Package ‘runstats’

November 14, 2019

Type Package
Title Fast Computation of Running Statistics for Time Series
Version 1.1.0
Description Provides methods for fast computation of running sample statistics for time series. These include: (1) mean, (2) standard deviation, and (3) variance over a fixed-length window of time-series, (4) correlation, (5) covariance, and (6) Euclidean distance (L2 norm) between short-time pattern and time-series. Implemented methods utilize Convolution Theorem to compute convolutions via Fast Fourier Transform (FFT).
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
URL https://github.com/martakarass/runstats
BugReports https://github.com/martakarass/runstats/issues
Imports fftwtools
Suggests covr, testthat, ggplot2, knitr, rmarkdown, sessioninfo, rbenchmark, cowplot, spelling
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Marta Karas [aut, cre] (<https://orcid.org/0000-0001-5889-3970>), Jacek Urbanek [aut] (<https://orcid.org/0000-0002-1890-8899>), John Muschelli [ctb] (<https://orcid.org/0000-0001-6469-1750>), Lacey Etzkorn [ctb]
Maintainer Marta Karas <marta.karass@gmail.com>
Repository CRAN
Date/Publication 2019-11-14 20:30:02 UTC
Description
Computes running correlation between time-series \(x \) and short-time pattern \(y \).

Usage

\[
\text{RunningCor}(x, y, \text{circular} = \text{FALSE})
\]

Arguments

\[
\begin{align*}
\text{x} & \quad \text{A numeric vector.} \\
\text{y} & \quad \text{A numeric vector, of equal or shorter length than} \ x. \\
\text{circular} & \quad \text{logical; whether running correlation is computed assuming circular nature of} \ x \\
\end{align*}
\]

Details
Computes running correlation between time-series \(x \) and short-time pattern \(y \). The length of output vector equals the length of \(x \). Parameter \(\text{circular} \) determines whether \(x \) time-series is assumed to have a circular nature. Assume \(l_x \) is the length of time-series \(x \), \(l_y \) is the length of short-time pattern \(y \).

If \(\text{circular} \) equals \(\text{TRUE} \) then

- first element of the output vector corresponds to sample correlation between \(x[1:1_y] \) and \(y \),
- last element of the output vector corresponds to sample correlation between \(c(x[1_x], x[1:(1_y -1)]) \) and \(y \).

If \(\text{circular} \) equals \(\text{FALSE} \) then

- first element of the output vector corresponds to sample correlation between \(x[1:1_y] \) and \(y \),
- the \(l_x - W + 1 \)-th element of the output vector corresponds to sample correlation between \(x[(1_x -1_y + 1):1_x] \),
- last \(W-1 \) elements of the output vector are filled with \(\text{NA} \).

See \text{runstats.demo(func.name = "RunningCor")} for a detailed presentation.
Value

A numeric vector.

Examples

```r
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningCor(x, y, circular = TRUE)
out2 <- RunningCor(x, y, circular = FALSE)
plot(out1, type = "l"); points(out2, col = "red")
```

Description

Computes running covariance between time-series \(x \) and short-time pattern \(y \).

Usage

```r
RunningCov(x, y, circular = FALSE)
```

Arguments

- \(x \) A numeric vector.
- \(y \) A numeric vector, of equal or shorter length than \(x \).
- \(\text{circular} \) Logical; whether running variance is computed assuming circular nature of \(x \) time-series (see Details).

Details

Computes running covariance between time-series \(x \) and short-time pattern \(y \).

The length of output vector equals the length of \(x \). Parameter \(\text{circular} \) determines whether \(x \) time-series is assumed to have a circular nature. Assume \(l_x \) is the length of time-series \(x \), \(l_y \) is the length of short-time pattern \(y \).

If \(\text{circular} \) equals \(\text{TRUE} \) then
- first element of the output vector corresponds to sample covariance between \(x[1:l_y] \) and \(y \),
- last element of the output vector corresponds to sample covariance between \(c(x[1_x], x[1:(1_y -1)]) \) and \(y \).

If \(\text{circular} \) equals \(\text{FALSE} \) then
- first element of the output vector corresponds to sample covariance between \(x[1:l_y] \) and \(y \),
- the \(l_x - W + 1 \)-th last element of the output vector corresponds to sample covariance between \(x[(1_x -1_y + 1):1_x] \),
- last \(W-1 \) elements of the output vector are filled with \(\text{NA} \).

See `runstats.demo(func.name = "RunningCov")` for a detailed presentation.
RunningL2Norm

Value
A numeric vector.

Examples

```r
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningL2Norm(x, y, circular = TRUE)
out2 <- RunningL2Norm(x, y, circular = FALSE)
plot(out1, type = "l"); points(out2, col = "red")
```

Description

Computes running L2 norm between between time-series `x` and short-time pattern `y`.

Usage

```r
RunningL2Norm(x, y, circular = FALSE)
```

Arguments

- `x` A numeric vector.
- `y` A numeric vector, of equal or shorter length than `x`.
- `circular` logical; whether running L2 norm is computed assuming circular nature of `x` time-series (see Details).

Details

Computes running L2 norm between between time-series `x` and short-time pattern `y`. The length of output vector equals the length of `x`. Parameter `circular` determines whether `x` time-series is assumed to have a circular nature. Assume \(l_x \) is the length of time-series `x`, \(l_y \) is the length of short-time pattern `y`.

If `circular` equals TRUE then

- first element of the output vector corresponds to sample L2 norm between `x[1:1_y]` and `y`.
- last element of the output vector corresponds to sample L2 norm between \(c(x[1_x]_x, 1_y _1) \) and `y`.

If `circular` equals FALSE then

- first element of the output vector corresponds to sample L2 norm between `x[1:1_y]` and `y`.
- the \(l_x - W + 1 \)-th element of the output vector corresponds to sample L2 norm between \(x[1_x _1_y + 1:1_x] \).
- last \(W-1 \) elements of the output vector are filled with NA.

See `runstats.demo(func.name = "RunningL2Norm")` for a detailed presentation.
RunningMean

Value

A numeric vector.

Examples

Ex.1.
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y1 <- x[1:100] + rnorm(100)
y2 <- rnorm(100)
out1 <- RunningL2Norm(x, y1)
out2 <- RunningL2Norm(x, y2)
plot(out1, type = "l"); points(out2, col = "blue")
Ex.2.
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100] + rnorm(100)
out1 <- RunningL2Norm(x, y, circular = TRUE)
out2 <- RunningL2Norm(x, y, circular = FALSE)
plot(out1, type = "l"); points(out2, col = "red")

RunningMean Fast Running Mean Computation

Description

Computes running sample mean of a time-series x in a fixed length window.

Usage

RunningMean(x, W, circular = FALSE)

Arguments

x A numeric vector.
W A numeric scalar; length of x window over which sample mean is computed.
circular Logical; whether running sample mean is computed assuming circular nature of x time-series (see Details).

Details

The length of output vector equals the length of x vector. Parameter circular determines whether x time-series is assumed to have a circular nature. Assume \(l_x \) is the length of time-series x, W is a fixed length of x time-series window.

If circular equals TRUE then

- first element of the output time-series corresponds to sample mean of x[1:W].
- last element of the output time-series corresponds to sample mean of c(x[1:l_x],x[1:(W -1)]).
If `circular` equals `FALSE` then

- first element of the output time-series corresponds to sample mean of \(x[1:W]\).
- \(l_x - W + 1\)-th element of the output time-series corresponds to sample mean of \(x[(1_x - W + 1):1_x]\),
- last \(W-1\) elements of the output time-series are filled with `NA`.

See `runstats.demo(func.name = "RunningMean")` for a detailed presentation.

Value

A numeric vector.

Examples

```r
x <- rnorm(10)
RunningMean(x, 3, circular = FALSE)
RunningMean(x, 3, circular = TRUE)
```

RunningSd

Fast Running Standard Deviation Computation

Description

Computes running sample standard deviation of a time-series \(x\) in a fixed length window.

Usage

`RunningSd(x, W, circular = FALSE)`

Arguments

- **x** A numeric vector.
- **W** A numeric scalar; length of \(x\) window over which sample variance is computed.
- **circular** Logical; whether running sample standard deviation is computed assuming circular nature of \(x\) time-series (see Details).

Details

The length of output vector equals the length of \(x\) vector. Parameter `circular` determines whether \(x\) time-series is assumed to have a circular nature. Assume \(l_x\) is the length of time-series \(x\), \(W\) is a fixed length of \(x\) time-series window.

If `circular` equals `TRUE` then

- first element of the output time-series corresponds to sample standard deviation of \(x[1:W]\),
- last element of the output time-series corresponds to sample standard deviation of \(c(x[1_x], x[1:(W -1)])\).
If `circular` equals `FALSE` then

- first element of the output time-series corresponds to sample standard deviation of \(x[1:W]\),
- the \(l_x - W + 1\)-th element of the output time-series corresponds to sample standard deviation of \(x[(1_x - W + 1):l_x]\),
- last \(W-1\) elements of the output time-series are filled with `NA`.

See `runstats.demo(func.name = "RunningSd")` for a detailed presentation.

Value

A numeric vector.

Examples

```r
x <- rnorm(10)
RunningSd(x, 3, circular = FALSE)
RunningSd(x, 3, circular = FALSE)
```

RunningVar

Fast Running Variance Computation

Description

Computes running sample variance of a time-series \(x\) in a fixed length window.

Usage

```r
RunningVar(x, W, circular = FALSE)
```

Arguments

- \(x\) A numeric vector.
- \(W\) A numeric scalar; length of \(x\) window over which sample variance is computed.
- `circular` Logical; whether running sample variance is computed assuming circular nature of \(x\) time-series (see Details).

Details

The length of output vector equals the length of \(x\) vector. Parameter `circular` determines whether \(x\) time-series is assumed to have a circular nature. Assume \(l_x\) is the length of time-series \(x\), \(W\) is a fixed length of \(x\) time-series window.

If `circular` equals `TRUE` then

- first element of the output time-series corresponds to sample variance of \(x[1:W]\),
- last \(W-1\) elements of the output time-series corresponds to sample variance of \(c(x[1_x],x[1:(W -1)])\).
If circular equals FALSE then

- first element of the output time-series corresponds to sample variance of \(x[1:W] \),
- the \(l_x - W + 1 \)-th element of the output time-series corresponds to sample variance of \(x[(1_x - W + 1):l_x] \),
- last \(W-1 \) elements of the output time-series are filled with NA.

See runstats.demo(func.name = "RunningVar") for a detailed presentation.

Value

A numeric vector.

Examples

```r
x <- rnorm(10)
RunningVar(x, W = 3, circular = FALSE)
RunningVar(x, W = 3, circular = TRUE)
```

Description

Generates demo visualization of output of methods for computing running statistics.

Usage

```r
runstats.demo(func.name = "RunningCov")
```

Arguments

- `func.name`: Character value; one of the following:
 - "RunningMean",
 - "RunningSd",
 - "RunningVar",
 - "RunningCov",
 - "RunningCor",
 - "RunningL2Norm".

Value

`NULL`
Examples

Not run:
runstats.demo(func.name = "RunningMean")
runstats.demo(func.name = "RunningSd")
runstats.demo(func.name = "RunningVar")
runstats.demo(func.name = "RunningCov")
runstats.demo(func.name = "RunningCor")
runstats.demo(func.name = "RunningL2Norm")

End(Not run)
Index

RunningCor, 2
RunningCov, 3
RunningL2Norm, 4
RunningMean, 5
RunningSd, 6
RunningVar, 7
runstats.demo, 8