Package ‘sparsevar’

April 18, 2021

Version 0.1.0
Date 2021-04-16
Title Sparse VAR/VECM Models Estimation
Maintainer Simone Vazzoler <svazzole@gmail.com>
Imports Matrix, ncvreg, parallel, doParallel, glmnet, ggplot2,
rescale2, grid, mvtnorm, picasso, corpcor,
Suggests knitr, rmarkdown, testthat,
Depends R (>= 3.5.0)
Description A wrapper for sparse VAR/VECM time series models estimation
using penalties like ENET (Elastic Net), SCAD (Smoothly Clipped
Absolute Deviation) and MCP (Minimax Concave Penalty).
Based on the work of Sumanta Basu and George Michailidis
License GPL-2
URL https://github.com/svazzole/sparsevar
BugReports https://github.com/svazzole/sparsevar
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation no
Author Simone Vazzoler [aut, cre]
Repository CRAN
Date/Publication 2021-04-18 04:50:02 UTC

R topics documented:

accuracy ... 2
bootstrappedVAR ... 3
checkImpulseZero .. 3
accuracy

Accuracy metric

Description

Compute the accuracy of a fit

Usage

accuracy(referenceM, A)
bootstrappedVAR

Arguments

- **referenceM**: the matrix to use as reference
- **A**: the matrix obtained from a fit

Description

Build the bootstrapped series from the original var

Usage

 bootstrappedVAR(v)

Arguments

- **v**: the VAR object as from fitVAR or simulateVAR

checkImpulseZero

Check Impulse Zero

Description

A function to find which entries of the impulse response function are zero.

Usage

 checkImpulseZero(irf)

Arguments

- **irf**: irf output from impulseResponse function

Value

a matrix containing the indices of the impulse response function that are 0.
checkIsVar
Check is var

Description
Check if the input is a var object.

Usage
checkIsVar(v)

Arguments
- v: the object to test

companionVAR
Companion VAR

Description
Build the VAR(1) representation of a VAR(p) process.

Usage
companionVAR(v)

Arguments
- v: the VAR object as from fitVAR or simulateVAR

computeForecasts
Computes forecasts for VARs

Description
This function computes forecasts for a given VAR.

Usage
computeForecasts(v, num_steps)

Arguments
- v: a VAR object as from fitVAR.
- num_steps: the number of forecasts to produce.
createSparseMatrix

Description

Creates a sparse square matrix with a given sparsity and distribution.

Usage

createSparseMatrix(
 N,
 sparsity,
 method = "normal",
 stationary = FALSE,
 p = 1,
 ...
)

Arguments

N the dimension of the square matrix
sparsity the density of non zero elements
method the method used to generate the entries of the matrix. Possible values are "normal" (default) or "bimodal".
stationary should the spectral radius of the matrix be smaller than 1? Possible values are TRUE or FALSE. Default is FALSE.
p normalization constant (used for VAR of order greater than 1, default = 1)
... other options for the matrix (you can specify the mean mu_mat and the standard deviation sd_mat).

Value

An NxN sparse matrix.

Examples

M <- createSparseMatrix(
 N = 30, sparsity = 0.05, method = "normal",
 stationary = TRUE
)
decomposePi \hspace{1cm} \textit{Decompose Pi VECM matrix}

\textbf{Description}

A function to estimate a (possibly big) multivariate VECM time series using penalized least squares methods, such as ENET, SCAD or MC+.

\textbf{Usage}

decomposePi(vecm, rk, ...)

\textbf{Arguments}

- \texttt{vecm} \hspace{1cm} \text{the VECM object}
- \texttt{rk} \hspace{1cm} \text{rank}
- \ldots \hspace{1cm} \text{options for the function (TODO: specify)}

\textbf{Value}

- \texttt{alpha}
- \texttt{beta}

errorBandsIRF \hspace{1cm} \textit{Error bands for IRF}

\textbf{Description}

A function to estimate the confidence intervals for irf and oirf.

\textbf{Usage}

errorBandsIRF(v, irf, alpha, M, resampling, ...)

\textbf{Arguments}

- \texttt{v} \hspace{1cm} \text{a var object as from fitVAR or simulateVAR}
- \texttt{irf} \hspace{1cm} \text{irf output from impulseResponse function}
- \texttt{alpha} \hspace{1cm} \text{level of confidence (default $\alpha = 0.01$)}
- \texttt{M} \hspace{1cm} \text{number of bootstrapped series (default $M = 100$)}
- \texttt{resampling} \hspace{1cm} \text{type of resampling: "bootstrap" or "jackknife"}
- \ldots \hspace{1cm} \text{some options for the estimation: verbose = TRUE or FALSE, mode = "fast" or "slow", threshold = TRUE or FALSE.}
fitVAR

Value

A matrix containing the indices of the impulse response function that are 0.

Description

A function to estimate a (possibly high-dimensional) multivariate VAR time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

fitVAR(data, p = 1, penalty = "ENET", method = "cv", ...)

Arguments

data | the data from the time series: variables in columns and observations in rows
p | order of the VAR model
penalty | the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"
method | possible values are "cv" or "timeSlice"
... | the options for the estimation. Global options are: threshold: if TRUE all the entries smaller than the oracle threshold are set to zero; scale: scale the data (default = FALSE)? nfolds: the number of folds used for cross validation (default = 10); parallel: if TRUE use multicore backend (default = FALSE); ncores: if parallel is TRUE, specify the number of cores to use for parallel evaluation. Options for ENET estimation: alpha: the value of alpha to use in elastic net (0 is Ridge regression, 1 is LASSO (default)); type.measure: the measure to use for error evaluation ("mse" or "mae"); nlambda: the number of lambdas to use in the cross validation (default = 100); leaveOut: in the time slice validation leave out the last leaveOutLast observations (default = 15); horizon: the horizon to use for estimating mse/mae (default = 1); picasso: use picasso package for estimation (only available for penalty = "SCAD" and method = "timeSlice").

Value

A the list (of length p) of the estimated matrices of the process
fit the results of the penalized LS estimation
mse the mean square error of the cross validation
time elapsed time for the estimation
residuals the time series of the residuals
fitVARX

Multivariate VARX estimation

Description

A function to estimate a (possibly high-dimensional) multivariate VARX time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

fitVARX(data, p = 1, Xt, m = 1, penalty = "ENET", method = "cv", ...)

Arguments

data the data from the time series: variables in columns and observations in rows
p order of the VAR model
Xt the exogenous variables
m order of the exogenous variables
penalty the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"
method possible values are "cv" or "timeSlice"
... the options for the estimation. Global options are: threshold: if TRUE all the entries smaller than the oracle threshold are set to zero; scale: scale the data (default = FALSE)? nfolds: the number of folds used for cross validation (default = 10); parallel: if TRUE use multicore backend (default = FALSE); ncores: if parallel is TRUE, specify the number of cores to use for parallel evaluation. Options for ENET estimation: alpha: the value of alpha to use in elastic net (0 is Ridge regression, 1 is LASSO (default)); type.measure: the measure to use for error evaluation ("mse" or "mae"); nlambda: the number of lambdas to use in the cross validation (default = 100); leaveOut: in the time slice validation leave out the last leaveOutLast observations (default = 15); horizon: the horizon to use for estimating mse/mae (default = 1); picasso: use picasso package for estimation (only available for penalty = "SCAD" and method = "timeSlice").

Value

fit the results of the penalized LS estimation
mse the mean square error of the cross validation
time elapsed time for the estimation
residuals the time series of the residuals
Description

A function to estimate a (possibly big) multivariate VECM time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

```r
fitVECM(data, p, penalty, method, logScale, ...)
```

Arguments

- `data`: the data from the time series: variables in columns and observations in rows
- `p`: order of the VECM model
- `penalty`: the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"
- `method`: "cv" or "timeSlice"
- `logScale`: should the function consider the log of the inputs? By default this is set to TRUE
- `...`: options for the function (TODO: specify)

Value

- `Pi`: the matrix Π for the VECM model
- `G`: the list (of length $p-1$) of the estimated matrices of the process
- `fit`: the results of the penalized LS estimation
- `mse`: the mean square error of the cross validation
- `time`: elapsed time for the estimation

frobNorm

Frobenius norm of a matrix

Description

Compute the Frobenius norm of M

Usage

```r
frobNorm(M)
```

Arguments

- `M`: the matrix (real or complex valued)
impulseResponse \hspace{1cm} \textit{Impulse Response Function}

\textbf{Description}

A function to estimate the Impulse Response Function of a given VAR.

\textbf{Usage}

\begin{verbatim}
impulseResponse(v, len = 20)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{v} \hspace{1cm} the data in the form of a VAR
 \item \textbf{len} \hspace{1cm} length of the impulse response function
\end{itemize}

\textbf{Value}

\begin{verbatim}
irf a 3d array containing the impulse response function.
\end{verbatim}

informCrit \hspace{1cm} \textit{Computes information criteria for VARs}

\textbf{Description}

This function computes information criteria (AIC, Schwartz and Hannan-Quinn) for VARs.

\textbf{Usage}

\begin{verbatim}
informCrit(v)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{v} \hspace{1cm} a list of VAR objects as from fitVAR.
\end{itemize}
l1norm

L1 matrix norm

Description

Compute the L1 matrix norm of M

Usage

```r
l1norm(M)
```

Arguments

- **M**
 - the matrix (real or complex valued)

l2norm

L2 matrix norm

Description

Compute the L2 matrix norm of M

Usage

```r
l2norm(M)
```

Arguments

- **M**
 - the matrix (real or complex valued)

lInftyNorm

L-infinity matrix norm

Description

Compute the L-infinity matrix norm of M

Usage

```r
lInftyNorm(M)
```

Arguments

- **M**
 - the matrix (real or complex valued)
maxNorm

Max-norm of a matrix

Description
Compute the max-norm of M

Usage
maxNorm(M)

Arguments
- M: the matrix (real or complex valued)

mcSimulations

Monte Carlo simulations

Description
This function generates Monte Carlo simulations of sparse VAR and its estimation (at the moment only for VAR(1) processes).

Usage
mcSimulations(
 N,
 nobs = 250,
 nMC = 100,
 rho = 0.5,
 sparsity = 0.05,
 penalty = "ENET",
 covariance = "Toeplitz",
 method = "normal",
 modelSel = "cv",
 ...
)

Arguments
- N: dimension of the multivariate time series.
- nobs: number of observations to be generated.
- nMC: number of Monte Carlo simulations.
- rho: base value for the covariance.
multiplot

- **sparsity**: density of non-zero entries of the VAR matrices.
- **penalty**: penalty function to use for LS estimation. Possible values are "ENET", "SCAD" or "MCP".
- **covariance**: type of covariance matrix to be used in the generation of the sparse VAR model.
- **method**: which type of distribution to use in the generation of the entries of the matrices.
- **modelSel**: select which model selection criteria to use ("cv" or "timeslice").
- **...**: (TODO: complete)

Value

A \(n \times m \times 5 \) matrix with the results of the Monte Carlo estimation

multiplot

Multiplots with ggplot

Description

Multiple plot function. ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

- **...**: a sequence of ggplots to be plotted in the grid.
- **plotlist**: a list containing ggplots as elements.
- **cols**: number of columns in layout
- **layout**: a matrix specifying the layout. If present, 'cols' is ignored. If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom. Taken from R Cookbook

Value

A ggplot containing the plots passed as arguments
plotIRF

IRF plot

Description

Plot a IRF object

Usage

`plotIRF(irf, eb, i, j, type, bands)`

Arguments

- `irf`: the irf object to plot
- `eb`: the errorbands to plot
- `i`: the first index
- `j`: the second index
- `type`: type = "irf" or type = "oirf"
- `bands`: "quantiles" or "sd"

Value

An image plot relative to the impulse response function.

plotIRFGrid

IRF grid plot

Description

Plot a IRF grid object

Usage

`plotIRFGrid(irf, eb, indexes, type, bands)`

Arguments

- `irf`: the irf object computed using impulseResponse
- `eb`: the error bands estimated using errorBands
- `indexes`: a vector containing the indices that you want to plot
- `type`: plot the irf (type = "irf" by default) or the orthogonal irf (type = "oirf")
- `bands`: which type of bands to plot ("quantiles" (default) or "sd")

Value

An image plot relative to the impulse response function.
plotMatrix

Matrix plot

Description

Plot a sparse matrix

Usage

`plotMatrix(M, colors)`

Arguments

- `M` the matrix to plot
- `colors` dark or light

Value

An image plot with a particular color palette (black zero entries, red for the negative ones and green for the positive)

plotVAR

Plot VARs

Description

Plot all the matrices of a VAR model

Usage

`plotVAR(..., colors)`

Arguments

- `...` a sequence of VAR objects (one or more than one, as from `simulateVAR` or `fitVAR`)
- `colors` the gradient used to plot the matrix. It can be "light" (low = red – mid = white – high = blue) or "dark" (low = red – mid = black – high = green)

Value

An image plot with a specific color palette
plotVECM

Plot VECMs

Description

Plot all the matrices of a VECM model

Usage

`plotVECM(v)`

Arguments

- `v` a VECM object (as from `fitVECM`)

Value

An image plot with a specific color palette (black zero entries, red for the negative ones and green for the positive)

simulateVAR

VAR simulation

Description

This function generates a simulated multivariate VAR time series.

Usage

`simulateVAR(N, p, nobs, rho, sparsity, mu, method, covariance, ...)`

Arguments

- `N` dimension of the time series.
- `p` number of lags of the VAR model.
- `nobs` number of observations to be generated.
- `rho` base value for the covariance matrix.
- `sparsity` density (in percentage) of the number of nonzero elements of the VAR matrices.
- `mu` a vector containing the mean of the simulated process.
- `method` which method to use to generate the VAR matrix. Possible values are "normal" or "bimodal".
- `covariance` type of covariance matrix to use in the simulation. Possible values: "toeplitz", "block1", "block2" or simply "diagonal".
- `...` the options for the simulation. These are: `muMat`: the mean of the entries of the VAR matrices; `sdMat`: the sd of the entries of the matrices;
Value

A list of NxN matrices ordered by lag

data a list with two elements: series the multivariate time series and noises the time series of errors

S the variance/covariance matrix of the process

Description

This function generates a simulated multivariate VAR time series.

Usage

```r
simulateVARX(N, K, p, m, nobs, rho,
sparsityA1, sparsityA2, sparsityA3,
mu, method, covariance, ...)
```

Arguments

- `N` dimension of the time series.
- `K` TODO
- `p` number of lags of the VAR model.
- `m` TODO
- `nobs` number of observations to be generated.
- `rho` base value for the covariance matrix.
- `sparsityA1` density (in percentage) of the number of nonzero elements of the A1 block.
- `sparsityA2` density (in percentage) of the number of nonzero elements of the A2 block.
- `sparsityA3` density (in percentage) of the number of nonzero elements of the A3 block.
- `mu` a vector containing the mean of the simulated process.
- `method` which method to use to generate the VAR matrix. Possible values are "normal" or "bimodal".
- `covariance` type of covariance matrix to use in the simulation. Possible values: "toeplitz", "block1", "block2" or simply "diagonal".
- `...` the options for the simulation. These are: `muMat`: the mean of the entries of the VAR matrices; `sdMat`: the sd of the entries of the matrices;

Value

A list of NxN matrices ordered by lag

data a list with two elements: series the multivariate time series and noises the time series of errors

S the variance/covariance matrix of the process
sparsevar

A package to estimate multivariate time series models (such as VAR and VECM), under the sparsity hypothesis.

Description

It performs the estimation of the matrices of the models using penalized least squares methods such as LASSO, SCAD and MCP.

sparsevar functions

fitVAR, fitVECM, simulateVAR, createSparseMatrix, plotMatrix, plotVAR, plotVECM l2norm, l1norm, lInftyNorm, maxNorm, frobNorm, spectralRadius, spectralNorm, impulseResponse

spectralNorm

Spectral norm

Description

Compute the spectral norm of M

Usage

spectralNorm(M)

Arguments

M the matrix (real or complex valued)

spectralRadius

Spectral radius

Description

Compute the spectral radius of M

Usage

spectralRadius(M)

Arguments

M the matrix (real or complex valued)
testGranger

Description

This function should retain only the coefficients of the matrices of the VAR that are statistically significative (from the bootstrap)

Usage

testGranger(v, eb)

Arguments

v the VAR object as from fitVAR or simulateVAR
eb the error bands as obtained from errorBands

transformData

Description

Transform the input data

Usage

transformData(data, p, opt)

Arguments

data the data
p the order of the VAR
opt a list containing the options
varENET \hspace{1em} \textit{VAR ENET}

\textbf{Description}

Estimate VAR using ENET penalty

\textbf{Usage}

\begin{verbatim}
varENET(data, p, lambdas, opt)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{data} \hspace{1em} the data
 \item \texttt{p} \hspace{1em} the order of the VAR
 \item \texttt{lambdas} \hspace{1em} a vector containing the lambdas to be used in the fit
 \item \texttt{opt} \hspace{1em} a list containing the options
\end{itemize}

varMCP \hspace{1em} \textit{VAR MCP}

\textbf{Description}

Estimate VAR using MCP penalty

\textbf{Usage}

\begin{verbatim}
varMCP(data, p, lambdas, opt)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{data} \hspace{1em} the data
 \item \texttt{p} \hspace{1em} the order of the VAR
 \item \texttt{lambdas} \hspace{1em} a vector containing the lambdas to be used in the fit
 \item \texttt{opt} \hspace{1em} a list containing the options
\end{itemize}
Description

Estimate VAR using SCAD penalty

Usage

varSCAD(data, p, lambdas, opt, penalty)

Arguments

data the data
p the order of the VAR
lambdas a vector containing the lambdas to be used in the fit
opt a list containing the options
penalty a string "SCAD" or something else
Index

accuracy, 2
bootstrappedVAR, 3
testGranger, 19
transformData, 19
checkImpulseZero, 3
checkIsVar, 4
varENET, 20
companionVAR, 4
varMCP, 20
computeForecasts, 4
varSCAD, 21
createSparseMatrix, 5

l1norm, 11
maxNorm, 12
mcSimulations, 12

l2norm, 11
multiplot, 13

lInftyNorm, 11
plotIRF, 14
simulationVAR, 16
plotIRFGrid, 14
simulateVARX, 17
plotMatrix, 15
sparsevar, 18
plotVAR, 15
spectralNorm, 18
plotVECM, 16
spectralRadius, 18