simpleFDR: Simple False Discovery Rate Calculation

Using the adjustment method from Benjamini & Hochberg (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x>, this package determines which variables are significant under repeated testing with a given dataframe of p values and an user defined "q" threshold. It then returns the original dataframe along with a significance column where an asterisk denotes a significant p value after FDR calculation, and NA denotes all other p values. This package uses the Benjamini & Hochberg method specifically as described in Lee, S., & Lee, D. K. (2018) <doi:10.4097/kja.d.18.00242>.

Version: 1.1
Imports: dplyr, tidyr
Published: 2021-11-04
Author: Stephen C Wisser
Maintainer: Stephen Wisser <swisser98 at>
License: MIT + file LICENSE
NeedsCompilation: no
CRAN checks: simpleFDR results


Reference manual: simpleFDR.pdf


Package source: simpleFDR_1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): simpleFDR_1.1.tgz, r-oldrel (arm64): simpleFDR_1.1.tgz, r-release (x86_64): simpleFDR_1.1.tgz, r-oldrel (x86_64): simpleFDR_1.1.tgz


Please use the canonical form to link to this page.