default is `flag = TRUE`.

flag.col
The color palette to be used for coloring the time regions where survival is identified as being different when `flag = TRUE`. The default is `flag.col = c("green","red")` where "green" indicates survival times where the (pointwise) confidence intervals contained 1 for the ratio or 0 for the difference while "red" indicates survival times where the (pointwise) confidence intervals did not contain 1 for the ratio or 0 for the difference.

break.times.by
Numeric value controlling the time axis breaks. Default value is `NULL`.

Value
Returns an object of class `ggsurv` and `ggplot2` that displays either one (or all) of the Kaplan Meier estimated survivor function, the ratio of survivor functions or the difference of survivor functions as a single graphic using `ggplot2`.

Note
The `ggsurv()` object is a flexible `ggplot2` object that can be further modified and customised using `ggplot` commands when the arguments `table = FALSE` and `statistics` is not all. See the example provided below.

Author(s)
Davood Roshan, Amirhossein Jalali, Shirin Moghaddam, John Newell

References
https://github.com/michaelway/ggkm

See Also
`drsurv`

Examples

```r
# Fit the drsurv model
#+++++++++++++++++++++++++++++++
require(survival)
lung$sex <- as.factor(lung$sex)
levels(lung$sex) <- c("Male", "Female")
fit <- drsurv(time = lung$time, status = lung$status, factor = lung$sex, ref = "Female")
```
Visualise the drsurv model output
#
Basic survival curves
ggsurv(fit, statistics = "surv")

Customized survival curves
ggsurv(fit, statistics = "surv",
palette = c("Orange", "purple"),
xlab = "Time (days)", ylab = "Estimated Survival Probability",
theme = "classic",
table = TRUE,
p.value = TRUE,
break.times.by = 200)

Survival difference curve
ggsurv(fit, statistics = "diff")

Survival difference curve without the point wise significant different times flag
ggsurv(fit, statistics = "diff", flag = FALSE)

Customized survival difference curve
ggsurv(fit, statistics = "diff",
palette = c("gray"),
xlab = "Time (days)", ylab = "Estimated Survival Difference",
theme = "classic",
flag = TRUE,
flag.col = c("darkseagreen", "red4"),
break.times.by = 200)

Survival ratio curve
ggsurv(fit, statistics = "ratio")

Customized survival ratio curve with further ggplot2 objects
ggsurv(fit, statistics = "ratio") +
ggtitle("Overall survival from lung cancer") +
theme(legend.position="bottom",
legend.background = element_rect(fill="lightblue", linetype="solid")
)

Displaying all the survival, difference and ratio curves in one graphic
For better visualisation, user may need to increase the ratio of "Plots" pannel
in Rstudio working environment.
ggsurv(fit, statistics = "all")

Customized all in one curves
ggsurv(fit, statistics = "all",
palette = c("Orange", "purple", "dimgray", "dimgray"),
xlab = "Time (days)",
ylab = c("Estimated Survivor Function", "Estimated Survival Difference",
"Estimated Survival Ratio"),
theme = "light",
table = TRUE, ## table will be only shown for the survival plot.
p.value = TRUE, ## p.value will be only displayed for the survival plot.
flag = TRUE,
flag.col = c("limegreen", "darkred"),
break.times.by = 150)

personalized all in one curves
survp <- ggsurv(fit, statistics = "surv",
 p.value = TRUE,
 table = TRUE)
diffp <- ggsurv(fit, statistics = "diff")
ratiop <- ggsurv(fit, statistics = "ratio")

changing the labels
ggpubr::ggarrange(survp,
 ggpubr::ggarrange(diffp, ratiop, ncol = 2, labels = c("(ii)", "(iii)")),
 nrow = 2,
 labels = "(i)",
 heights = c(1.3,1) # first row's height is 1.3 times bigger than 2nd row's height.
)

changing the alignment and save it locally
#png("all_in_one.png", height = 1000, res=100)
#ggpubr::ggarrange(ratiop, diffp, survp,
nrow = 3,
labels = c("(i)", "(ii)", "(iii)") ,
heights = c(1,1,1.5) # 1st and 2nd rows' heights are equal while
the 3rd row's height is 1.5 times bigger than the first #two rows.
#)
#dev.off()

get the directory where the plot is saved
getwd()

See ?ggpubr::ggarrange for more customizations.
Index

drsurv, 2, 3–5

ggsurv, 3, 3, 5

Surv, 3