Package ‘stylest’

September 16, 2018

Version 0.1.0
Title Estimating Speaker Style Distinctiveness
Depends R (>= 2.10)
Imports corpus, Matrix, stats
Suggests knitr, rmarkdown, testthat, kableExtra
License GPL-3
URL https://github.com/leslie-huang/stylest
BugReports https://github.com/leslie-huang/stylest/issues
LazyData true
Encoding UTF-8
VignetteBuilder knitr, rmarkdown
RoxygenNote 6.0.1.9000
NeedsCompilation no
Author Leslie Huang [aut, cph, cre],
 Patrick O. Perry [aut, cph],
 Arthur Spirling [aut, cph]
Maintainer Leslie Huang <lesliehuang@nyu.edu>
Repository CRAN
Date/Publication 2018-09-16 18:10:03 UTC

R topics documented:

 fit_term_usage ... 2
 novels_excerpts .. 2
 print.stylest_model 3
 stylest ... 4
fit_term_usage Computes speakers’ term usage rates

Description
Computes speakers’ term usage rates

Usage
fit_term_usage(x, speaker, terms, smooth)

Arguments
- x: Text vector. May be a corpus_frame object
- speaker: Vector of speaker labels. Should be the same length as x
- terms: Vocabulary for document term matrix
- smooth: Numeric value used smooth term frequencies

Value
named list of terms, vector of num tokens uttered by each speaker, smoothing value, and (smoothed) term usage rate matrix

novels_excerpts Excerpts from English novels

Description
A dataset of text from English novels by Jane Austen, George Eliot, and Elizabeth Gaskell.

Usage
novels_excerpts
Format

A dataframe with 21 rows and 3 variables:

- **title**: Title
- **author**: Author
- **text**: Excerpt of text in complete sentences from the first 1,000 chars of the novel.

Source

Novel excerpts obtained from Project Gutenberg full texts in the public domain in the USA. http://gutenberg.org

print.stylest_model

Custom print method for stylest_model

Description

Custom print method for stylest_model

Usage

```r
## S3 method for class 'stylest_model'
print(x, ...)
```

Arguments

- `x`: ‘stylest_model’ object
- `...`: Additional arguments

Value

Prints summary information about the ‘stylest_model’ object

Examples

```r
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
print(speaker_mod)
```
stylest

A package for estimating textual distinctiveness

Description

stylest provides a set of functions for fitting a model of speaker distinctiveness, including tools for selecting the optimal vocabulary for the model and predicting the most likely speaker (author) of a new text.

stylest_fit

Fit speaker_model to a corpus

Description

The main function in stylest, stylest_fit fits a model using a corpus of texts labeled by speaker.

Usage

```r
stylest_fit(x, speaker, terms = NULL, filter = NULL, smooth = 0.5)
```

Arguments

- `x`: Text vector. May be a `corpus_frame` object
- `speaker`: Vector of speaker labels. Should be the same length as `x`
- `terms`: If not NULL, terms to be used in the model. If NULL, use all terms
- `filter`: If not NULL, a text filter to specify the tokenization. See `corpus` for more information about specifying `filter`
- `smooth`: Numeric value used smooth term frequencies instead of the default of 0.5

Details

The user may specify only one of `terms` or `cutoff`. If neither is specified, all terms will be used.

Value

A S3 `stylest_model` object containing:
- `speakers`: Vector of unique speakers
- `filter`: text filter used
- `terms`: terms used in fitting the model
- `ntoken`: Vector of number of tokens per speaker
- `smooth`: Smoothing value
- `rate`: Matrix of speaker rates for each term in vocabulary

Examples

```r
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
```
stylest_odds

Pairwise prediction of the most likely speaker of texts

Description

Computes the mean log odds of the most likely speaker of each text over pairs of the speaker of a text and every other speaker in the stylest_model.

Usage

```r
stylest_odds(model, text, speaker, prior = NULL)
```

Arguments

- `model`: stylest_model object
- `text`: Text vector. May be a corpus_frame object
- `speaker`: Vector of speaker labels. Should be the same length as x
- `prior`: Prior probability of speakers. Uses equal prior if NULL

Value

A S3 stylest_odds object containing: a stylest_model object; vector of mean log odds that each actual speaker (compared with other speakers in the corpus) spoke their corresponding texts in the corpus; vector of SEs of the log odds

Examples

```r
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_odds(speaker_mod, novels_excerpts$text, novels_excerpts$author)
```

stylest_predict

Predict the most likely speaker of a text

Description

Use a fitted stylest_model to predict the most likely speaker of a text. This function may be used on in-sample or out-of-sample texts.

Usage

```r
stylest_predict(model, text, prior = NULL)
```
Arguments

- **model** - `stylest_model` object
- **text** - Text vector. May be a `corpus_frame` object
- **prior** - Prior probability, defaults to NULL

Value

- `stylest_predict` object containing:
 - **model** the fitted `stylest_model` object used in prediction,
 - **predicted** the predicted speaker,
 - **log_probs** matrix of log probabilities,
 - **log_prior** matrix of log prior probabilities

Examples

```r
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_predict(speaker_mod, "This is an example text, who wrote it?")
```

stylest_select_vocab
Select vocabulary using cross-validated out-of-sample prediction

Description

Selects optimal vocabulary quantile(s) for model fitting using performance on predicting out-of-sample texts.

Usage

```r
stylest_select_vocab(x, speaker, filter = NULL, smooth = 0.5,
                      nfold = 5, cutoff_pcts = c(50, 60, 70, 80, 90, 99))
```

Arguments

- **x** - Corpus as text vector. May be a `corpus_frame` object
- **speaker** - Vector of speaker labels. Should be the same length as x
- **filter** - if not NULL, a `corpus_text_filter`
- **smooth** - value for smoothing. Defaults to 0.5
- **nfold** - Number of folds for cross-validation. Defaults to 5
- **cutoff_pcts** - Vector of cutoff percentages to test. Defaults to c(50, 60, 70, 80, 90, 99)

Value

List of: best cutoff percent with the best speaker classification rate; cutoff percentages that were tested; matrix of the mean percentage of incorrectly identified speakers for each cutoff percent and fold; and the number of folds for cross-validation
Examples

```r
## Not run:
data(novels_excerpts)
stylest_select_vocab(novels_excerpts$text, novels_excerpts$author, cutoff_pcts = c(50, 90))
## End(Not run)
```

stylest_terms

Use vocab cutoff to select terms for fitting the model

Description

The same text, speaker, and filter should be used in this model as in `fit_speaker` to select the terms for the latter function.

Usage

```r
stylest_terms(x, speaker, vocab_cutoff, filter = NULL)
```

Arguments

- `x` : Corpus as text vector. May be a `corpus_frame` object
- `speaker` : Vector of speaker labels. Should be the same length as `x`
- `vocab_cutoff` : Quantile cutoff for the vocabulary in (0, 100]
- `filter` : if not NULL, a corpus filter

Value

list of terms

Examples

```r
data(novels_excerpts)
stylest_terms(novels_excerpts$text, novels_excerpts$author, vocab_cutoff = 50)
```
stylest_term_influence

Compute the influence of terms

Description

Compute the influence of terms

Usage

```r
stylest_term_influence(model, text, speaker)
```

Arguments

- `model`
 `stylest_model` object
- `text`
 Text vector. May be a `corpus_frame` object
- `speaker`
 Vector of speaker labels. Should be the same length as `x`

Value

`data.frame` with columns representing terms, their mean influence, and their maximum influence

Examples

```r
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_term_influence(speaker_mod, novels_excerpts$text, novels_excerpts$author)
```
Index

*Topic datasets
 novels_excerpts, 2

fit_term_usage, 2

novels_excerpts, 2

print.stylest_model, 3

stylest, 4
stylest_fit, 4
stylest_odds, 5
stylest_predict, 5
stylest_select_vocab, 6
stylest_term_influence, 8
stylest_terms, 7