Package ‘stochvolTMB’

August 13, 2021

Type Package
Title Likelihood Estimation of Stochastic Volatility Models
Version 0.2.0
Date 2021-08-09
Author Jens Christian Wahl <jens.c.wahl@gmail.com>
Maintainer Jens Christian Wahl <jens.c.wahl@gmail.com>
Description Parameter estimation for stochastic volatility models using maximum likelihood. The latent log-
volatility is integrated out of the likelihood using the Laplace approximation. The models are fitted via 'TMB' (Template Model Builder) (Kristensen, Nielsen, Berg, Skaug, and Bell (2016) <doi:10.18637/jss.v070.i05>).
License GPL-3
Depends R (>= 3.5.0)
Imports TMB, ggplot2, sn, stats, data.table, MASS
LinkingTo RcppEigen, TMB
Suggests testthat (>= 2.1.0), shiny, knitr, rmarkdown, stochvol
URL https://github.com/JensWahl/stochvolTMB
BugReports https://github.com/JensWahl/stochvolTMB/issues
RoxygenNote 7.1.1
Encoding UTF-8
LazyData true
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-08-13 11:30:02 UTC
estimate_parameters

R topics documented:

demo . 2
estimate_parameters . 2
logit . 3
plot.stochvolTMB . 4
predict.stochvolTMB . 4
residuals . 5
simulate_parameters . 6
sim_sv . 6
spy . 7
summary.stochvolTMB . 8
summary.stochvolTMB_predict . 8

Index

demo Run shiny demo

Description

Run shiny demo

Usage

demo()

estimate_parameters Estimate parameters for the stochastic volatility model

Description

Estimate parameters of a stochastic volatility model with a latent log-volatility following an autoregressive process of order one with normally distributed noise. The following distributions are implemented for the observed process:

- Gaussian distribution
- t-distribution
- Leverage: Gaussian distribution with leverage where the noise of the latent process is correlated with the observational distribution
- Skew gaussian distribution

The parameters is estimated by minimizing the negative log-likelihood (nll) and the latent log-volatility is integrated out by applying the Laplace approximation.
logit

Usage

```
estimate_parameters(data, model = "gaussian", opt.control = NULL, ...)
```

Arguments

- `data` A vector of observations.
- `model` A character specifying the model. Must be one of the following: "gaussian", "t", "leverage", "skew_gaussian".
- `opt.control` An optional list of parameters for nlminb.
- `...` additional arguments passed to `MakeADFun`.

Value

Object of class `stochvolTMB`

Examples

```
# load data
data("spy")

# estimate parameters
opt <- estimate_parameters(spy$log_return, model = "gaussian")

# get parameter estimates with standard error
estimates <- summary(opt)

# plot estimated volatility with 95 % confidence interval
plot(opt, include_ci = TRUE)
```

logit

Logit transformation from the real line to (-1, 1).

Description

Logit transformation from the real line to (-1, 1).

Usage

```
logit(x)
```

Arguments

- `x` double

Value

double
plot.stochvolTMB

Plot the estimated latent volatility process

Description

Displays the estimated latent volatility process over time.

Usage

```r
## S3 method for class 'stochvolTMB'
plot(x, ..., include_ci = TRUE, plot_log = TRUE, dates = NULL, forecast = NULL)
```

Arguments

- **x**

 A `stochvolTMB` object returned from `estimate_parameters`.

- **...**

 Currently not used.

- **include_ci**

 Logical value indicating if volatility should be plotted with approximately 95% confidence interval.

- **plot_log**

 Logical value indicating if the estimated should be plotted on log or original scale. If `plot_log = TRUE` the process h is plotted. If `plot_log = FALSE` $\sigma_y \exp(h / 2)$ is plotted.

- **dates**

 Vector of length `ncol(x$nobs)`, providing optional dates for labeling the x-axis. The default value is `NULL`; in this case, the axis will be labeled with numbers.

- **forecast**

 Integer specifying number of steps to forecast.

Value

A `ggplot` object with plot of estimated estimated volatility.

predict.stochvolTMB

Predict future returns and future volatilities

Description

Takes a `stochvolTMB` object and produces draws from the predictive distribution of the latent volatility and future log-returns.

Usage

```r
## S3 method for class 'stochvolTMB'
predict(object, steps = 1L, nsim = 10000, include_parameters = TRUE, ...)
```
residuals

Arguments

object
A stochvolTMB object returned from estimate_parameters.

steps
Integer specifying number of steps to predict.

nsim
Number of draws from the predictive distribution.

include_parameters
Logical value indicating if fixed parameters should be simulated from their asymptotic distribution, i.e. multivariate normal with inverse hessian as covariance matrix.

... Not in use.

Value

List of simulated values from the predictive distribution of the latent volatilities and log-returns.

calculate one-step-ahead (OSA) residuals for stochastic volatility model.

Description

This function is very time consuming and by default computes the one-step-ahead residual for the last 100 observations. See the function oneStepPredict and the paper in the references for more details.

Usage

residuals(object, conditional = 1:(object$nobs - 100), ...)

Arguments

object
A stochvolTMB object.

conditional
Index vector of observations that are fixed during OSA. By default the residuals of the last 100 observations are calculated. If set to NULL it will calculate one-step-ahead residuals for all observations.

... Currently not used.

Value

Vector of one-step-ahead residuals. If the model is correctly specified, these should be standard normal.

References

https://www.researchgate.net/publication/316581864_Validation_of_ecological_state_space_models_using_the_Laplace_approximation
simulate_parameters
Simulate from the asymptotic distribution of the parameter estimates

Description

Sampling is done on the scale the parameters were estimated. The standard deviations are simulated on log-scale and the persistence is simulated on logit scale. The same is true for the correlation parameter in the leverage model.

Usage

```
simulate_parameters(object, nsim = 1000)
```

Arguments

- `object`
 A stochvolTMB object.
- `nsim`
 Number of simulations.

Value

matrix of simulated values.

sim_sv
Simulate log-returns from a stochastic volatility model

Description

This function draws the initial log-volatility (h_t) from its stationary distribution, meaning that h_0 is drawn from a gaussian distribution with mean zero and standard deviation $\sigma_h / \sqrt{1 - \phi^2}$. h_{t+1} is then simulated from its conditional distribution given h_t, which is $N(\phi h_t, \sigma_h)$. Log-returns (y_t) is simulated from its conditional distribution given the latent process h. If `model` = "gaussian", then y_t given h_t is gaussian with mean zero and standard deviation equal to $\sigma_y \exp(h_t / 2)$. Heavy tail returns can be obtained by simulating from the t-distribution by setting `model` = "t". How heavy of a tail is specified by the degree of freedom parameter `df`. Note that the observations are scaled by $\sqrt{(df-2)/2}$ so that the error term has variance equal to one. Asymmetric returns are obtained from the "skew_gaussian" model. How asymmetric is governed by the skewness parameter α. The so called leverage model, where we allow for correlation between log-returns and volatility can be simulated by setting `model` to "leverage" and specifying the correlation parameter ρ.

Usage

```r
sim_sv(
  param = list(phi = 0.9, sigma_y = 0.4, sigma_h = 0.2, df = 4, alpha = -2, rho = -0.7),
  nobs = 1000L,
  seed = NULL,
  model = "gaussian"
)
```

Arguments

- **param**: List of parameters. This includes the standard deviation of the observations, `sigma_y`, the standard deviation of the latent volatility process, `sigma_h`, the persistence parameter `phi`. If `model = "t"`, the degree of freedom `df` must be specified. If `model = "skew_gaussian"`, the skewness parameter `alpha` must be specified and if `model = "leverage"`, the correlation `rho` between the latent error term and the observational error has to be specified.
- **nobs**: Length of time series.
- **seed**: Seed to reproduce simulation.
- **model**: Distribution to reproduce simulation.

Value

A `data.table` with columns `y` (observations) and `h` (latent log-volatility).

spy

Description

A dataset containing the prices and log-returns of the S&P500 from 2005 to 2018

Usage

```r
spy
```

Format

A data frame with 3522 rows and 3 variables:

- **date**: date
- **price**: price, in US dollars
- **log_return**: logarithmic return...
summary.stochvolTMB

Summary tables of model parameters

Description

Extract parameters, transformed parameters and latent log volatility along with standard error, z-value and p-value

Usage

```r
## S3 method for class 'stochvolTMB'
summary(object, ..., report = c("all", "fixed", "transformed", "random"))
```

Arguments

- `object` A stochvolTMB object.
- `...` Currently not used.
- `report` Parameters to report with uncertainty estimates. Can be any subset of "fixed", "transformed" or "random" (see `summary.sdreport`). "fixed" report the parameters on the scale they were estimated, for example are all standard deviations estimated on log scale. "transformed" report all transformed parameters, for example estimated standard deviations transformed from log scale by taking the exponential. Lastly, "random" report the estimated latent log-volatility.

Value

data.table with parameter estimates, standard error, z-value and approximated p-value.

summary.stochvolTMB_predict

Calculate quantiles based on predictions from the predictive distribution

Description

Calculate quantiles based on predictions from the predictive distribution

Usage

```r
## S3 method for class 'stochvolTMB_predict'
summary(object, ..., quantiles = c(0.025, 0.975), predict_mean = TRUE)
```
Arguments

- **object**: A stochvolTMB_summary object.
- **quantiles**: A numeric vector specifying which quantiles to calculate.
- **predict_mean**: bool. Should the mean be predicted?

Value

A list of data.tables. One for y, h and h_exp.
Index

* datasets
 spy, 7

demo, 2

estimate_parameters, 2, 4, 5

logit, 3

MakeADFun, 3

oneStepPredict, 5

plot.stochvolTMB, 4
predict.stochvolTMB, 4

residuals, 5

sim_sv, 6
simulate_parameters, 6
spy, 7

summary.sdreport, 8
summary.stochvolTMB, 8
summary.stochvolTMB_predict, 8