Package ‘sgstar’

May 23, 2021

Type Package
Title Seasonal Generalized Space Time Autoregressive (S-GSTAR) Model
Version 0.1.2
License GPL-3
Imports dplyr,ggplot2,stats,tidyr,utils
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Suggests knitr,rmarkdown
Depends R (>= 3.5.0)
URL https://github.com/yogasatria30/sgstar
BugReports https://github.com/yogasatria30/sgstar/issues
NeedsCompilation no
Author M. Yoga Satria Utama [aut, cre], Ernawati Pasaribu [aut]
Maintainer M. Yoga Satria Utama <221709801@stis.ac.id>
Repository CRAN
Date/Publication 2021-05-23 14:00:03 UTC

R topics documented:

coords ... 2
plot_sgstar .. 2
predict_sgstar ... 3
sgstar ... 4
simulatedata ... 6
Index

| coords | Coordinate of region in South Sumatera |

Description

A simple tibble dataset containing the coordinate region in South.

Usage

coords

Format

A tibble with 17 rows as Region/City and 2 columns, which are:

- "Longitude" longitude coordinate for each location
- "Latitude" latitude coordinate for each location

Source

https://www.bps.go.id/

plot_sgstar

Description

Plotting line chart dataset and fit.values of the Seasonal GSTAR model.

Usage

plot_sgstar(formula)

Arguments

- formula an object from the output from sgstar() function.

Value

returns output a list that shown line chart for each location.
predict_sgstar

Examples

```r
library(sgstar)
data("coords")
data("simulatedata")

# create weight matrix using distance inverse matrix
z <- dist(coords, method = "euclidean")
z <- as.matrix(z)
matriksd <- 1/z
matriksd[is.infinite(matriksd)] <- 0
matriksd_w <- matriksd / rowSums(as.data.frame(matriksd))

fit <- sgstar(data = simulatedata, w = matriksd_w, p = 2, ps = 1, s = 4)
plot1 <- plot_sgstar(fit)
```

predict_sgstar

Predict for Seasonal GSTAR model.

Description

Predicting value based on Sgstar object

Usage

```r
predict_sgstar(formula, n_time)
```

Arguments

- `formula` an object from the output from `sgstar()` function.
- `n_time` number of steps ahead for which prediction is required.

Value

returns output a dataframe that shown predict value based on model, with rows as time and column that shown for each location.

References

Examples

```r
library(sgstar)
data("coords")
data("simulatedata")

# create weight matrix using distance inverse matrix
z <- dist(coords, method = "euclidean")
z <- as.matrix(z)
matriksd <- 1/z
matriksd[is.infinite(matriksd)] <- 0
matriksd_w <- matriksd / rowSums(as.data.frame(matriksd))

fit <- sgstar(data = simulatedata, w = matriksd_w, p = 2, ps = 1, s = 4)

# predicting for 12 time ahead
predict.fit <- predict_sgstar(fit, 12)
```

sgstar

Fit Seasonal Generalized Space Time Autoregressive Model

Description

sgstar function return the parameter estimation of Seasonal Generalized Space Time Autoregressive Model by using Generalized Least Square (GLS)

Usage

```r
sgstar(data, w, p, ps, s)
```

Arguments

- `data`: A dataframe that contain timeseries data with k column as space and n rows as time.
- `w`: a spatial weight, matrix ncol(data) * ncol(data) with diagonal = 0.
- `p`: an autoregressive order, value must be greater than 0.
- `ps`: an autoregressive order for seasonal, value must be greater than 0.
- `s`: an order of the seasonal period

Value

sgstar returns output with detail are shown in the following list:

- **Coefficients**: coefficients parameter model for each location
- **Fitted.Values**: a dataframe with fit value for each location based on model
Residual a dataframe that contain residual, that is response minus fitted values based on model

Performance a dataframe containing the following objects:

- MSE: Mean Squared Error (MSE) for all the data combined.
- RMSE: Root Mean Squared Error (RMSE) for all the data combined.
- AIC: a Version of Akaike’s Information Criterion (AIC)
- Rsquared: R^2, the ‘fraction of variance explained by the model’.

p an autoregressive order
ps an autoregressive order for seasonal
s an order of the seasonal period
weight a spatial weight
data a dataset that used in modeling

References

Examples

```r
library(sgstar)
data("coords")
data("simulatedata")

# create weight matrix using distance inverse matrix
z<-dist(coords,method = "euclidean")
z <- as.matrix(z)
matriksd <- 1/z
matriksd[is.infinite(matriksd)] <- 0
matriksd_w <- matriksd / rowSums(as.data.frame(matriksd))

fit <- sgstar(data = simulatedata, w = matriksd_w, p = 2, ps = 1, s =4)
fit
```
simulatedata \hspace{1cm} \textit{Sample Data for simulate analysis data}

\textbf{Description}

A simple tibble that is generated from random normal distribution for simulate seasonal generalized space-time autoregressive model.

\textbf{Usage}

\texttt{simulatedata}

\textbf{Format}

A tibble with 100 observation time and 17 column as location, which are:

- "PALEMBANG" a value dataset for PALEMBANG
- "LUBUKLINGGAU" a value dataset for LUBUKLINGGAU
- "OGAN KOMERING ULU SELATAN" a value dataset for OGAN KOMERING ULU SELATAN
- "OGAN KOMERING ULU" a value dataset for OGAN KOMERING ULU
- "OGAN KOMERING ILIR" a value dataset for OGAN KOMERING ILIR
- "MUSI RAWAS" a value dataset for MUSI RAWAS
- "OGAN ILIR" a value dataset for OGAN ILIR
- "PAGAR ALAM" a value dataset for PAGAR ALAM
- "BANYU ASIN" a value dataset for BANYU ASIN
- "OGAN KOMERING ULU TIMUR" a value dataset for OGAN KOMERING ULU TIMUR
- "EMPAT LAWANG" a value dataset for EMPAT LAWANG
- "PRABUMULIH" a value dataset for EMPAT LAWANG
- "LAHAT" a value dataset for LAHAT
- "MUSI RAWAS UTARA" a value dataset for MUSI RAWAS UTARA
- "PENUKAL ABAB LEMATANG ILIR" a value dataset for PENUKAL ABAB LEMATANG ILIR
- "MUARA ENIM" a value dataset for MUARA ENIM
- "MUSI BANYUASIN" a value dataset for MUSI BANYUASIN
Index

* datasets
 coords, 2
 simulatedata, 6

cords, 2

plot_sgstar, 2
predict_sgstar, 3

sgstar, 4
simulatedata, 6