Package ‘snap’

June 30, 2021

Type Package
Title Simple Neural Application
Version 1.1.0
Author Giancarlo Vercellino
Maintainer Giancarlo Vercellino <giancarlo.vercellino@gmail.com>
Description A simple wrapper to easily design vanilla deep neural networks using 'Tensorflow'/Keras' backend for regression, classification and multi-label tasks, with some tweaks and tricks (skip shortcuts, embedding, feature selection and anomaly detection).
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.6)
Imports keras (>= 2.3.0.0), tensorflow (>= 2.2.0), dplyr (>= 1.0.2), purrr (>= 0.3.4), forcats (>= 0.5.0), tictoc (>= 1.0.1), readr (>= 1.4.0), ggplot2 (>= 3.3.3), CORElearn (>= 1.54.2), dbscan (>= 1.1-5), stringr (>= 1.4.0), reticulate (>= 1.18)
URL https://rpubs.com/giancarlo_vercellino/snap
NeedsCompilation no
Repository CRAN
Date/Publication 2021-06-30 08:30:02 UTC

R topics documented:

friedman3 .. 2
snap ... 2
threenorm .. 6

Index 7
friedman3 data set

Description
Data set to demonstrate regression task.

Usage
friedman3

Format
A dummy data frame with 5 columns and 150 rows created using Benchmark Problem Friedman 3 by mlbench. The target feature is "y".

Source
mlbench.friedman3(n = 150, sd = 3)

snap

Description
A simple wrapper to easily design vanilla deep neural networks using 'Tensorflow'/'Keras' backend for regression, classification and multi-label tasks, with some tweaks and tricks (skip shortcuts, embedding, feature selection and anomaly detection).

Usage
snap(
data,
target,
task = NULL,
positive = NULL,
skip_shortcut = FALSE,
embedding = "none",
embedding_size = 10,
folds = 3,
reps = 1,
holdout = 0.3,
layers = 1,
activations = "relu",
regularization_L1 = 0,
regularization_L2 = 0,
snap

nodes = 32,
dropout = 0,
span = 0.2,
min_delta = 0,
batch_size = 32,
epochs = 50,
imp_thresh = 0,
anom_thresh = 1,
output_activation = NULL,
optimizer = "Adam",
loss = NULL,
metrics = NULL,
winsor = FALSE,
q_min = 0.01,
q_max = 0.99,
normalization = TRUE,
seed = 42,
verbose = 0
)

Arguments

data
A data frame including all the features and targets.

target
String. Single label for target feature when task is "regr" or "classif". String
vector with multiple labels for target features when task is "multilabel".

task
String. Inferred by data type of target feature(s). Available options are: "regr",
"classif", "multilabel". Default: NULL.

positive
String. Positive class label (only for classification task). Default: NULL.

skip_shortcut
Logical. Option to add a skip shortcut to improve network performance in case
of many layers. Default: FALSE.

embedding
String. Available options are: "none", "global" (when identical values for dif-
ferent features hold different meanings), "sequence" (when identical values for
different features hold the same meaning). Default: NULL.

embedding_size

folds
Positive integer. Number of folds for repeated cross-validation. Default: 3.

reps

holdout
Positive numeric. Percentage of cases for holdout validation. Default: 0.3.

layers

activations
String. String vector with the activation functions for each layer (for exam-
ple, a neural net with 3 layers may have activations = c("relu", "gelu", "tanh"))).
Besides standard Tensorflow/Keras activations, you can also choose: "swish",
"mish", "gelu", "bent". Default: "relu".

regularization_L1
Positive numeric. Value for L1 regularization of the loss function. Default: 0.
regularization_L2

nodes
 Positive integer. Integer vector with the nodes for each layer (for example, a
 neural net with 3 layers may have nodes = c(32, 64, 16)). Default: 32.

dropout
 Positive numeric. Value for the dropout parameter for each layer (for example,
 a neural net with 3 layers may have dropout = c(0, 0.5, 0.3)). Default: 0.

span
 Positive numeric. Percentage of epoch for the patience parameter. Default: 0.2.

min_delta
 Positive numeric. Minimum improvement on metric to trigger the early stop.
 Default: 0.

batch_size

epochs
 Positive integer. Maximum number of forward and backward propagations. De-
 fault: 50.

imp_thresh
 Positive numeric. Importance threshold (in percentiles) above which the features
 are included in the model (using ReliefFbestK metric by CORElearn). Default: 0
 (all features included).

anom_thresh
 Positive numeric. Anomaly threshold (in percentiles) above which the instances
 are excluded by the model (using lof by dbscan). Default: 1 (all instances in-
 cluded).

output_activation
 String. Default: NULL. If not specified otherwise, it will be "Linear" for regres-
 sion task, "Softmax" for classification task, "Sigmoid" for multilabel task.

optimizer
 String. Standard Tensorflow/Keras Optimization methods are available. Default:
 "Adam".

loss
 Default: NULL. If not specified otherwise, it will be "mean_absolute_error" for
 regression task, "categorical_crossentropy" for classification task, "binary_crossentropy"
 for multilabel task.

metrics
 Default: NULL. If not specified otherwise, it will be "mean_absolute_error" for
 regression task, "categorical_crossentropy" for classification task, "binary_crossentropy"
 for multilabel task.

winsor
 Logical. Set to TRUE in case you want to perform Winsorization on regression
 tasks. Default: FALSE.

q_min
 Positive numeric. Minimum quantile threshold for Winsorization. Default: 0.01.

q_max

normalization
 Logical. After each layer it performs a batch normalization. Default: TRUE.

seed
 Positive integer. Seed value to control random processes. Default: 42.

verbose
 Positive integer. Set the level of information from Keras. Default: 0.

Value

This function returns a list including:

- task: kind of task solved
• configuration: main hyper-parameters describing the neural net (layers, activations, regularization_L1, regularization_L2, nodes, dropout)
• model: Keras standard model description
• pred_fun: function to use on the same data scheme to predict new values
• plot: Keras standard history plot
• testing_frame: testing set with the related predictions, including
• trials: statistics for each trial during the repeated cross-validation (train set and validation set):
 – task "classif": balanced accuracy (bac), precision (prc), sensitivity (sen), critical success index (csi), FALSE-score (fsc), Kappa (kpp), Kendall (kdl)
 – task "regr": root mean square error (rmse), mean absolute error (mae), median absolute error (mdae), relative root square error (rrse), relative absolute error (rae), Pearson (prsn)
 – task "multilabel": macro bac, macro prc, macro sensitivity, macro sen, macro csi, macro fsc, micro kpp, micro kdl
• metrics: summary statistics as above for training, validation (both averaged over trials) and testing
• selected_feat: labels of features included within the model
• selected_inst: index of instances included within the model
• time_log

Author(s)
Giancarlo Vercellino <giancarlo.vercellino@gmail.com>

See Also
Useful links:

• https://rpubs.com/giancarlo_vercellino/snap

Examples
```r
## Not run:
snap(friedman3, target="y")
snap(threenorm, target="classes", imp_thresh = 0.3, anom_thresh = 0.95)
snap(threenorm, "classes", layers = 2, activations = c("gelu", "swish"), nodes = c(32, 64))
## End(Not run)
```
threenorm

threenorm data set

Description
Data set to demonstrate classification task.

Usage
threenorm

Format
A dummy data frame with 5 columns and 150 rows created using Threenorm Benchmark Problem by mlbench. The target feature is "classes".

Source
mlbench.threenorm(150, d = 20)
Index

* datasets
 * friedman3, 2
 * threenorm, 6

friedman3, 2

snap, 2
snap-package (snap), 2

threenorm, 6