Package ‘semnova’

October 14, 2022

Type Package
Title Latent Repeated Measures ANOVA
Version 0.1-6
Author Benedikt Langenberg [aut, cre],
Axel Mayer [ctb]
Imports lavaan, Matrix, parallel, MASS, stats, methods
Suggests testthat, knitr, rmarkdown
Depends R (>= 3.4.0)
Description Latent repeated measures ANOVA (L-RM-ANOVA) is a structural
equation modeling based alternative to traditional repeated measures ANOVA.
L-RM-ANOVA extends the latent growth components approach by
latent variables to repeated measures analysis.
Maintainer Benedikt Langenberg <benedikt.langenberg@gmail.com>
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-19 05:50:07 UTC

R topics documented:

anova,lgc-method .. 2
create_mmodel ... 2
lgc ... 3
lgc-class ... 5
semnova ... 5
semnova_test_data ... 7
summary,lgc-method ... 7
anova, lgc-method

Comparing the fit of LGC objects.

Description

Comparing the fit of LGC objects.

Usage

```r
## S4 method for signature 'lgc'
anova(object, ...)
```

Arguments

- `object`
 lgc object. An lgc object to be compared against other lgc objects.
- `...`
 lgc object. More lgc objects to be compared.

create_mmodel

Specifying a measurement model.

Description

Specifying a measurement model.

Usage

```r
create_mmodel(..., list = NULL, lv_scaling = "effect", invariance = NULL)
```

Arguments

- `...`
 Named arguments each representing a latent variable. The arguments are character vectors containing the variable names the latent variables are measured by.
- `list`
 List. Each list element represents a latent variable. List elements are character vectors containing the variable names the latent variables are measured by.
- `lv_scaling`
 Character vector. Defines the strategy for latent variable scaling. Default is `lv_scaling = "effect"`. Possible strategies are: c("effect", "referent").
- `invariance`
 Not yet implemented.

Value

Object of classe `mmodel`.
Examples

```r
mmodel <- create_mmodel(
  A1B1 = "var1",
  A2B1 = "var2",
  A3B1 = "var3",
  A1B2 = "var4",
  A2B2 = "var5",
  A3B2 = "var6",
  lv_scaling = "referent"
)
```

lgc

General function to specify a general latent growth components model.

Description

General function to specify a general latent growth components model.

Usage

```r
lgc(
  data,
  mmodel,
  C_matrix,
  hypotheses = NULL,
  covariates = NULL,
  groups = NULL,
  append = NULL,
  verbose = FALSE,
  compound_symmetry = FALSE,
  sphericity = FALSE,
  multiv_tests = c("wilks", "wald"),
  univ_tests = NULL,
  randomization = list(ncores = 1, nsamples = 1000),
  ...
)
```

Arguments

- `data` - Dataframe. Data object to be passed to lavaan.
- `mmodel` - Object of class mmodel. If not provided, manifest variables from the formula object will be used. Otherwise, use `create_mmodel()` to specify measurement model.
- `C_matrix` - Contrast matrix. Must be invertible.
hypotheses: List of numeric vectors. Each list element represents a hypothesis. For each hypothesis, the contrasts indicated by the elements of the vectors are tested against zero.

covariates: Not implemented yet.

groups: Not implemented yet.

append: Character. Syntax that is to be appended to lavaan syntax.

verbose: Boolean. Print details during procedure.

compound_symmetry: Boolean. When set to TRUE, compound symmetry is assumed.

sphericity: Boolean or formula. When set to TRUE, sphericity is assumed for all effects.

multiv_tests: Character vector. Multivariate test statistics that are to be computed. Possible statistics are: c("wilks", "wald"). Default is multiv_tests = c("wilks", "wald").

univ_tests: Character vector. Univariate test statistics that are to be computed. Possible statistics are: c("F"). Default is univ_tests = NULL.

randomization: Not yet supported.

...: Additional arguments to be passed to lavaan.

Value

Function returns an lgc object. Use summary(object) to print hypotheses. Otherwise use object@sem_obj to get access to the underlying lavaan object.

Examples

set.seed(323412431)

data("semnova_test_data", package = "semnova")

mmodel <- create_mmodel(
 A1B1 = "var1",
 A2B1 = "var2",
 A3B1 = "var3",
 A1B2 = "var4",
 A2B2 = "var5",
 A3B2 = "var6",
 lv_scaling = "referent"
)

hypotheses <- list(
 Intercept = c(1),
 A = c(2, 3),
 B = c(4),
 AB = c(5, 6)
)

C_matrix <- matrix(
c(1, 1, 0, 1, 1, 0,
1, 0, 1, 1, 0, 1,
1,-1,-1, 1,-1,-1,
1, 1, 0,-1,-1, 0,
1, 0, 1,-1, 0,-1,
1,-1,-1,-1, 1, 1),
 nrow=6)

fit_lgc <- lgc(data = semnova_test_data, mmodel, C_matrix, hypotheses)
summary(fit_lgc)

lgc-class

LGC Class.

Description

LGC Class.

semnova

Latent repeated-measures ANOVA using the LGC approach

Description

Function specifies an LGC model. The idata object is used to create the contrast matrix that is
passed to the lgc() function. Typical hypotheses are specified as well.

Usage

```r
semnova(
  formula,
  idesign,
  idata,
  data,
  mmodel = NULL,
  covariates = NULL,
  groups = NULL,
  append = NULL,
  icontrasts = c("contr.poly", "contr.sum"),
  verbose = FALSE,
  compound_symmetry = FALSE,
  sphericity = FALSE,
  multiv_tests = c("wilks", "wald"),
  univ_tests = c("F"),
  randomization = list(ncores = 1, nsamples = 1000),
  ...
)
```
Arguments

- **formula**: Formula. Within-subjects design formula.
- **idesign**: Dataframe. The dataframe contains the factorial design.
- **idata**: Dataframe. Data object to be passed to lavaan.
- **data**: Dataframe. Data object to be passed to lavaan.
- **mmodel**: Object of class `mmodel`. If not provided, manifest variables from the formula object will be used. Otherwise, use `create_mmodel()` to specify measurement model.
- **covariates**: Not implemented yet.
- **groups**: Not implemented yet.
- **append**: Character vector. Syntax that is to be appended to lavaan syntax.
- **icontrasts**: Character vector. Use this argument to select the type of contrasts to be used. Default is `c("contr.sum", "contr.poly")` (not ordered, ordered).
- **verbose**: Boolean. Print details during procedure.
- **compound_symmetry**: Boolean. When set to TRUE, compound symmetry is assumed among dependent variables.
- **sphericity**: Boolean or formula. When set to TRUE, sphericity is assumed for all effects.
- **multiv_tests**: Character vector. Multivariate test statistics that are to be computed. Possible statistics are: `c("wilks", "wald")`. Default is `multiv_tests = c("wilks", "wald")`.
- **univ_tests**: Character vector. Univariate test statistics that are to be computed. Possible statistics are: `c("F")`. Default is `univ_tests = NULL`.
- **randomization**: Not yet supported.
- **...**: Additional arguments to be passed to lavaan.

Value

Function returns an `lgc` object. Use `summary(object)` to print hypotheses. Otherwise use `object@sem_obj` to get access to the underlying lavaan object.

Examples

```r
set.seed(323412431)

data("semnova_test_data", package = "semnova")


mmodel <- create_mmodel(
    A1B1 = "var1",
    A2B1 = "var2",
    A3B1 = "var3",
    A1B2 = "var4",
)```


A2B2 = "var5",
A3B2 = "var6",
lv_scaling = "referent"
)

fit_semnova <-
  semnova(
    formula = cbind(A1B1, A2B1, A3B1, A1B2, A2B2, A3B2) ~ 1,
    data = semnova_test_data,
    idata = idata,
    idesign = ~ A * B,
    mmodel = mmodel
  )

summary(fit_semnova)

semnova_test_data

This data set serves for examples and tests.

Description

This is a simulated data set that 100 observation of six normally distributed variables with mean = 0, variance = 1 and covariance 0.5.

Usage

semnova_test_data

Format

A data frame with 100 rows and 6 variables:

summary, lgc-method

Printing the summary for an LGC object.

Description

Printing the summary for an LGC object.

Usage

## S4 method for signature 'lgc'
summary(object, ...)

Arguments

object  1gc object. The object to get a summary about.
...  Additional arguments. Currently none supported.
Index

* datasets
  semnova_test_data, 7
anova, lgc-method, 2
create_mmmodel, 2
lgc, 3
lgc-class, 5
semnova, 5
semnova_test_data, 7
summary, lgc-method, 7