Package ‘seqminer’

March 2, 2020

Type Package

Title Efficiently Read Sequence Data (VCF Format, BCF Format, METAL Format and BGEN Format) into R

Version 8.0

Date 2020-2-28

Maintainer Xiaowei Zhan <zhanxw@gmail.com>

Description Integrate sequencing data (Variant call format, e.g. VCF or BCF) or meta-analysis results in R. This package can help you (1) read VCF/BCF/BGEN files by chromosomal ranges (e.g. 1:100-200); (2) read RareMETAL summary statistics files; (3) read tables from a tabix-indexed files; (4) annotate VCF/BCF files; (5) create customized workflow based on Makefile.

Copyright We have used the following software and made minimal necessary changes: tabix, Heng Li <lh3@live.co.uk> (MIT license), SQLite (Public Domain), Zstandard (MIT license). For tabix, we removed standard IO related functions, e.g. printf, fprintf ; also changed its un-safe pointer arithmetics. For zstandard, we removed compiler (clang, MSVC) specific preprocessing flags.

License GPL | file LICENSE

URL http://seqminer.genomic.codes

BugReports https://github.com/zhanxw/seqminer/issues

Repository CRAN

Suggests testthat, SKAT

SystemRequirements C++11, zlib headers and libraries, GNU make, optionally also bzip2 and POSIX-compliant regex functions.

NeedsCompilation yes

RooxygenNote 6.1.1

Encoding UTF-8

Author Xiaowei Zhan [aut, cre], Dajiang Liu [aut],
Attractive Chaos [cph] (We have used the following software and made minimal necessary changes: Tabix, Heng Li <lh3@live.co.uk> (MIT license). We removed standard IO related functions, e.g. printf, fprintf; also changed its un-safe pointer arithmetics.), Broad Institute / Massachusetts Institute of Technology [cph], Genome Research Ltd (GRL) [cph], Facebook, Inc [cph]

Date/Publication 2020-03-02 12:10:03 UTC

R topics documented:

addJob ... 3
annotateGene .. 4
annotatePlain ... 5
annotateVcf ... 5
createSingleChromosomeBCFIndex 6
createSingleChromosomeVCFIndex 7
download.annotation.resource 7
getCovPair ... 8
getRefBase ... 8
isDirWritable .. 9
isInRange ... 9
isTabixRange .. 10
makeAnnotationParameter 10
newJob ... 11
newWorkflow ... 11
openPlink ... 12
readBGENToListByGene 12
readBGENToListByRange 13
readBGENToMatrixByGene 14
readBGENToMatrixByRange 14
readPlinkToMatrixByIndex 15
readSingleChromosomeBCFToMatrixByRange 16
readSingleChromosomeVCFToMatrixByRange 17
readVCFToListByGene 17
readVCFToListByRange 18
readVCFToMatrixByGene 19
readVCFToMatrixByRange 20
rvmeta.readCovByRange 21
rvmeta.readDataByGene 21
rvmeta.readDataByRange 22
rvmeta.readNullModel 23
rvmeta.readScoreByRange 24
rvmeta.readSkewByRange 24
rvmeta.writeCovData 25
rvmeta.writeScoreData 26
SeqMiner ... 27
addJob

Add a job to a workflow

Description

Add a job to a workflow

Usage

addJob(wf, job)

Arguments

wf a variable of workflow class

job a variable of job class

Examples

j1 <- newJob('id1', 'cmd out1', 'out1')
j2 <- newJob('id2', 'cmd out2', 'out2', depend = 'out1')
w <- newWorkflow("wf")
w <- addJob(w, j1)
w <- addJob(w, j2)

outFile <- file.path(tempdir(), "Makefile")
writeWorkflow(w, outFile)
cat("Outputted Makefile file are in the temp directory:, outFile, "\n")
annotateGene

Annotate a test variant

Description

Annotate a test variant

Usage

annotateGene(param, chrom, position, ref, alt)

Arguments

param a list of annotation configuration (e.g. reference file, gene definition)
chrom a vector of chromosome names
position a vector of chromosome positions
ref a vector of reference alleles
alt a vector of alternative alleles

Value

annotated results in a data frame structure

See Also

makeAnnotationParameter

Examples

if (.Platform$endian == "little") {
 param <- list(reference = system.file("tabanno/test.fa", package = "seqminer"),
 geneFile = system.file("tabanno/test.gene.txt", package = "seqminer"))
 param <- makeAnnotationParameter(param)
 print(param)
 annotateGene(param, c("1", "1"), c(3, 5), c("A", "C"), c("G", "C"))
} else {
 message("Tabix does not work well for big endian for now")
}
annotatePlain Annotate a plain text file

Description

Annotate a plain text file

Usage

annotatePlain(inFile, outFile, params)

Arguments

inFile input file name
outFile output file name
params parameters

Value

0 if succeed

Examples

param <- list(reference = system.file("tabanno/test.fa", package = "seqminer"),
 geneFile = system.file("tabanno/test.gene.txt", package = "seqminer"),
 inputFormat = "plain")
param <- makeAnnotationParameter(param)
inFile <- system.file("tabanno/input.test.plain.txt", package = "seqminer")
outFile <- file.path(tempdir(), "out.annotated.txt")
annotatePlain(inFile, outFile, param)
cat("Outputted annotation results are in the temp directory:\", outFile, '\n')

annotateVcf Annotate a VCF file

Description

Annotate a VCF file

Usage

annotateVcf(inVcf, outVcf, params)
createSingleChromosomeBCFIndex

Create a single chromosome index

Arguments

- `inVcf` input VCF file name
- `outVcf` output VCF file name
- `params` parameters

Value

0 if succeed

Examples

```r
param <- list(reference = system.file("tabanno/test.fa", package = "seqminer"),
              geneFile = system.file("tabanno/test.gene.txt", package = "seqminer"))
param <- makeAnnotationParameter(param)
inVcf <- system.file("tabanno/input.test.vcf", package = "seqminer")
outVcf <- file.path(tempdir(), "/", "out.vcf")
annotateVcf (inVcf, outVcf, param)
cat('Annotated VCF files are in the temp directory:', outVcf, '\n')
```

createSingleChromosomeBCFIndex

Create a single chromosome index

Description

Create a single chromosome index

Usage

`createSingleChromosomeBCFIndex(fileName, indexFileName = NULL)`

Arguments

- `fileName` character, represents an input BCF file (Bgzipped, with Tabix index)
- `indexFileName` character, by default, create ‘fileName’.scIdx

Value

`indexFileName` if success, or NULL is failed

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
fileName = system.file("vcf/all.anno.filtered.extract.headerFixed.bcf.gz", package = "seqminer")
cfh <- createSingleChromosomeBCFIndex(fileName)
```
createSingleChromosomeVCFIndex

Create a single chromosome index

Description
Create a single chromosome index

Usage
createSingleChromosomeVCFIndex(fileName, indexFileName = NULL)

Arguments
- fileName character, represents an input VCF file (Bgzipped, with Tabix index)
- indexFileName character, by default, create ‘fileName’.scIdx

Value
indexFileName if success, or NULL is failed

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
cfh <- createSingleChromosomeVCFIndex(fileName)

download.annotation.resource

Download annotation resources to a directory

Description
Download annotation resources to a directory

Usage
download.annotation.resource(outputDirectory)

Arguments
- outputDirectory
 the directory to store annotation resources
getRefBase

Value
will not return anything

Examples

Not run:
download.annotation.resource("/tmp")

End(Not run)

getcovPair

Extract pair of positions by ranges

Description
Extract pair of positions by ranges

Usage

getcovPair(covData, rangeList1, rangeList2)

Arguments
covData a covariance matrix with positions as dimnames
rangeList1 character specify a range, 1-based index
rangeList2 character specify a range, 1-based index

Value
a covariance matrix
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
cfh <- rvmeta.readCovByRange(covFileName, "1:196621007-196716634")
rangeList1 <- "1:196621007-196700000"
rangeList2 <- "1:196700000-196716634"
getcovPair(cfh, rangeList1, rangeList2)

getRefBase

Annotate a test variant

Description
Annotate a test variant

Usage

getRefBase(reference, chrom, position, len = NULL)
isDirWritable

Arguments
- `reference` path to the reference genome file (.fa file)
- `chrom` a vector of chromosome names
- `position` a vector of chromosome positions
- `len` a vector of length

Value
based extracted from the reference genome

isDirWritable
Test whether directory is writable

Description
Test whether directory is writable

Usage

```r
isDirWritable(outDir)
```

Arguments
- `outDir` the name of the directory

Value
TRUE if the file is writable
`isDirWritable("~")`

isInRange
Test whether a vector of positions are inside given ranges

Description
Test whether a vector of positions are inside given ranges

Usage

```r
isInRange(positions, rangeList)
```

Arguments
- `positions` characters, positions. e.g. c("1:2-3", "1:4")
- `rangeList` character, ranges, e.g. "1:1-3,1:2-4", 1-based index
Value

logical vector, TRUE/FALSE/NA

Examples

positions <- c("1:2-3", "1:4", "XX")
ranges <- "1:1-3,1:2-4,1:5-10"
isInRange(positions, ranges)

isTabixRange Check if the inputs are valid tabix range such as chr1:2-300

Description

Check if the inputs are valid tabix range such as chr1:2-300

Usage

isTabixRange(range)

Arguments

range character vector

Examples

valid <- isTabixRange(c("chr1:1-200", "X:1", "1:100-100", "chr1", "1:1-20,1:30-40"))
stopifnot(all(valid))
invalid <- isTabixRange(c(":1", "chr1::", ":-"))
stopifnot(all(!invalid))

makeAnnotationParameter Construct a usable set of annotation parameters

Description

Construct a usable set of annotation parameters

Usage

makeAnnotationParameter(param = NULL)

Arguments

param a list of annotation elements
newJob

Value

list, a complete list of supported parameters

newJob

Create a new job

Description

Create a new job

Usage

newJob(id, cmd, outFile, depend = NULL)

Arguments

id character, job ids.

cmd character, commands to run

outFile character, the output file names after command are run successfully

depend character vector, specify the prerequisite files (e.g. outFile from other jobs)

Examples

j1 <- newJob('id1', 'cmd out1', 'out1')
j2 <- newJob('id2', 'cmd out2', 'out2', depend = 'out1')

newWorkflow

Create a new workflow

Description

Create a new workflow

Usage

newWorkflow(name)

Arguments

name character, specify the name of the workflow

Examples

w <- newWorkflow("wf")
openPlink

Open binary PLINK files

Description

Open binary PLINK files

Usage

```r
openPlink(fileName)
```

Arguments

- `fileName` character, represents the prefix of PLINK input file

Value

an PLINK file object with class name ("PlinkFile")

Examples

```r
fileName = system.file("plink/all.anno.filtered.extract.bed", package = "seqminer")
fileName = sub(fileName, pattern = ".bed", replacement = "")
plinkObj <- openPlink(fileName)
str(plinkObj)
```

readBGENToListByGene

Read information from BGEN file in a given range and return a list

Description

Read information from BGEN file in a given range and return a list

Usage

```r
readBGENToListByGene(fileName, geneFile, geneName)
```

Arguments

- `fileName` character, represents an input BGEN file (Bgzipped, with Tabix index)
- `geneFile` character, a text file listing all genes in refFlat format
- `geneName` character vector, which gene(s) to be extracted

Value

a list of chrom, pos, varid, rsid, alleles, isPhased, probability, sampleId
readBGENToListByRange

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

fileName = system.file("bgen/all.anno.filtered.extract.bgen", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- readBGENToListByGene(fileName, geneFile, "CFH")

cfh <- readBGENToListByRange(fileName, "1:196621007-196716634")

readBGENToListByRange Read information from BGEN file in a given range and return a list

Description

Read information from BGEN file in a given range and return a list

Usage

readBGENToListByRange(fileName, range)

Arguments

fileName character, represents an input BGEN file (Bgzipped, with Tabix index)
range character, a text indicating which range in the BGEN file to extract. e.g. 1:100-200, 1-based index

Value

a list of chrom, pos, varid, rsid, alleles, isPhased, probability, sampleId

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

fileName = system.file("bgen/all.anno.filtered.extract.bgen", package = "seqminer")
cfh <- readBGENToListByRange(fileName, "1:196621007-196716634")
readBGENToMatrixByGene

Read a gene from BGEN file and return a genotype matrix

Description
Read a gene from BGEN file and return a genotype matrix

Usage
readBGENToMatrixByGene(fileName, geneFile, geneName)

Arguments
- fileName: character, represents an input BGEN file (Bgzipped, with Tabix index)
- geneFile: character, a text file listing all genes in refFlat format
- geneName: character vector, which gene(s) to be extracted

Value
genotype matrix

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
fileName = system.file("bgen/all.anno.filtered.extract.bgen", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- readBGENToMatrixByGene(fileName, geneFile, "CFH")

readBGENToMatrixByRange

Read a gene from BGEN file and return a genotype matrix

Description
Read a gene from BGEN file and return a genotype matrix

Usage
readBGENToMatrixByRange(fileName, range)
readPlinkToMatrixByIndex

Arguments

fileName character, represents an input BGEN file (Bgzipped, with Tabix index)
range character, a text indicating which range in the BGEN file to extract. e.g. 1:100-200, 1-based index

Value

genoypote matrix

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

fileName = system.file("bgen/all.anno.filtered.extract.bgen", package = "seqminer")
cfh <- readBGENToMatrixByRange(fileName, "1:196621007-196716634")

Description

Read from binary PLINK file and return a genotype matrix

Usage

readPlinkToMatrixByIndex(plinkFilePrefix, sampleIndex, markerIndex)

Arguments

plinkFilePrefix
 a PlinkFileObject obtained by openPlink()
sampleIndex integer, 1-based, index of samples to be extracted
markerIndex integer, 1-based, index of markers to be extracted

Value

genoypote matrix, marker by sample

See Also

http://zhanxw.com/seqminer/ for online manual and examples
Examples
these indice are nonsynonymous markers for 1:196621007-196716634",
refer to the readVCFToMatrixByRange()
fileName = system.file("plink/all.anno.filtered.extract.bed", package = "seqminer")
fileName = sub(fileName, pattern = ".bed", replacement = ":")
sampleIndex = seq(3)
militaryIndex = c(14, 36)
cfh <- readPlinkToMatrixByIndex(fileName, sampleIndex, markerIndex)

readSingleChromosomeBCFToMatrixByRange

Read a range from BCF file and return a genotype matrix

Description
Read a range from BCF file and return a genotype matrix

Usage
readSingleChromosomeBCFToMatrixByRange(fileName, range,
indexFileName = NULL)

Arguments

fileName character, represents an input BCF file (Bgzipped, with Tabix index)
range character, a text indicating which range in the BCF file to extract. e.g. 1:100-200, 1-based index
indexFileName character, index file, by default, it's `fileName`.scIdx

Value
genotype matrix

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
fileName = system.file("vcf/all.anno.filtered.extract.headerFixed.bcf.gz", package = "seqminer")
cfh <- readSingleChromosomeBCFToMatrixByRange(fileName, "1:196621007-196716634")
readSingleChromosomeVCFToMatrixByRange

Read a range from VCF file and return a genotype matrix

Description

Read a range from VCF file and return a genotype matrix

Usage

```r
readSingleChromosomeVCFToMatrixByRange(fileName, range,
indexFileName = NULL)
```

Arguments

- `fileName` character, represents an input VCF file (Bgzipped, with Tabix index)
- `range` character, a text indicating which range in the VCF file to extract. e.g. 1:100-200, 1-based index
- `indexFileName` character, index file, by default, it’s `fileName`.scIdx

Value

genotype matrix

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
cfh <- readSingleChromosomeVCFToMatrixByRange(fileName, "1:196621007-196716634")
```

readVCFToListByGene

Read information from VCF file in a given range and return a list

Description

Read information from VCF file in a given range and return a list

Usage

```r
readVCFToListByGene(fileName, geneFile, geneName, annoType, vcfColumn, vcfInfo, vcfIndv)
```
Arguments

fileName character, represents an input VCF file (Bgzipped, with Tabix index)
geneFile character, a text file listing all genes in refFlat format
geneName character vector, which gene(s) to be extracted
annoType character, annotated types you would like to extract, such as "Nonsynonymous", "Synonymous". This can be left empty.
vcfColumn character vector, which vcf columns to extract. It can be chosen from CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO, FORMAT and etc.
vcfInfo character vector, which should be tags in the INFO columns to extract. Common choices include: DP, AC, AF, NS
vcfIndv character vector, which values to extract at individual level. Common choices are: GT, GQ, GD

Value

da list of genes, and each elements has specified vcfColumn, vcfinfo, vcfIndv

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- readVCFToListByGene(fileName, geneFile, "CFH", "Synonymous",
c("CHROM", "POS"), c("AF", "AC"), c("GT"))

readVCFToListByRange(fileName, range, annoType, vcfColumn, vcfInfo, vcfIndv) Read information from VCF file in a given range and return a list

Description

Read information from VCF file in a given range and return a list

Usage

readVCFToListByRange(fileName, range, annoType, vcfColumn, vcfInfo, vcfIndv)
readVCFToMatrixByGene

Arguments

fileName character, represents an input VCF file (Bgzipped, with Tabix index)
range character, a text indicating which range in the VCF file to extract. e.g. 1:100-200, 1-based index
annoType character, annotated types you would like to extract, such as "Nonsynonymous", "Synonymous". This can be left empty.
vcfColumn character vector, which vcf columns to extract. It can be chosen from CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO, FORMAT and etc.
vcfInfo character vector, which should be tags in the INFO columns to extract. Common choices include: DP, AC, AF, NS
vcfIndv character vector, which values to extract at individual level. Common choices are: GT, GQ, GD

Value

a list of genes, and each elements has specified vcfColumn, vcfinfo, vcfIndv

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
cfh <- readVCFToListByRange(fileName, "1:196621007-196716634", "Nonsynonymous", c("CHROM", "POS"), c("AF", "AC"), c("GT"))

readVCFToMatrixByGene

Read a gene from VCF file and return a genotype matrix

Description

Read a gene from VCF file and return a genotype matrix

Usage

readVCFToMatrixByGene(fileName, geneFile, geneName, annoType)

Arguments

fileName character, represents an input VCF file (Bgzipped, with Tabix index)
geneFile character, a text file listing all genes in refFlat format
geneName character vector, which gene(s) to be extracted
annoType character, annotated types you would like to extract, such as "Nonsynonymous", "Synonymous". This can be left empty.
readVCFToMatrixByRange

Description
Read a gene from VCF file and return a genotype matrix

Usage
readVCFToMatrixByRange(fileName, range, annoType)

Arguments
fileName character, represents an input VCF file (Bgzipped, with Tabix index)
range character, a text indicating which range in the VCF file to extract. e.g. 1:100-200, 1-based index
annoType character, annotated types you would like to extract, such as "Nonsynonymous", "Synonymous". This can be left empty.

Value
genotype matrix

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
genFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- readVCFToMatrixByGene(fileName, geneFile, "CFH", "Synonymous")
rvmeta.readCovByRange
Read covariance by range from METAL-format files.

Description

Read covariance by range from METAL-format files.

Usage

```r
rvmeta.readCovByRange(covFile, tabixRange)
```

Arguments

- `covFile`
 character, a covariance file (rvtests outputs using -meta cov)

- `tabixRange`
 character, a text indicating which range in the VCF file to extract. e.g. 1:100-200

Value

a matrix of covariance within given range

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
cfh <- rvmeta.readCovByRange(covFileName, "1:196621007-196716634")
```

rvmeta.readDataByGene
Read association statistics by gene from METAL-format files. Both score statistics and covariance statistics will be extracted.

Description

Read association statistics by gene from METAL-format files. Both score statistics and covariance statistics will be extracted.

Usage

```r
rvmeta.readDataByGene(scoreTestFiles, covFiles, geneFile, geneName, multiAllelic = FALSE)
```
rvmeta.readDataByRange

Read association statistics by range from METAL-format files. Both score statistics and covariance statistics will be extracted.

Description

Read association statistics by range from METAL-format files. Both score statistics and covariance statistics will be extracted.

Usage

rvmeta.readDataByRange(scoreTestFiles, covFiles, ranges,
 multiAllelic = FALSE)

Arguments

scoreTestFiles character vector, score test output files (rvtests outputs using –meta score)
covFiles character vector, covaraite files (rvtests outputs using –meta cov)
ranges character, a text indicating which range in the VCF file to extract. e.g. 1:100-200, 1-based index
multiAllelic boolean, whether to read multi-allelic sites as multiple variants or not

Value

a list of statistics including chromosome, position, allele frequency, score statistics, covariance and annotation(if input files are annotated).

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

scoreFileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- rvmeta.readDataByGene(scoreFileName, covFileName, geneFile, "CFH")
rvmeta.readNullModel

Value

a list of statistics including chromosome, position, allele frequency, score statistics, covariance and annotation (if input files are annotated).

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

scoreFileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- rvmeta.readDataByRange(scoreFileName, covFileName, "1:196621007-196716634")
rvmeta.readScoreByRange

Read score test statistics by range from METAL-format files.

Description
Read score test statistics by range from METAL-format files.

Usage
rvmeta.readScoreByRange(scoreTestFiles, tabixRange)

Arguments
scoreTestFiles character vector, score test output files (rvtests outputs using –meta score)
tabixRange character, a text indicating which range in the VCF file to extract. e.g. 1:100-200

Value
score test statistics within given range

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
scoreFileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")
cfh <- rvmeta.readScoreByRange(scoreFileName, "1:196621007-196716634")

rvmeta.readSkewByRange

Read skew by range from METAL-format files.

Description
Read skew by range from METAL-format files.

Usage
rvmeta.readSkewByRange(skewFile, tabixRange)

Arguments
skewFile character, a skew file (rvtests outputs using –meta skew)
tabixRange character, a text indicating which range in the VCF file to extract. e.g. 1:100-200
Value

an 3-dimensional array of skewness within given range

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
skewFileName = system.file("rvtests/rvtest.MetaSkew.assoc.gz", package = "seqminer")
cfh <- rvmeta.readSkewByRange(skewFileName, "1:196621007-196716634")
```

```
rvmeta.writeCovData  Write covariance association statistics files.
```

Description

Write covariance association statistics files.

Usage

```r
rvmeta.writeCovData(rvmetaData, outName)
```

Arguments

- `rvmetaData` a list vector. It’s usually read by `rvmeta.readDataByRange` or `rvmeta.readDataByGene` function
- `outName` character, a text indicating output file prefix

Value

TRUE only if succeed

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
scoreFileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- rvmeta.readDataByRange(scoreFileName, covFileName, "1:196621007-196716634")
outFile <- file.path(tempdir(), "cfh.MetaCov.assoc.gz")
rvmeta.writeCovData(cfh, outFile)
cat("Outputted MetaCov file are in the temp directory:'", outFile, "\n")
```
rvmeta.writeScoreData
Write score-based association statistics files.

Description
Write score-based association statistics files.

Usage
rvmeta.writeScoreData(rvmetaData, outName, createIndex = FALSE)

Arguments
rvmetaData
a list vector. It’s usually read by rvmeta.readDataByRange or rvmeta.readDataByGene function
outName
character, a text indicating output file prefix
createIndex
boolean, (default FALSE), whether or not to create the index

Value
TRUE only if succeed

See Also
http://zhanxw.com/seqminer/ for online manual and examples

Examples
scoreFileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")
covFileName = system.file("rvtests/rvtest.MetaCov.assoc.gz", package = "seqminer")
geneFile = system.file("vcf/refFlat_hg19_6col.txt.gz", package = "seqminer")
cfh <- rvmeta.readDataByRange(scoreFileName, covFileName, "1:196621007-196716634")

outFile <- file.path(tempdir(), "cfh.MetaScore.assoc")
rvmeta.writeScoreData(cfh, outFile)
cat('Outputted MetaScore file are in the temp directory:', outFile, '\n')
SeqMiner

Description

SeqMiner provides functions to easily load Variant Call Format (VCF) or METAL format into R.

Details

The aim of this package is to save your time parsing large text file. That means data processing time can be saved for other researches. This packages requires Bgzip compressed and Tabix indexed files as input. If input files contain annotation by TabAnno (), it is possible to extract information at the unit of genes.

tabix.createIndex

Create tabix index file, similar to running tabix in command line.

Description

Create tabix index file, similar to running tabix in command line.

Usage

```
tabix.createIndex(bgzipFile, sequenceColumn = 1, startColumn = 4, endColumn = 5, metaChar = ", metaChar = ", skipLines = 0)
```

Arguments

- `bgzipFile`: character, an tabix indexed file
- `sequenceColumn`: integer, sequence name column
- `startColumn`: integer, start column
- `endColumn`: integer, end column
- `metaChar`: character, symbol for comment/meta lines
- `skipLines`: integer, first this number of lines will be skipped

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
tabix.createIndex(fileName, 1, 2, 0, ", skipLines = 0)
```
tabix.createIndex.meta

Create tabix index for bgzipped MetaScore/MetaCov file

Description

Create tabix index for bgzipped MetaScore/MetaCov file

Usage

\[\text{tabix.createIndex.meta(bgzipFile)}\]

Arguments

bgzipFile character, input vcf file

See Also

http://zhanxw.com/seqminer/ for online manual and examples
http://zhanxw.github.io/rvtests/ for rvtests

Examples

\[\text{fileName = system.file("rvtests/rvtest.MetaScore.assoc.anno.gz", package = "seqminer")}\]
\[\text{tabix.createIndex.meta(fileName)}\]

tabix.createIndex.vcf

Create tabix index for bgzipped VCF file

Description

Create tabix index for bgzipped VCF file

Usage

\[\text{tabix.createIndex.vcf(bgzipVcfFile)}\]

Arguments

bgzipVcfFile character, input vcf file

See Also

http://zhanxw.com/seqminer/ for online manual and examples
Examples

```r
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
tabix.createIndex.vcf(fileName)

snp <- tabix.read(fileName, "1:196623337-196632470")
```

Description

Read tabix file, similar to running tabix in command line.

Usage

```r
tabix.read(tabixFile, tabixRange)
```

Arguments

- `tabixFile` character, an tabix indexed file
- `tabixRange` character, a text indicating which range in the VCF file to extract. e.g. 1:100-200

Value

character vector, each elements is an individual line

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
if (.Platform$endian == "little") {
  fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
  snp <- tabix.read(fileName, "1:196623337-196632470")
} else {
  message("Tabix does not work well for big endian for now")
}
tabix.read.header  
*Read tabix file, similar to running tabix in command line.*

**Description**

Read tabix file, similar to running tabix in command line.

**Usage**

`tabix.read.header(tabixFile, skippedLine = FALSE)`

**Arguments**

- `tabixFile` character, an tabix indexed file
- `skippedLine` logical, whether to read tabix skipped lines (when used 'tabix -S NUM')

**Value**

- a list

**See Also**

http://zhanxw.com/seqminer/ for online manual and examples

**Examples**

```r
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
.snp <- tabix.read.header(fileName)
```

---

---

tabix.read.table  
*Read tabix file, similar to running tabix in command line.*

**Description**

Read tabix file, similar to running tabix in command line.

**Usage**

`tabix.read.table(tabixFile, tabixRange, col.names = TRUE, stringsAsFactors = FALSE)`
validateAnnotationParameter

Arguments

- `tabixFile` character, an tabix indexed file
- `tabixRange` character, a text indicating which range in the VCF file to extract. e.g. 1:100-200
- `col.names` logical, use tabix file header as result headers (default: TRUE)
- `stringsAsFactors` logical, store loaded data as factors (default: FALSE)

Value
data frame, each elements is an individual line

See Also

http://zhanxw.com/seqminer/ for online manual and examples

Examples

```r
fileName = system.file("vcf/all.anno.filtered.extract.vcf.gz", package = "seqminer")
snp <- tabix.read.table(fileName, "1:196623337-196632470")
```

**validateAnnotationParameter**

_Validate annotate parameter is valid_

Description

Validate annotate parameter is valid

Usage

```r
validateAnnotationParameter(param, debug = FALSE)
```

Arguments

- `param` a list of annotation elements
- `debug` show extra debug information or not

Value

list, first element is TRUE/FALSE if parameter is valid/invalid;
verifyFilename  
validate the inVcf can be created, and outVcf can be write to. will stop if any error occurs

Description
validate the inVcf can be created, and outVcf can be write to. will stop if any error occurs

Usage
verifyFilename(inVcf, outVcf)

Arguments
inVcf  
input file
outVcf  
output file

writeWorkflow  
Export workflow to Makefile

Description
Export workflow to Makefile

Usage
writeWorkflow(wf, outFile)

Arguments
wf  
a variable workflow class
outFile  
character, typically named "Makefile"

Examples
j1 <- newJob('id1', 'cmd out1', 'out1')
j2 <- newJob('id2', 'cmd out2', 'out2', depend = 'out1')
w <- newWorkflow("wf")
w <- addJob(w, j1)
w <- addJob(w, j2)

outFile <- file.path(tempdir(), "Makefile")
writeWorkflow(w, outFile)
cat('Outputted Makefile file are in the temp directory: ', outFile, '
')
Description
Read from binary PLINK file and return a genotype matrix

Usage
## S3 method for class 'PlinkFile'
plinkFileObject[sampleIndex, markerIndex]

Arguments
plinkFileObject
  a PlinkFileObject obtained by openPlink()

  sampleIndex
  integer, 1-based, index of samples to be extracted

  markerIndex
  integer, 1-based, index of markers to be extracted

Value
genotype matrix, marker by sample

See Also
  http://zhanxw.com/seqminer/ for online manual and examples

Examples
## these index are nonsynonymous markers for 1:196621007-196716634",
## refer to the readVCFToMatrixByRange()
fileName = system.file("plink/all.anno.filtered.extract.bed", package = "seqminer")
filePrefix = sub(fileName, pattern = ".bed", replacement = "")
plinkObj = openPlink(filePrefix)
sampleIndex = seq(3)
markerIndex = c(14, 36)
cfh <- plinkObj[sampleIndex, markerIndex]
Index

[.PlinkFile, 33
addJob, 3
annotateGene, 4
annotatePlain, 5
annotateVcf, 5
createSingleChromosomeBCFIndex, 6
createSingleChromosomeVCFIndex, 7
download.annotation.resource, 7
getCovPair, 8
geretRefBase, 8
isDirWritable, 9
isInRange, 9
isTabixRange, 10
makeAnnotationParameter, 10
newJob, 11
newWorkflow, 11
openPlink, 12
readBGENToListByGene, 12
readBGENToListByRange, 13
readBGENToMatrixByGene, 14
readBGENToMatrixByRange, 14
readPlinkToMatrixByIndex, 15
readSingleChromosomeBCFToMatrixByRange, 16
readSingleChromosomeVCFToMatrixByRange, 17
readVCFToListByGene, 17
readVCFToListByRange, 18
readVCFToMatrixByGene, 19
readVCFToMatrixByRange, 20
rvmeta.readCovByRange, 21
rvmeta.readDataByGene, 22
rvmeta.readDataByRange, 22
rvmeta.readNullModel, 23
rvmeta.readScoreByRange, 24
rvmeta.readSkewByRange, 24
rvmeta.writeCovData, 25
rvmeta.writeScoreData, 26
SeqMiner, 27
SeqMiner-package (SeqMiner), 27
tabix.createIndex, 27
tabix.createIndex.meta, 28
tabix.createIndex.vcf, 28
tabix.read, 29
tabix.read.header, 30
tabix.read.table, 30
validateAnnotationParameter, 31
verifyFilename, 32
writeWorkflow, 32