Package ‘sssc’

June 15, 2018

Title Same Species Sample Contamination Detection
Version 1.0.0
Description Imports Variant Calling Format file into R. It can detect whether a sample contains contaminant from the same species. In the first stage of the approach, a change-point detection method is used to identify copy number variations for filtering. Next, features are extracted from the data for a support vector machine model. For log-likelihood calculation, the deviation parameter is estimated by maximum likelihood method. Using a radial basis function kernel support vector machine, the contamination of a sample can be detected.

Depends R (>= 3.4.0)
Imports changepoint, e1071, ggplot2, stats, VGAM
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Tao Jiang [aut, cre]
Maintainer Tao Jiang <tjiang8@ncsu.edu>
Repository CRAN
Date/Publication 2018-06-15 11:22:54 UTC

R topics documented:

 config_df ... 2
 generate_feature .. 3
 getAlt2 ... 4
 getAnnoRate .. 4
 getAvgLL ... 5
 getLowDepth .. 5
config_df

Default parameters of config.

Description

A dataframe containing default parameters.

Usage

config_df

Format

A data frame with 12 variables:

- threshold Threshold for allele frequency
- skew Skewness for allele frequency
- lower Lower bound for allele frequency region
- upper Upper bound for allele frequency region
- ldpthr Threshold to determine low depth
- hom_mle Hom MLE of p in Beta-Binomial model
- het_mle Het MLE of p in Beta-Binomial model
generate_feature

Hom_thred Threshold between hom and high
High_thred Threshold between high and het
Het_thred Threshold between het and low
hom_rho Hom MLE of rho in Beta-Binomial model
het_rho Het MLE of rho in Beta-Binomial model

Source

Created by Tao Jiang

generate_feature
Feature Generation for Contamination Detection Model

Description

Generates features from each pair of input VCF objects for training contamination detection model.

Usage

```r
generate_feature(file, hom_p = 0.999, het_p = 0.5, hom_rho = 0.005, het_rho = 0.1, mixture, homcut = 0.99, highcut = 0.7, hetcut = 0.3)
```

Arguments

- **file**: VCF input object
- **hom_p**: The initial value for p in Homozygous Beta-Binomial model, default is 0.999
- **het_p**: The initial value for p in Heterozygous Beta-Binomial model, default is 0.5
- **hom_rho**: The initial value for rho in Homozygous Beta-Binomial model, default is 0.005
- **het_rho**: The initial value for rho in Heterozygous Beta-Binomial model, default is 0.1
- **mixture**: A vector of whether the sample is contaminated: 0 for pure; 1 for contaminated
- **homcut**: Cutoff allele frequency value between hom and high, default is 0.99
- **highcut**: Cutoff allele frequency value between high and het, default is 0.7
- **hetcut**: Cutoff allele frequency value between het and low, default is 0.3

Value

A data frame with all features for training model of contamination detection
getAlt2

Second alternative allele percentage

Description
Second alternative allele percentage

Usage
getAlt2(f)

Arguments
- **f**: Input raw file

Value
Percent of the second alternative allele

getAnnoRate

Annotation rate

Description
Annotation rate

Usage
getAnnoRate(f)

Arguments
- **f**: Input raw file

Value
Percentage of annotation locus
getAvgLL

Calculate average log-likelihood

Description

Calculate average log-likelihood

Usage

```r
getAvgLL(df, hom_mle, het_mle, hom_rho, het_rho)
```

Arguments

- `df` Input modified file
- `hom_mle` Hom MLE of p in Beta-Binomial model, default is 0.9981416 from NA12878_1_L5
- `het_mle` Het MLE of p in Beta-Binomial model, default is 0.4737897 from NA12878_1_L5
- `hom_rho` Hom MLE of rho in Beta-Binomial model, default is 0.04570275 from NA12878_1_L5
- `het_rho` Het MLE of rho in Beta-Binomial model, default is 0.02224098 from NA12878_1_L5

Value

`meanLL`

getLowDepth

Low depth percentage

Description

Low depth percentage

Usage

```r
getLowDepth(f, ldepthred)
```

Arguments

- `f` Input raw file
- `ldepthred` Threshold to determine low depth, default is 20

Value

Percentage of low depth
getRatio

Get the ratio of allele frequencies with a region

Description

Get the ratio of allele frequencies with a region

Usage

```
getRatio(subdf, lower, upper)
```

Arguments

- **subdf**: Dataframe with calculated statistics
- **lower**: Lower bound for allele frequency region
- **upper**: Upper bound for allele frequency region

Value

Ratio of allele frequencies with a region

getSkewness

Get absolute value of skewness

Description

Get absolute value of skewness

Usage

```
getSkewness(subdf)
```

Arguments

- **subdf**: Input dataframe

Value

Absolute value of skewness
getSNVRate

<table>
<thead>
<tr>
<th>getSNVRate</th>
<th>SNV percentage</th>
</tr>
</thead>
</table>

Description

SNV percentage

Usage

getSNVRate(df)

Arguments

df: Input raw file

Value

Percentage of SNV

getVar

<table>
<thead>
<tr>
<th>getVar</th>
<th>Calculate zygosity variable</th>
</tr>
</thead>
</table>

Description

Calculate zygosity variable

Usage

getVar(df, state, hom_mle, het_mle)

Arguments

df: Input modified file
state: Zygosity state
hom_mle: MLE in hom model
het_mle: MLE in het model

Value

Zygosity variable
locateFile
Check input filename

Description
Check input filename

Usage
locateFile(fn, extension)

Arguments
- `fn`: Exact full file name of input file, including directory
- `extension`: Expected input file extension: vcf & txt

Value
Valid directory

negll
Negative Log Likelihood

Description
Calculates negative log likelihood for beta binomial distribution.

Usage
negll(x, size, prob, rho)

Arguments
- `x`: Depth of alternative allele
- `size`: Total depth
- `prob`: Theoretical probability for heterozygous is 0.5, for homozygous is 0.999
- `rho`: Rho parameter of Beta-Binomial distribution of alternative allele
readGATK
Read in input vcf data in GATK format for Contamination detection

Description
Read in input vcf data in GATK format for Contamination detection

Usage
readGATK(dr, dbOnly, depCut, thred, content, extnum, keepall)

Arguments
- **dr**: A valid input object
- **dbOnly**: Use dbSNP as filter, default is FALSE, passed from read_vcf
- **depCut**: Use a threshold for min depth, default is False
- **thred**: Threshold for min depth, default is 20
- **content**: Column names in VCF files
- **extnum**: The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
- **keepall**: Keep unextracted column in output, default is TRUE, passed from read_vcf

Value
Dataframe from VCF file

readStrelka
Read in input vcf data in strelka2 format for Contamination detection

Description
Read in input vcf data in strelka2 format for Contamination detection

Usage
readStrelka(dr, dbOnly, depCut, thred, content, extnum, keepall)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dr</code></td>
<td>A valid input object</td>
</tr>
<tr>
<td><code>dbOnly</code></td>
<td>Use dbSNP as filter, default is FALSE, passed from read_vcf</td>
</tr>
<tr>
<td><code>depcut</code></td>
<td>Use a threshold for min depth, default is False</td>
</tr>
<tr>
<td><code>thred</code></td>
<td>Threshold for min depth, default is 20</td>
</tr>
<tr>
<td><code>content</code></td>
<td>Column names in VCF files</td>
</tr>
<tr>
<td><code>extnum</code></td>
<td>The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns</td>
</tr>
<tr>
<td><code>keepall</code></td>
<td>Keep unextracted column in output, default is TRUE, passed from read_vcf</td>
</tr>
</tbody>
</table>

Value

Dataframe from VCF file

Description

Read in input vcf data in VarDict format for Contamination detection

Usage

```r
readVarDict(dr, dbOnly, depCut, thred, content, extnum, keepall)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dr</code></td>
<td>A valid input object</td>
</tr>
<tr>
<td><code>dbOnly</code></td>
<td>Use dbSNP as filter, default is FALSE, passed from read_vcf</td>
</tr>
<tr>
<td><code>depcut</code></td>
<td>Use a threshold for min depth, default is False</td>
</tr>
<tr>
<td><code>thred</code></td>
<td>Threshold for min depth, default is 20</td>
</tr>
<tr>
<td><code>content</code></td>
<td>Column names in VCF files</td>
</tr>
<tr>
<td><code>extnum</code></td>
<td>The column number to be extracted from vcf, default is 10; 0 for not extracting any column</td>
</tr>
<tr>
<td><code>keepall</code></td>
<td>Keep unextracted column in output, default is TRUE, passed from read_vcf</td>
</tr>
</tbody>
</table>

Value

Dataframe from VCF file
readVarPROWL

Read in input vcf data in VarPROWL format

Description

Read in input vcf data in VarPROWL format

Usage

```
readVarPROWL(dr, dbOnly, depCut, thred, content, extnum, keepall)
```

Arguments

- **dr**: A valid input object
- **dbOnly**: Use dbSNP as filter, default is FALSE, passed from read_vcf
- **depCut**: Use a threshold for min depth, default is False
- **thred**: Threshold for min depth, default is 20
- **content**: Column names in VCF files
- **extnum**: The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
- **keepall**: Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

vcf Dataframe from VCF file

read_vcf

VCF Data Input

Description

Reads a file in vcf or vcf.gz file and creates a list containing Content, Meta, VCF and file_sample_name

Usage

```
read_vcf(fn, vcfFor, dbOnly = FALSE, depCut = FALSE, thred = 20, 
metaline = 200, extnum = 10, keepall = T)
```
rho_est

Estimate Rho for Alternative Allele Frequency

Description

Estimates Rho parameter in beta binomial distribution for alternative allele frequency

Usage

rho_est(vl)

Arguments

vl A list of vcf objects from read_vcf function.

Value

A list containing (1) het_rho: Rho parameter of heterozygous location; (2) hom_rho: Rho parameter homozygous location;
Examples

data("vcf_example")
vcf_list <- list()
vcf_list[[1]] <- vcf_example$VCF
res <- rho_est(v1 = vcf_list)
res$het_rho[[1]]$par
res$hom_rho[[1]]$par

rmChangePoint

Remove CNV regions within VCF files by changepoint method

Description

Remove CNV regions within VCF files by changepoint method

Usage

rmChangePoint(vcf, threshold, skew, lower, upper)

Arguments

- **vcf**: Input VCF files
- **threshold**: Threshold for allele frequency
- **skew**: Skewness for allele frequency
- **lower**: Lower bound for allele frequency region
- **upper**: Upper bound for allele frequency region

Value

VCF object without changepoint region

rmCNVinVCF

Remove CNV regions within VCF files given cnv file

Description

Remove CNV regions within VCF files given cnv file

Usage

rmCNVinVCF(vcf, cnvobj)
sssc

Same Species Sample Contamination

Arguments

- vcf: Input VCF files
- cnvobj: cnv object

Value

VCF object without changepoint region

Description

Detects whether a sample is contaminated another sample of its same species. The input file should be in vcf format.

Usage

sssc(file, rmCNV = FALSE, cnvobj = NULL, config = NULL, class_model = NULL, regression_model = NULL)

Arguments

- file: VCF input object
- rmCNV: Remove CNV regions, default is FALSE
- cnvobj: cnv object, default is NULL
- config: config information of parameters. A default set is generated as part of the model and is included in a model object, which contains
- class_model: An SVM classification model
- regression_model: An SVM regression model

Value

A list containing (1) stat: a data frame with all statistics for contamination estimation; (2) result: contamination estimation (Class = 0, pure; Class = 1, contaminated)

Examples

data(vcf_example)
result <- sssc(file = vcf_example)
summary_vcf

VCF Data Summary

Description
Summarizes allele frequency information in scatter and density plots.

Usage
summary_vcf(vcf, ZG = NULL, CHR = NULL)

Arguments
- vcf: VCF object from read_vcf function
- ZG: zygosity: (1) null, for both het and hom, default; (2) het; (3) hom
- CHR: chromosome number: (1) null, all chromosome, default; (2) any specific number

Value
A list containing (1) scatter: allele frequency scatter plot; (2) density: allele frequency density plot

Examples
```r
data("vcf_example")
tmp <- summary_vcf(vcf = vcf_example, ZG = 'het', CHR = c(1,2))
plot(tmp$scatter)
plot(tmp$density)
```

svm_class_model

Default svm classification model.

Description
An svm object containing default svm classification model.

Usage
svm_class_model

Format
An svm object:

Source
Created by Tao Jiang
svm_regression_model Default svm regression model.

Description

An svm object containing default svm regression model.

Usage

```r
svm_regression_model
```

Format

An svm object:

Source

Created by Tao Jiang

train_ct Train Contamination Detection Model

Description

Trains two SVM models (classification and regression) to detect whether a sample is contaminated another sample of its same species.

Usage

```r
train_ct(feature)
```

Arguments

- `feature` Feature list objects from `generate_feature()`

Value

A list contains two trained svm models: regression & classification
update_vcf

Remove CNV regions within VCF files

Usage

update_vcf(rmcnv = FALSE, vcf, cnvobj = NULL, threshold = 0.1, skew = 0.5, lower = 0.45, upper = 0.55)

Arguments

- **rmcnv**: Remove CNV regions, default is FALSE
- **vcf**: Input VCF files
- **cnvobj**: cnv object, default is NULL
- **threshold**: Threshold for allele frequency, default is 0.1
- **skew**: Skewness for allele frequency, default is 0.5
- **lower**: Lower bound for allele frequency region, default is 0.45
- **upper**: Upper bound for allele frequency region, default is 0.55

Value

VCF file without CNV region

vcf_example

VCF example file.

Description

An example containing a list of 4 data frames.

Usage

vcf_example

Format

A list of 4 data frames:

Source

Created by Tao Jiang
Index

*Topic datasets
 config_df, 2
 svm_class_model, 15
 svm_regression_model, 16
 vcf_example, 17

config_df, 2

generate_feature, 3
getAlt2, 4
getAnnoRate, 4
getAvgLL, 5
getLowDepth, 5
getRatio, 6
getSkewness, 6
getSNVRate, 7
getVar, 7

locateFile, 8

negll, 8

read_vcf, 11
readGATK, 9
readStrelka, 9
readVarDict, 10
readVarPROWL, 11
rho_est, 12
rmChangePoint, 13
rmCNVinVCF, 13

sssc, 14
summary_vcf, 15
svm_class_model, 15
svm_regression_model, 16

train_ct, 16

update_vcf, 17

vcf_example, 17