Package ‘schumaker’

September 10, 2021

Type Package

Title Schumaker Shape-Preserving Spline

Version 1.2.1

Date 2021-09-09

Author Stuart Baumann [aut, cre], Margaryta Klymak[aut]

Maintainer Stuart Baumann <Stuart@StuartBaumann.com>

Description This is a shape preserving spline <doi:10.1137/0720057>
which is guaranteed to be monotonic and concave or convex if the
data is monotonic and concave or convex. It does not use any
optimisation and is therefore quick and smoothly converges to a
fixed point in economic dynamics problems including value function
iteration. It also automatically gives the first two derivatives
of the spline and options for determining behaviour when evaluated
outside the interpolation domain.

License MIT + file LICENSE

Suggests testthat, knitr, numDeriv, cobs, scam, rbenchmark

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-09 22:00:03 UTC

R topics documented:

make_approx_functions_from_dataframe ... 2
ppmak ... 3
ppmak2Deriv .. 3
ppmakDeriv .. 4
Schumaker ... 5
SchumakerIndInterval ... 6

Index 7
make_approx_functions_from_dataframe

Description

make_approx_functions_from_dataframe

Usage

make_approx_functions_from_dataframe(
 dataframe,
 group_vars,
 x_var,
 y_var,
 approx_func
)

Arguments

dataframe A data.frame with your data.
group_vars The variable names in the dataframe that subset the data into the various groups.
x_var The name of the x variable in the dataframe
y_var The name of the y variable in the dataframe.
approx_func A function that takes in two arguments, an x vector and a y vector. Make sure it can handle vectors of length 0 (if that can happen in your data).

Value

A function of the form function(groupvar1, groupvar2, ..., x).

Examples

Generating example data.
Consider we have equity prices for several days and times.
RICs = c("BARC.L", "VOD.L", "IBM.L")
Dates = as.Date(c("11-11-2019", "12-11-2019", "13-11-2019",
 "14-11-2019", "15-11-2019"), format="%d-%m-%Y")
times = seq(0,28800, length.out = 10) # The number of seconds into the trading day.
dd = expand.grid(TIME = times, Date = Dates, RIC = RICs)
dd = merge(dd, data.frame(RIC = RICs, PRICE = c(160.00, 162.24, 137.24)))
randomness = rlnorm(dim(dd)[1])
dd$PRICE = dd$PRICE * cumprod(randomness)

approx_func = function(x,y){approxfun(x, y)}
dispatched_approxfunc = make_approx_functions_from_dataframe(dd,
 group_vars = c("RIC", "Date"),
 approx_func = approx_func,
 x_var = "TIME", y_var = "PRICE")

Use these functions for your work.

Description
Create a spline with given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function. It roughly works like ppmak in matlab.

Usage
ppmak(IntStarts, SpCoefs, Vectorised = TRUE)

Arguments
- IntStarts: This is a vector with the start of each interval.
- SpCoefs: This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.
- Vectorised: This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Value
A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised = TRUE) and outputs the interpolated y value (or relevant derivative).

Description
Create the second derivative of the spline defined by given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function.

Usage
ppmak2Deriv(IntStarts, SpCoefs, Vectorised = TRUE)
Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IntStarts</td>
<td>This is a vector with the start of each interval.</td>
</tr>
<tr>
<td>SpCoefs</td>
<td>This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.</td>
</tr>
<tr>
<td>Vectorised</td>
<td>This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.</td>
</tr>
</tbody>
</table>

Value

A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised = TRUE) and outputs the interpolated y value (or relevant derivative).

Description

Create the derivative of the spline defined by given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function.

Usage

ppmakDeriv(IntStarts, SpCoefs, Vectorised = TRUE)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IntStarts</td>
<td>This is a vector with the start of each interval.</td>
</tr>
<tr>
<td>SpCoefs</td>
<td>This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.</td>
</tr>
<tr>
<td>Vectorised</td>
<td>This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.</td>
</tr>
</tbody>
</table>

Value

A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised = TRUE) and outputs the interpolated y value (or relevant derivative).
Schumaker

Create a Schumaker spline

Description

Create a Schumaker spline

Usage

Schumaker(
 x,
 y,
 gradients = NA,
 Vectorised = TRUE,
 Extrapolation = c("Curve", "Constant", "Linear"),
 edgeGradients = c(NA, NA)
)

Arguments

x
A vector of x coordinates

y
A corresponding vector of y coordinates

gradients
(Optional) A corresponding vector of gradients at the data points. If this is NA then it will be estimated.

Vectorised
This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Extrapolation
This determines how the spline function responds when an input is received outside the domain of x. The options are "Curve" which outputs the result of the point on the quadratic curve at the nearest interval, "Constant" which outputs the y value at the end of the x domain and "Linear" which extends the spline using the gradient at the edge of x.

edgeGradients
This gives the options of specifying the gradients at either edge of the domain. By default this is c(NA,NA) meaning that the defaults from the original paper are used. If this is set to c(0,NA) for instance this will mean that the left edge gradient is zero and the right edge gradient is as recommended in the original paper. This setting has no impact if a full set of gradients is input.

Value

A list with 3 spline functions and a table with spline intervals and coefficients. The first spline is the schumaker spline, the second spline is the first derivative of the schumaker spline, the third spline is the second derivative of the schumaker spline. Each function takes an x value (or vector if Vectorised = TRUE) and outputs the interpolated y value (or relevant derivative).
References

Examples

```r
x = seq(1,6)
y = log(x)
SSS = schumaker::Schumaker(x,y, Vectorised = TRUE)
xarray = seq(1,6,0.01)
Result = SSS$Spline(xarray)
Result2 = SSS$DerivativeSpline(xarray)
Result3 = SSS$SecondDerivativeSpline(xarray)
plot(xarray, Result, ylim=c(-0.5,2))
lines(xarray, Result2, col = 2)
lines(xarray, Result3, col = 3)
```

Description

This creates quadratic coefficients for one interval of a domain. This is an internal function that is called from the Schumaker function.

Usage

```r
SchumakerIndInterval(z, s, Smallt)
```

Arguments

- **z**: This is the y value at edges of an interval.
- **s**: This is the slope at edges of an interval.
- **Smallt**: This is x values at the edge of an interval.

Value

The location of the knot and quadratic coefficients for an interval.
Index

make_approx_functions_from_dataframe, 2

ppmak, 3
ppmak2Deriv, 3
ppmakDeriv, 4

Schumaker, 5
SchumakerIndInterval, 6