stgam: Spatially and Temporally Varying Coefficient Models Using Generalized Additive Models

A framework for specifying spatially, temporally and spatial-and-temporally varying coefficient models using Generalized Additive Models with Gaussian Process smooths. The smooths are parameterised with location and / or time attributes. Importantly the framework supports the investigation of the presence and nature of any space-time dependencies in the data, allows the user to evaluate different model forms (specifications) and to pick the most probable model or to combine multiple varying coefficient models using Bayesian Model Averaging. For more details see: Brunsdon et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.17>, Comber et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.22> and Comber et al (2024) <doi:10.1080/13658816.2023.2270285>.

Depends: R (≥ 2.10)
Imports: cowplot, doParallel, dplyr, foreach, ggplot2, glue, grDevices, magrittr, metR, mgcv, parallel, tidyselect
Suggests: cols4all, knitr, purrr, rmarkdown, sf, testthat (≥ 3.0.0), tidyr
Published: 2024-07-12
DOI: 10.32614/CRAN.package.stgam
Author: Lex Comber [aut, cre], Paul Harris [ctb], Chris Brunsdon [ctb]
Maintainer: Lex Comber <a.comber at>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README NEWS
CRAN checks: stgam results


Reference manual: stgam.pdf
Vignettes: Introduction to space-time GAMS with 'stgam'
Determining Space-Time model form and Bayesian Model Avergaing (BMA) with 'stgam'


Package source: stgam_0.0.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): stgam_0.0.1.1.tgz, r-oldrel (arm64): stgam_0.0.1.1.tgz, r-release (x86_64): stgam_0.0.1.0.tgz, r-oldrel (x86_64): stgam_0.0.1.1.tgz
Old sources: stgam archive


Please use the canonical form to link to this page.