Package ‘simukde’

October 7, 2018

Type Package
Version 1.1.0
Date 2018-10-07
Title Simulation with Kernel Density Estimation

Author MAKHGAL Ganbold [aut, cre],
 BAYARBAATAR Amgalan [aut]
Maintainer MAKHGAL Ganbold <makhgal@seas.num.edu.mn>
URL https://github.com/galaamn/simukde
BugReports https://github.com/galaamn/simukde/issues
Depends R (>= 2.14.0)
Imports ks, mvtnorm, parallel, stats, MASS
Suggests testthat, datasets
License GPL (>= 3) | file LICENSE
Encoding UTF-8
LazyData true
ByteCompile true
NeedsCompilation no
RoxygenNote 6.1.0
Repository CRAN
Date/Publication 2018-10-07 06:40:02 UTC

R topics documented:

find_best_fit .. 2
simukde ... 3
simulate_kde ... 4
Description

It finds the best fitting distribution from supported univariate continuous distributions for given data.

Usage

```r
find_best_fit(x, positive = FALSE, plot = TRUE,
               legend.pos = "topright")
```

Arguments

- **x**: a numeric vector; data.
- **positive**: a logical constant; distribution type.
- **plot**: a logical constant. If TRUE (default), a histogram and density lines are drawn.
- **legend.pos**: a character string. Indicates the legend position and must be one of "bottom-right", "bottom", "bottomleft", "left", "topleft", "top", "topright" (default), "right" and "center".

Details

This function is supported following univariate distributions:

- for positive random variables: Log normal, Exponential, Gamma and Weibull.
- for all random variables: Normal, Cauchy, Log normal, Exponential, Gamma, Weibull and Uniform.

Legends of the plot are ordered by p-values of the test.

Value

A list containing the following items:

- **distribution**: the name of the best fitting distribution.
- **ks.statistic**: the Kolmogorov-Smirnov test statistic for the distribution.
- **p.value**: the p-value of the test.
- **summary**: results similar to above for other distributions.
- **x**: given data.
- **n**: the sample size.
References

See Also

ks.test, fitdistr, hist

Examples

```r
petal.length <- datasets::iris$Petal.Length[datasets::iris$Species == "setosa"]
simukde::find_best_fit(x = petal.length, positive = TRUE)
```

Description

The simukde package provides a function which generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. The function uses the Accept-Reject method.

Note

Funding: This package has been done within the framework of the project Statistics and Optimization Based Methods for Identification of Cancer-Activated Biological Processes (P2017-2519) supported by the Asia Research Center, Mongolia and Korea Foundation for Advanced Studies, Korea.

The funders had no role in study design, analysis, decision to publish, or preparation of the package.

Author(s)

MAKHGAL Ganbold and BAYARBAATAR Amgalan, National University of Mongolia

References

Simulation with Kernel Density Estimation
simulate_kde

Simulation with Kernel Density Estimation

Description

Generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. The function uses the Accept-Reject method.

Usage

```r
simulate_kde(x, n = 100, distr = "norm", const.only = FALSE,
              seed = NULL, parallel = FALSE, ...)
```

Arguments

- `x` a numeric vector, matrix or data frame; data.
- `n` integer; the number of random values will be generated.
- `distr` character; instrumental or candidate distribution name. See details.
- `const.only` logical; if TRUE, the constant of the Accept-Reject method will be returned.
- `seed` a single value, interpreted as an integer, or NULL (default).
- `parallel` logical; if TRUE parallel generator will be worked. FALSE is default.
- `...` other parameters for functions `kde`.

Details

Such function uses the function `kde` as kernel density estimator.

The Accept-Reject method is used to simulate random variables. Following code named distributions can be used as a value of the argument `distr` and an instrumental or candidate distribution of the simulation method. For univariate distributions:

- **norm** normal distribution (default), \((\infty, \infty)\)
- **cauchy** Cauchy distribution, \((-\infty, +\infty)\)
- **lnorm** log-normal distribution, \((0, +\infty)\)
- **exp** exponential distribution, \((0, +\infty)\)
- **gamma** gamma distribution, \((0, +\infty)\)
- **weibull** Weibull distribution, \((0, +\infty)\)
- **unif** uniform distribution, \((a, b)\)

And you can choose the best fitting instrumental distribution to simulate random variables more effectively by using `find_best_fit`. See examples.

For multivariate distributions, "norm" (multivariate normal distribution) is used.
Value

list of given data, simulated values, kernel density estimation and the constant of the Accept-Reject method when const.only is FALSE (default).

References

See Also

find_best_fit, kde

Examples

```r
## 1-dimensional data
data(faithful)
hist(faithful$eruptions)
res <- simukde::simulate_kde(x = faithful$eruptions, n = 100, parallel = FALSE)
hist(res$random.values)

## Simulation with the best fitting instrumental distribution
data(faithful)
par(mfrow = c(1, 3))
hist(faithful$eruptions)
fit <- simukde::find_best_fit(x = faithful$eruptions, positive = TRUE)
res <- simukde::simulate_kde(
  x = faithful$eruptions, n = 100,
  distr = fit$distribution, parallel = FALSE)
hist(res$random.values)
par(mfrow = c(1, 1))

## 2-dimensional data
data(faithful)
res <- simukde::simulate_kde(x = faithful, n = 100)
plot(res$kde, display = "filled.contour2")
points(x = res$random.values, cex = 0.25, pch = 16, col = "green")
points(x = faithful, cex = 0.25, pch = 16, col = "black")
```
Index

find_best_fit, 2, 4, 5
fitdistr, 3

hist, 3

kde, 4, 5
ks.test, 3

simukde, 3
simukde-package (simukde), 3
simulate_kde, 4