Package ‘ssaBSS’

April 12, 2021

Type Package
Title Stationary Subspace Analysis
Version 0.1
Date 2021-04-06
Maintainer Markus Matilainen <markus.matilainen@outlook.com>
Depends tsBSS (>= 0.5.3), ICtest (>= 0.3-4), JADE (>= 2.0-2), BSSprep, ggplot2
Imports xts, zoo
Description Stationary subspace analysis (SSA) is a blind source separation (BSS) variant where stationary components are separated from non-stationary components. Several SSA methods for multivariate time series are provided here (Flumian et al. (2021); Hara et al. (2010) <doi:10.1007/978-3-642-17537-4_52>) along with functions to simulate time series with time-varying variance and autocovariance (Patilea and Raissi(2014) <doi:10.1080/01621459.2014.884504>).
License GPL (>= 2)
NeedsCompilation no
Author Markus Matilainen [cre, aut] (<https://orcid.org/0000-0002-5597-2670>), Lea Flumian [aut], Klaus Nordhausen [aut] (<https://orcid.org/0000-0002-3758-8501>), Sara Taskinen [aut] (<https://orcid.org/0000-0001-9470-7258>)
Repository CRAN
Date/Publication 2021-04-12 07:40:02 UTC

R topics documented:

- ssaBSS-package
- ASSA
- rtvAR1
- rtvvar
- ssabss
- SSAcomb
- SSAcor

1
Stationary subspace analysis (SSA) is a blind source separation (BSS) variant where stationary components are separated from non-stationary components. Several SSA methods for multivariate time series are provided here (Flumian et al. (2021); Hara et al. (2010) <doi:10.1007/978-3-642-17537-4_52>) along with functions to simulate time series with time-varying variance and autocovariance (Patilea and Raïssi(2014) <doi:10.1080/01621459.2014.884504>).

This package contains functions for identifying different types of nonstationarity

- **SSAsir** – SIR type function for mean non-stationarity identification
- **SSAsave** – SAVE type function for variance non-stationarity identification
- **SSAcor** – Function for identifying changes in autocorrelation
- **ASSA** – ASSA: Analytic SSA for identification of nonstationarity in mean and variance.
- **SSAcomb** – Combination of SSAsir, SSAsave, and SSAcor using joint diagonalization

The package also contains function **rtvvar** to simulate a time series with time-varying variance (TV-VAR), and function **rtvAR1** to simulate a time series with time-varying autocovariance (TV-AR1).

Author(s)

Markus Matilainen, Léa Flumian, Klaus Nordhausen, Sara Taskinen

Maintainer: Markus Matilainen <markus.matilainen@outlook.com>

References

ASSA Method for Non-stationary Identification

Description

ASSA (Analytic Stationary Subspace Analysis) method for identifying non-stationary components of mean and variance.

Usage

`ASSA(X, ...)`

Default S3 method:

`ASSA(X, K, n.cuts = NULL, ...)`

S3 method for class 'ts'

`ASSA(X, ...)`

Arguments

- **X**
 A numeric matrix or a multivariate time series object of class `ts`, `xts` or `zoo`. Missing values are not allowed.

- **K**
 Number of intervals the time series is split into.

- **n.cuts**
 A K+1 vector of values that correspond to the breaks which are used for splitting the data. Default is intervals of equal length.

- **...**
 Further arguments to be passed to or from methods.

Details

Assume that a p-variate Y with T observations is whitened, i.e. $Y = S^{-1/2}(X_t - \frac{1}{T} \sum_{t=1}^{T} X_t)$, where S is the sample covariance matrix of X.

The values of Y are then split into K disjoint intervals T_i. Algorithm first calculates matrix

$$
M = \frac{1}{T} \sum_{i=1}^{K} \left(m_{T_i} m_{T_i}^T + \frac{1}{2} S_{T_i} S_{T_i}^T \right) - \frac{1}{2} I,
$$

where K is the number of breakpoints, I is an identity matrix, and m_{T_i} is the average of values of Y and S_{T_i} is the sample variance of values of Y which belong to a disjoint interval T_i.
The algorithm finds an orthogonal matrix U via eigendecomposition

$$M = U D U^T.$$

The final unmixing matrix is then $W = U S^{-1/2}$. The first k rows of U are the eigenvectors corresponding to the non-zero eigenvalues and the rest correspond to the zero eigenvalues. In the same way, the first k rows of W project the observed time series to the subspace of non-stationary components, and the last $p - k$ rows to the subspace of stationary components.

Value

A list of class 'ssabss', inheriting from class 'bss', containing the following components:

- W: The estimated unmixing matrix.
- S: The estimated sources as time series object standardized to have mean 0 and unit variances.
- M: Used separation matrix.
- K: Number of intervals the time series is split into.
- D: Eigenvalues of M.
- MU: The mean vector of X.
- $n.cut$: Used K+1 vector of values that correspond to the breaks which are used for splitting the data.
- $method$: Name of the method ("ASSA"), to be used in e.g. screeplot.

Author(s)

Markus Matilainen, Klaus Nordhausen

References

See Also

JADE

Examples

```r
n <- 5000
A <- rorth(4)

z1 <- arima.sim(n, model = list(ar = 0.7)) + rep(c(-1.52, 1.38), c(floor(n*0.5), n - floor(n*0.5)))
z2 <- rtvvar(n, alpha = 0.1, beta = 1)
z3 <- arima.sim(n, model = list(ma = c(0.72, 0.24)))
z4 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))
```
rtvAR1 <- cbind(z1, z2, z3, z4)
X <- as.ts(tcrossprod(Z, A)) # An mts object
res <- ASSA(X, K = 6)
screeplot(res, type = "lines") # Two non-zero eigenvalues

Plotting the components as an mts object
plot(res) # The first two are nonstationary

rtvAR1
Simulation of Time Series with Time-varying Autocovariance

Description
Simulating time-varying variance based on TV-AR1 model

Usage
rtvAR1(n, sigma = 0.93)

Arguments
n Length of the time series
sigma Parameter σ^2 in TV-AR1, i.e. the variance. Default is 0.93.

Details
Time varying autoregressive processes of order 1 (TV-AR1) is

$$x_t = a_t x_{t-1} + \epsilon_t,$$

with $x_0 = 0$, ϵ_t is iid $N(0, \sigma^2)$ and $a_t = 0.5 \cos(2\pi t/T)$.

Value
The simulated series as a ts object.

Author(s)
Sara Taskinen, Markus Matilainen

References
rtvvar

Simulation of Time Series with Time-varying Variance

Description

Simulating time-varying variance based on TV-VAR model

Usage

rtvvar(n, alpha, beta = 1, simple = FALSE)

Arguments

- n: Length of the time series
- alpha: Parameter α in TV-VAR
- beta: Parameter β in TV-VAR. Default is 1.
- simple: A logical vector indicating whether h_t is considered as its own process, or just t/T. Default is FALSE.

Details

Time varying variance (TV-VAR) process x_t with parameters α and β is of the form

$$x_t = \tilde{h}_t \epsilon_t,$$

where, if simple = FALSE,

$$\tilde{h}_t^2 = h_t^2 + \alpha x_{t-1}^2,$$

where ϵ are iid $N(0, 1)$, $x_0 = 0$ and $h_t = 10 - 10 \sin(\beta \pi t/T + \pi/6)(1 + t/T)$, and if simple = TRUE,

$$\tilde{h}_t = t/T.$$

Value

The simulated series as a ts object.

Author(s)

Sara Taskinen, Markus Matilainen
References

Examples

```r
n <- 5000
X <- rtvvar(n, alpha = 0.2, beta = 0.5, simple = FALSE)
plot(X)
```

ssabss *Class: ssabss*

Description

Class `ssabss` (blind source separation in stationary subspace analysis) with methods `plot`, `screeplot` (prints a screeplot of an object of class `ssabss`) and `ggscreeplot` (prints a screeplot of an object of class `ssabss` using package `ggplot2`).

The class `ssabss` also inherits methods from the class `bss` in package `JADE`: for extracting the components (`bss.components`), for plotting the components (`plot.bss`), for printing (`print.bss`), and for extracting the coefficients (`coef.bss`).

Usage

```r
## S3 method for class 'ssabss'
plot(x, ...)

## S3 method for class 'ssabss'
screeplot(x, type = c("lines", "barplot"), xlab = "Number of components", ylab = NULL, main = paste("Screeplot for", x$method), pointsize = 4, breaks = 1:length(x$D), color = "red", ...)

## S3 method for class 'ssabss'
ggscreeplot(x, type = c("lines", "barplot"), xlab = "Number of components", ylab = NULL, main = paste("Screeplot for", x$method), pointsize = 4, breaks = 1:length(x$D), color = "red", ...)
```

Arguments

- `x` An object of class `ssabss`.
- `type` Type of screeplot. Choices are "lines" (default) and "barplot".
- `xlab` Label for x-axis. Default is "Number of components".
SSAcomb

ylab Label for y-axis. Default is "Sum of pseudo eigenvalues" if method is SSAcomb and "Eigenvalues" otherwise.
main Title of the plot. Default is "Screeplot for ...", where ... denotes for the name of the method used.
pointsize Size of the points in the plot (for type = "lines" only). Default is 4.
breaks Breaks and labels for the x-axis. Default is from 1 to the number of series by 1.
color Color of the line (if type = "lines") or bar (if type = "barplot"). Default is red.
... Further arguments to be passed to or from methods.

Details

A screeplot can be used to determine the number of interesting components. For SSAcomb it plots the sum of pseudo eigenvalues and for other methods it plots the eigenvalues.

Author(s)

Markus Matilainen

See Also

ASSA, SSAsir, SSAsave, SSAcor, SSAcomb, JADE, ggplot2

SSAcomb

Combination Main SSA Methods

Description

SSAcomb method for identification for non-stationarity in mean, variance and covariance structure.

Usage

SSAcomb(X, ...)

Default S3 method:
SSAcomb(X, K, n.cuts = NULL, tau = 1, eps = 1e-6, maxiter = 2000, ...)
S3 method for class 'ts'
SSAcomb(X, ...)

Arguments

X A numeric matrix or a multivariate time series object of class ts, xts or zoo. Missing values are not allowed.
K Number of intervals the time series is split into.
n.cuts A K+1 vector of values that correspond to the breaks which are used for splitting the data. Default is intervals of equal length.
tau The lag as a scalar. Default is 1.
eps Convergence tolerance.
maxiter The maximum number of iterations.
... Further arguments to be passed to or from methods.

Details

Assume that a p-variate Y with T observations is whitened, i.e. $Y = S^{-1/2}(X_t - \frac{1}{T} \sum_{t=1}^{T} X_t)$, where S is the sample covariance matrix of X.

The values of Y are then split into K disjoint intervals T_i. For a chosen τ, algorithm first calculates the M matrices from SSAsir (matrix M_1), SSAsave (matrix M_2) and SSAcor (matrix M_3).

The algorithm finds an orthogonal matrix U by maximizing

$$\sum_{i=1}^{3} ||\text{diag}(UM_iU')||^2.$$

The final unmixing matrix is then $W = US^{-1/2}$.

Then the pseudo eigenvalues $D_i = \text{diag}(UM_iU') = \text{diag}(d_{i,1}, \ldots, d_{i,p})$ are obtained and the value of $d_{i,j}$ tells if the jth component is nonstationary with respect to M_i.

Value

A list of class 'ssabss', inheriting from class 'bss', containing the following components:

- W The estimated unmixing matrix.
- S The estimated sources as time series object standardized to have mean 0 and unit variances.
- R Used M-matrices as an array.
- K Number of intervals the time series is split into.
- D The sums of pseudo eigenvalues.
- $DTable$ The pseudo eigenvalues of size $3*p$ to see which type of nonstationarity there exists in each component.
- MU The mean vector of X.
- $n.cut$ Used $K+1$ vector of values that correspond to the breaks which are used for splitting the data.
- k The used lag.
- method Name of the method ("SSAcomb"), to be used in e.g. screeplot.

Author(s)

Markus Matilainen, Klaus Nordhausen

References

SSAcor

Identification of Non-stationarity in the Covariance Structure

Description

SSAcor method for identifying non-stationarity in the covariance structure.

Usage

SSAcor(X, ...)

Default S3 method:
SSAcor(X, K, n.cuts = NULL, tau = 1, ...)
S3 method for class 'ts'
SSAcor(X, ...)
SSAcor

Arguments

- **X**: A numeric matrix or a multivariate time series object of class `ts`, `xts` or `zoo`. Missing values are not allowed.
- **K**: Number of intervals the time series is split into.
- **n.cuts**: A K+1 vector of values that correspond to the breaks which are used for splitting the data. Default is intervals of equal length.
- **tau**: The lag as a scalar. Default is 1.
- **...**: Further arguments to be passed to or from methods.

Details

Assume that a \(p \)-variate \(Y \) with \(T \) observations is whitened, i.e. \(Y = S^{-1/2}(X_t - \frac{1}{T} \sum_{t=1}^{T} X_t) \), where \(S \) is the sample covariance matrix of \(X \).

The values of \(Y \) are then split into \(K \) disjoint intervals \(T_i \). For a chosen \(\tau \), algorithm first calculates matrix

\[
M = \sum_{i=1}^{K} \frac{T_i}{T} (S_{\tau,T} - S_{\tau,T_i})(S_{\tau,T} - S_{\tau,T_i})^T,
\]

where \(K \) is the number of breakpoints, \(S_{\tau,T} \) is the global sample covariance, and \(S_{\tau,T_i} \) is the sample covariance of values of \(Y \) which belong to a disjoint interval \(T_i \).

The algorithm finds an orthogonal matrix \(U \) via eigendecomposition

\[
M = UD{U^T}.
\]

The final unmixing matrix is then \(W = US^{-1/2} \). The first \(k \) rows of \(U \) are the eigenvectors corresponding to the non-zero eigenvalues and the rest correspond to the zero eigenvalues. In the same way, the first \(k \) rows of \(W \) project the observed time series to the subspace of components with non-stationary covariance, and the last \(p - k \) rows to the subspace of components with stationary covariance.

Value

A list of class 'ssabss', inheriting from class 'bss', containing the following components:

- **W**: The estimated unmixing matrix.
- **S**: The estimated sources as time series object standardized to have mean 0 and unit variances.
- **M**: Used separation matrix.
- **K**: Number of intervals the time series is split into.
- **D**: Eigenvalues of \(M \).
- **MU**: The mean vector of \(X \).
- **n.cut**: Used \(K+1 \) vector of values that correspond to the breaks which are used for splitting the data.
- **k**: The used lag.
- **method**: Name of the method ("SSAcor"), to be used in e.g. screeplot.
Author(s)

Markus Matilainen, Klaus Nordhausen

References

See Also

JADE

Examples

```r
n <- 5000
A <- rorth(4)

z1 <- rtvAR1(n)
z2a <- arima.sim(floor(n/3), model = list(ar = c(0.5),
innov = c(rnorm(floor(n/3), 0, 1))))
z2b <- arima.sim(floor(n/3), model = list(ar = c(0.2),
innov = c(rnorm(floor(n/3), 0, 1.28))))
z2c <- arima.sim(n - 2*floor(n/3), model = list(ar = c(0.8),
innov = c(rnorm(n - 2*floor(n/3), 0, 0.48))))
z2 <- c(z2a, z2b, z2c)
z3 <- arima.sim(n, model = list(ma = c(0.72, 0.24), ar = c(0.14, 0.45)))
z4 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))

Z <- cbind(z1, z2, z3, z4)
library(zoo)
X <- as.zoo(tcrossprod(Z, A)) # A zoo object

res <- SSAcor(X, K = 6, tau = 1)
ggscreepplot(res, type = "barplot", color = "gray") # Two non-zero eigenvalues

# Plotting the components as a zoo object
plot(res) # The first two are nonstationary in autocovariance
```

SSAsave Identification of Non-stationarity in Variance

Description

SSAsave method for identifying non-stationarity in variance
usage

SSAsave(X, ...) # Default S3 method:
SSAsave(X, K, n.cuts = NULL, ...) # S3 method for class 'ts'
SSAsave(X, ...)

Arguments

X A numeric matrix or a multivariate time series object of class `ts`, `xts` or `zoo`. Missing values are not allowed.
K Number of intervals the time series is split into.
n.cuts A K+1 vector of values that correspond to the breaks which are used for splitting the data. Default is intervals of equal length.
... Further arguments to be passed to or from methods.

Details

Assume that a \(p \)-variate \(\mathbf{Y} \) with \(T \) observations is whitened, i.e. \(\mathbf{Y} = \mathbf{S}^{-1/2}(\mathbf{X}_t - \frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_t) \), where \(\mathbf{S} \) is the sample covariance matrix of \(\mathbf{X} \).

The values of \(\mathbf{Y} \) are then split into \(K \) disjoint intervals \(T_i \). Algorithm first calculates matrix

\[
\mathbf{M} = \sum_{i=1}^{K} \frac{T_i}{T} (\mathbf{I} - \mathbf{S}_{T_i})(\mathbf{I} - \mathbf{S}_{T_i})^T,
\]

where \(K \) is the number of breakpoints, \(\mathbf{I} \) is an identity matrix, and \(\mathbf{S}_{T_i} \) is the sample variance of values of \(\mathbf{Y} \) which belong to a disjoint interval \(T_i \).

The algorithm finds an orthogonal matrix \(\mathbf{U} \) via eigendecomposition

\[
\mathbf{M} = \mathbf{U} \Sigma \mathbf{U}^T.
\]

The final unmixing matrix is then \(\mathbf{W} = \mathbf{U} \mathbf{S}^{-1/2} \). The first \(k \) rows of \(\mathbf{U} \) are the eigenvectors corresponding to the non-zero eigenvalues and the rest correspond to the zero eigenvalues. In the same way, the first \(k \) rows of \(\mathbf{W} \) project the observed time series to the subspace of components with non-stationary variance, and the last \(p - k \) rows to the subspace of components with stationary variance.

Value

A list of class 'ssabss', inheriting from class 'bss', containing the following components:

\(\mathbf{W} \) The estimated unmixing matrix.
\(\mathbf{S} \) The estimated sources as time series object standardized to have mean 0 and unit variances.
\(\mathbf{M} \) Used separation matrix.
\(K \) Number of intervals the time series is split into.
D Eigenvalues of M.
MU The mean vector of X.
n.cut Used K+1 vector of values that correspond to the breaks which are used for splitting the data.
method Name of the method ("SSAsave"), to be used in e.g. screeplot.

Author(s)

Markus Matilainen, Klaus Nordhausen

References

See Also

JADE

Examples

n <- 5000
A <- rorth(4)
z1 <- rtvvar(n, alpha = 0.2, beta = 0.5)
z2 <- rtvvar(n, alpha = 0.1, beta = 1)
z3 <- arima.sim(n, model = list(ma = c(0.72, 0.24)))
z4 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))
Z <- cbind(z1, z2, z3, z4)
X <- as.ts(tcrossprod(Z, A)) # An mts object
res <- SSAsave(X, K = 6)
res$D # Two non-zero eigenvalues
screeplot(res, type = "lines") # This can also be seen in screeplot
ggscreepplot(res, type = "lines") # ggplot version of screeplot

Plotting the components as an mts object
plot(res) # The first two are nonstationary in variance
SSAsir

Identification of Non-stationarity in Mean

Description

SSAsir method for identifying non-stationarity in mean.

Usage

SSAsir(X, ...)

Default S3 method:
SSAsir(X, K, n.cuts = NULL, ...)
S3 method for class 'ts'
SSAsir(X, ...)

Arguments

X A numeric matrix or a multivariate time series object of class ts, xts or zoo. Missing values are not allowed.
K Number of intervals the time series is split into.
n.cuts A K+1 vector of values that correspond to the breaks which are used for splitting the data. Default is intervals of equal length.
... Further arguments to be passed to or from methods.

Details

Assume that a p-variate Y with T observations is whitened, i.e. $Y = S^{-1/2}(X_t - \frac{1}{T} \sum_{t=1}^{T} X_t)$, where S is the sample covariance matrix of X.

The values of Y are then split into K disjoint intervals T_i. Algorithm first calculates matrix

$$ M = \sum_{i=1}^{K} \frac{T_i}{T}(m_{T_i}, m_{T_i}^T), $$

where K is the number of breakpoints, and m_{T_i} is the average of values of Y which belong to a disjoint interval T_i.

The algorithm finds an orthogonal matrix U via eigendecomposition

$$ M = UDU^T. $$

The final unmixing matrix is then $W = US^{-1/2}$. The first k rows of U are the eigenvectors corresponding to the non-zero eigenvalues and the rest correspond to the zero eigenvalues. In the same way, the first k rows of W project the observed time series to the subspace of components with non-stationary mean, and the last $p-k$ rows to the subspace of components with stationary mean.
Value

A list of class 'ssabss', inheriting from class 'bss', containing the following components:

- **W**: The estimated unmixing matrix.
- **S**: The estimated sources as time series object standardized to have mean 0 and unit variances.
- **M**: Used separation matrix.
- **K**: Number of intervals the time series is split into.
- **D**: Eigenvalues of M.
- **MU**: The mean vector of X.
- **n.cut**: Used K+1 vector of values that correspond to the breaks which are used for splitting the data.
- **method**: Name of the method ("SSAsir"), to be used in e.g. screeplot.

Author(s)

Markus Matilainen, Klaus Nordhausen

References

See Also

JADE

Examples

```r
n <- 5000
A <- rorth(4)

z1 <- arima.sim(n, model = list(ar = 0.7)) + rep(c(-1.52, 1.38),
    c(floor(n*0.5), n - floor(n*0.5)))
z2 <- arima.sim(n, model = list(ar = 0.5)) + rep(c(-0.75, 0.84, -0.45),
    c(floor(n/3), floor(n/3), n - 2*floor(n/3)))
z3 <- arima.sim(n, model = list(ma = 0.72))
z4 <- arima.sim(n, model = list(ma = c(0.34)))

Z <- cbind(z1, z2, z3, z4)
X <- tcrossprod(Z, A)

res <- SSAsir(X, K = 6)
res$D # Two non-zero eigenvalues
screeplot(res, type = "lines") # This can also be seen in screeplot

# Plotting the components
plot(res) # The first two are nonstationary in mean
```
Index

* classes
 ssabss, 7
* datagen
 rtvAR1, 5
 rtvvar, 6
* methods
 ASSA, 3
 SSAcomb, 8
 SSAcor, 10
 SSAsave, 12
 SSAsir, 15
* multivariate
 ASSA, 3
 ssaBSS-package, 2
 SSAcomb, 8
 SSAcor, 10
 SSAsave, 12
 SSAsir, 15
* package
 ssaBSS-package, 2
* screeplot
 ssabss, 7
* ts
 ASSA, 3
 rtvAR1, 5
 rtvvar, 6
 ssaBSS-package, 2
 SSAcomb, 8
 SSAcor, 10
 SSAsave, 12
 SSAsir, 15

ASSA, 2, 3, 8
bss.components, 7
coeff.bss, 7
frjd, 10
ggplot2, 7, 8

ggscreeplot.ssabss (ssabss), 7
JADE, 4, 7, 8, 10, 12, 14, 16
plot.bss, 7
plot.ssabss (ssabss), 7
print.bss, 7
rtvAR1, 2, 5
rtvvar, 2, 6
screeplot.ssabss (ssabss), 7
ssabss, 7
ssabss-package, 2
SSAcomb, 2, 8, 8
SSAcor, 2, 8, 10
SSAsave, 2, 8, 12
SSAsir, 2, 8, 15
ts, 3, 5, 6, 8, 11, 13, 15
xts, 3, 8, 11, 13, 15
zoo, 3, 8, 11, 13, 15