Package ‘simstandard’

May 7, 2021

Title Generate Standardized Data
Version 0.6.3
Date 2021-05-07
Description Creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
Depends R (>= 3.4.0)
License CC0
Encoding UTF-8
Language en-US
RoxygenNote 7.1.1
Imports lavaan, mvtnorm, tibble, stats, magrittr, rlang, purrr
Suggests knitr, markdown, ggplot2, dplyr, tidyr, forcats, stringr, testthat, covr, badger
VignetteBuilder knitr
URL https://github.com/wjschne/simstandard
BugReports https://github.com/wjschne/simstandard/issues
Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>
NeedsCompilation no
Author W. Joel Schneider [aut, cre] (<https://orcid.org/0000-0002-8393-5316>)
Repository CRAN
Date/Publication 2021-05-07 18:40:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_composite_scores</td>
<td>2</td>
</tr>
<tr>
<td>add_factor_scores</td>
<td>3</td>
</tr>
<tr>
<td>fixed2free</td>
<td>4</td>
</tr>
<tr>
<td>get_factor_score_coefficients</td>
<td>5</td>
</tr>
</tbody>
</table>
add_composite_scores

For each latent variable in a structural model, add a composite score to observed data.

Description

For each latent variable in a structural model, add a composite score to observed data.

Usage

add_composite_scores(
 d, # A data.frame with observed data in standardized form (i.e., z-scores)
 m, # A character string with lavaan model
 mu = 0, # Score means. Composite scores will also have this mean. Defaults to 0.
 sigma = 1, # Score standard deviations. Composite scores will also have this standard deviation. Defaults to 1.
 names_suffix = "_Composite", # A character string added to each composite score name
 keep_observed_scores = TRUE, # The observed scores are returned along with the composite scores.
 ... # parameters passed to simstandardized_matrices
)

Arguments

d # A data.frame with observed data in standardized form (i.e., z-scores)
m # A character string with lavaan model
mu # Score means. Composite scores will also have this mean. Defaults to 0.
sigma # Score standard deviations. Composite scores will also have this standard deviation. Defaults to 1.
names_suffix # A character string added to each composite score name
keep_observed_scores # The observed scores are returned along with the composite scores.

Value

data.frame with observed data and estimated factor scores
add_factor_scores

Examples

library(simstandard)
lavaan model
m = "
 X =~ 0.9 * X1 + 0.8 * X2 + 0.7 * X3
"

Make data.frame for two cases
d <- data.frame(
 X1 = c(1.2, -1.2),
 X2 = c(1.5, -1.8),
 X3 = c(1.8, -1.1))

Compute composite scores for two cases
add_composite_scores(d, m)

add_factor_scores

For each latent variable in a structural model, add an estimated factor score to observed data.

Description

For each latent variable in a structural model, add an estimated factor score to observed data.

Usage

add_factor_scores(
 d,
 m,
 mu = 0,
 sigma = 1,
 CI = FALSE,
 p = 0.95,
 names_suffix = "_FS",
 keep_observed_scores = TRUE,
 ...
)

Arguments

d A data.frame with observed data in standardized form (i.e, z-scores)
m A character string with lavaan model
mu Population mean of the observed scores. Factor scores will also have this mean. Defaults to 0.
sigma Population standard deviation of the observed scores. Factor scores will also have this standard deviation. Defaults to 1.
CI Add confidence intervals? Defaults to ‘FALSE’. If ‘TRUE’, for each factor score, a lower and upper bound of the confidence interval is created. For example, the lower bound of factor score ‘X’ is ‘X_LB’, and the upper bound is ‘X_UB’.

p confidence interval proportion. Defaults to 0.95

names_suffix A character string added to each factor score name

keep_observed_scores The observed scores are returned along with the factor scores.

Value

data.frame with observed data and estimated factor scores

Examples

library(simstandard)
lavaan model
m = "X =~ 0.9 * X1 + 0.8 * X2 + 0.7 * X3"

Make data.frame for two cases
d <- data.frame(
 X1 = c(1.2, -1.2),
 X2 = c(1.5, -1.8),
 X3 = c(1.8, -1.1))

Compute factor scores for two cases
add_factor_scores(d, m)

fixed2free Remove fixed parameters from a lavaan model

Description

Remove fixed parameters from a lavaan model

Usage

fixed2free(m)

Arguments

m Structural model represented by lavaan syntax

Value

character string representing lavaan model
get_factor_score_coefficients

Examples

library(simstandard)
lavaan model with fixed parameters
m = "
Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13
Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23
"

Same model, but with fixed parameters removed.
m_free <- fixed2free(m)
cat(m_free)

get_factor_score_coefficients

Return factor score coefficients

Description

Return factor score coefficients

Usage

get_factor_score_coefficients(m, latent = TRUE, errors = FALSE, ...)

Arguments

m Structural model represented by lavaan syntax or output of sim_standardized_matrices
latent Include latent variables.
errors Include observed error and latent disturbances variables.
... parameters passed to the 'sim_standardized_matrices' function

Value

A matrix of factor score coefficients

Examples

m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"

get_factor_score_coefficients(m)
get_factor_score_validity

Return factor score validity coefficients

Description

Return factor score validity coefficients

Usage

get_factor_score_validity(m, latent = TRUE, errors = FALSE, ...)

Arguments

m Structural model represented by lavaan syntax or output of sim_standardized_matrices function.
latent Include latent variables.
errors Include observed error and latent disturbances variables.
... parameters passed to the 'sim_standardized_matrices’ function

Value

A matrix of validity coefficients

Examples

m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_factor_score_validity(m)

get_factor_score_validity_se

Return factor score validity coefficient standard errors

Description

Return factor score validity coefficient standard errors

Usage

get_factor_score_validity_se(m, latent = TRUE, errors = FALSE, ...)

get_model_implied_correlations

Arguments

m Structural model represented by lavaan syntax or output of sim_standardized_matrices function.
latent Include latent variables.
errors Include observed error and latent disturbances variables.
... parameters passed to the 'sim_standardized_matrices' function

Value

A matrix of factor score standard errors

Examples

m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_factor_score_validity_se(m)

Description

Function that takes a lavaan model with standardized parameters and returns a model-implied correlation matrix

Usage

get_model_implied_correlations(
 m,
 observed = TRUE,
 latent = FALSE,
 errors = FALSE,
 factor_scores = FALSE,
 composites = FALSE,
 ...
)
get_model_names

Arguments

m Structural model represented by lavaan syntax or output of sim_standardized_matrices function.
observed Include observed variables
latent Include latent variables
errors Include observed error and latent disturbances variables
factor_scores Include factor score variables
composites Include composite variables
... parameters passed to the ‘sim_standardized_matrices’ function

Value

A correlation matrix

Examples

library(simstandard)
lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

get_model_implied_correlations(m)

get_model_names Return model names

Description

Return model names

Usage

get_model_names(m, ...)

Arguments

m Structural model represented by lavaan syntax or output of sim_standardized_matrices function.
... parameters passed to the ‘sim_standardized_matrices’ function

Value

A list of variable names
Examples

```r
m <- "
A =~ 0.5 * A1 + 0.8 * A2 + 0.8 * A3
B =~ 0.5 * B1 + 0.8 * B2 + 0.8 * B3
B ~ 0.5 * A
"
get_model_names(m)
```

lav2ram

Extract standardized RAM matrices from a lavaan object

Description

Extract standardized RAM matrices from a lavaan object

Usage

```r
lav2ram(fit)
```

Arguments

- `fit` An object of class lavaan

Value

- list of RAM matrices A (asymmetric paths), S (symmetric paths), and F (filter matrix)

matrix2lavaan

Create lavaan model syntax from matrix coefficients

Description

Create lavaan model syntax from matrix coefficients

Usage

```r
matrix2lavaan(
  measurement_model = NULL,
  structural_model = NULL,
  covariances = NULL
)
```
Arguments

measurement_model
A matrix or data.frame with measurement model loadings. Column names are latent variables. Row names or the first column of a data.frame are indicator variables.

structural_model
A matrix or data.frame with structural model coefficients (i.e., regressions). Column names are "causal" variables. Row names or the first column of a data.frame are "effect" variables.

covariances
A matrix or data.frame with model covariances. Column names must match the row names. If a data.frame, row variable names can be specified in the first column.

Value

a character string with lavaan syntax

Examples

library(simstandard)
Specifying the measurement model:
For a data.frame, the column names are latent variables,
and the indicators can be specified as row names.
m <- data.frame(X = c(0.7,0.8,0,0),
 Y = c(0,0,0.8,0.9))
rownames(m) <- c("A", "B", "C", "D")
Indicator variables can also be specified
as the first column variable
with subsequent column names as latent variables
m <- data.frame(Indicators = c("A", "B", "C", "D"),
 X = c(0.7,0.8,0,0),
 Y = c(0,0,0.8,0.9))
Alternately, a matrix can be used:
m <- matrix(c(0.7,0.8,0,0,
 0,0,0.8,0.9),
 ncol = 2,
 dimnames = list(c("A", "B", "C", "D"),
 c("X", "Y")))
Specifying the structural coefficients:
The regression coefficients of the structural model can be
specified as either a data.frame or a matrix. Column names
are the predictors and row names are the criterion variables.
With a data.frame, criterion variables can alternately be
specified with as the first column.
s <- matrix(0.5, nrow = 1, ncol = 1, dimnames = list("Y", "X"))
The covariance matrix must be symmetric. Can also be specified
as a data.frame.
Sigma <- matrix(c(1, 0.3,
 0.3, 1),
 nrow = 2,
 ncol = 2),
model_complete

```
dimnames = list(c("B","C"),
               c("B","C"))
model <- matrix2lavaan(measurement_model = m,
         structural_model = s,
         covariances = Sigma)
cat(model)
```

Function that takes a lavaan model with standardized paths and loadings and returns a complete lavaan model syntax with standardized variances

Description

Function that takes a lavaan model with standardized paths and loadings and returns a complete lavaan model syntax with standardized variances

Usage

```
model_complete(m)
```

Arguments

- `m` Structural model represented by lavaan syntax

Value

character string representing lavaan model

Examples

```
library(simstandard)
# lavaan model
m = "
Latent_1 =~ 0.9 * Ob_11 + 0.8 * Ob_12 + 0.7 * Ob_13
Latent_2 =~ 0.9 * Ob_21 + 0.6 * Ob_22 + 0.4 * Ob_23
Latent_2 ~ 0.6 * Latent_1
"
# Same lavaan syntax, but with standardized variances
m_complete <- model_complete(m)
cat(m_complete)
```
sim_standardized Generates simulated data with standardized parameters.

Description

This function takes a lavaan model with standardized parameters and simulates latent scores, errors, disturbances, and observed scores.

Usage

sim_standardized(
 m,
 n = 1000,
 observed = TRUE,
 latent = TRUE,
 errors = TRUE,
 factor_scores = FALSE,
 composites = FALSE,
 matrices = FALSE,
 ...
)

Arguments

m Structural model represented by lavaan syntax
n Number of simulated cases
observed Include observed variables
latent Include latent variables
errors Include observed error and latent disturbances variables
factor_scores Include factor score variables
composites Include composite variables
matrices Include matrices as attribute of tibble
... Arguments passed to 'simstandardized_matrices'

Details

This function supports the ‘~’ operator for regressions, the ‘~~’ for covariances (but not variances), and the ‘=~’ latent variable loadings. It does not support intercepts (e.g., ‘y ~ 1’), thresholds, scaling factors, formative factors, or equality constraints.

Value

tibble with standardized data
Examples

library(simstandard)
Lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

simulate 10 cases
sim_standardized(m, n = 10)

sim_standardized_matrices

Return model characteristics

Description
Function that takes a lavaan model with standardized parameters and returns a list with model characteristics

Usage
sim_standardized_matrices(m, max_iterations = 100, composite_threshold = NULL)

Arguments
m Structural model represented by lavaan syntax
max_iterations Maximum number of iterations before the algorithm fails
composite_threshold Loadings with absolute values less than this threshold will not be counted as composite indicators

Details
This function supports the `~` operator for regressions, the `~~` for covariances (but not variances), and the `=~` latent variable loadings. It does not support intercepts (e.g., `y ~ 1`), thresholds, scaling factors, formative factors, or equality constraints.

Value
list of path and covariance coefficients

Examples

library(simstandard)
lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

sim_standardized_matrices(m)
Index

add_composite_scores, 2
add_factor_scores, 3
fixed2free, 4
get_factor_score_coefficients, 5
get_factor_score_validity, 6
get_factor_score_validity_se, 6
get_model_implied_correlations, 7
get_model_names, 8
lav2ram, 9
matrix2lavaan, 9
model_complete, 11
sim_standardized, 12
sim_standardized_matrices, 13