Package ‘rsample’

March 25, 2024

Title General Resampling Infrastructure
Version 1.2.1
Description Classes and functions to create and summarize different types of resampling objects (e.g. bootstrap, cross-validation).
License MIT + file LICENSE
URL https://rsample.tidymodels.org,
https://github.com/tidymodels/rsample
BugReports https://github.com/tidymodels/rsample/issues
Depends R (>= 3.6)
Imports cli, dplyr (>= 1.1.1), furrr, generics, glue, lifecycle, methods, pillar, purrr (>= 1.0.0), rlang (>= 0.4.10), slider (>= 0.1.5), tibble, tidyr, tidyselect, vctrs (>= 0.5.0)
Suggests broom, covr, ggplot2, knitr, modeldata, recipes (>= 0.1.4), rmarkdown, stats, testthat (>= 3.0.0), utils, whisker, withr, xml2
VignetteBuilder knitr

Author Hannah Frick [aut, cre] (<https://orcid.org/0000-0002-6049-5258>), Fanny Chow [aut], Max Kuhn [aut], Michael Mahoney [aut] (<https://orcid.org/0000-0003-2402-304X>), Julia Silge [aut] (<https://orcid.org/0000-0002-3671-836X>), Hadley Wickham [aut], Posit Software, PBC [cph, fnd]

Maintainer Hannah Frick <hannah@posit.co>

Repository CRAN

Date/Publication 2024-03-25 10:00:02 UTC

R topics documented:

- .get_fingerprint ... 3
- add_resample_id ... 4
- apparent .. 5
- as.data.frame.rsplit 5
- bootstraps ... 6
- clustering_cv ... 8
- complement .. 10
- form_pred .. 11
- get_rsplit .. 12
- group_bootstraps 13
- group_mc_cv ... 14
- group_vfold_cv .. 15
- initial_split ... 17
- initial_validation_split 19
- int_pctl ... 21
- labels.rset ... 23
- labels.rsplit ... 24
- loo_cv ... 25
- make_splits ... 25
- make_strata ... 26
- manual_rset ... 28
- mc_cv ... 29
- nested_cv ... 30
- permutations .. 32
- populate .. 33
- reg_intervals .. 34
- reshuffle_rset .. 35
- reverse_splits .. 36
- rolling_origin .. 37
- rsample-dplyr .. 38
- rsample2caret .. 39
- rset_reconstruct .. 40
- slide-resampling .. 41
- tidy.rsplit ... 45
- validation_set .. 47
- vfold_cv ... 48

Index 51
Description

This function returns a hash (or NA) for an attribute that is created when the \texttt{rset} was initially constructed. This can be used to compare with other resampling objects to see if they are the same.

Usage

\begin{verbatim}
.get_fingerprint(x, ...)

Default S3 method:
.get_fingerprint(x, ...)

S3 method for class 'rset'
.get_fingerprint(x, ...)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{x} An \texttt{rset} or \texttt{tune_results} object.
\item \texttt{...} Not currently used.
\end{itemize}

Value

A character value or \texttt{NA_character_} if the object was created prior to \texttt{rsample} version 0.1.0.

Examples

\begin{verbatim}
set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(2)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars, repeats = 2))
\end{verbatim}
add_resample_id

Augment a data set with resampling identifiers

Description

For a data set, add_resample_id() will add at least one new column that identifies which resample that the data came from. In most cases, a single column is added but for some resampling methods, two or more are added.

Usage

add_resample_id(.data, split, dots = FALSE)

Arguments

.data A data frame
.split A single rset object.
dots A single logical: should the id columns be prefixed with a "." to avoid name conflicts with .data?

Value

An updated data frame.

See Also

labels.rsplit

Examples

library(dplyr)

set.seed(363)
car_folds <- vfold_cv(mtcars, repeats = 3)

analysis(car_folds$splits[[1]]) %>%
 add_resample_id(car_folds$splits[[1]]) %>%
 head()

car_bt <- bootstraps(mtcars)

analysis(car_bt$splits[[1]]) %>%
 add_resample_id(car_bt$splits[[1]]) %>%
 head()
Sampling for the Apparent Error Rate

Description

When building a model on a data set and re-predicting the same data, the performance estimate from those predictions is often called the "apparent" performance of the model. This estimate can be wildly optimistic. "Apparent sampling" here means that the analysis and assessment samples are the same. These resamples are sometimes used in the analysis of bootstrap samples and should otherwise be avoided like old sushi.

Usage

apparent(data, ...)

Arguments

- data: A data frame.
- ...: These dots are for future extensions and must be empty.

Value

A tibble with a single row and classes apparent, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and one column called id that has a character string with the resample identifier.

Examples

apparent(mtcars)

as.data.frame.rsplit Convert an rsplit object to a data frame

Description

The analysis or assessment code can be returned as a data frame (as dictated by the data argument) using as.data.frame.rsplit. analysis and assessment are shortcuts.
Usage

```r
## S3 method for class 'rsplit'
as.data.frame(x, row.names = NULL, optional = FALSE, data = "analysis", 
            ...)

analysis(x, ...)

## Default S3 method:
analysis(x, ...)

## S3 method for class 'rsplit'
analysis(x, ...)

assessment(x, ...)

## Default S3 method:
assessment(x, ...)

## S3 method for class 'rsplit'
assessment(x, ...)
```

Arguments

- `x` An rsplit object.
- `row.names` NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
- `optional` A logical: should the column names of the data be checked for legality?
- `data` Either "analysis" or "assessment" to specify which data are returned.
- `...` Not currently used.

Examples

```r
library(dplyr)
set.seed(104)
folds <- vfold_cv(mtcars)
model_data_1 <- folds$splits[[1]] %>% analysis()
holdout_data_1 <- folds$splits[[1]] %>% assessment()
```

bootstraps

Bootstrapping

A bootstrap sample is a sample that is the same size as the original data set that is made using replacement. This results in analysis samples that have multiple replicates of some of the original rows of the data. The assessment set is defined as the rows of the original data that were not included in the bootstrap sample. This is often referred to as the “out-of-bag” (OOB) sample.
Usage

bootstraps(
 data,
 times = 25,
 strata = NULL,
 breaks = 4,
 pool = 0.1,
 apparent = FALSE,
 ...
)

Arguments

data A data frame.
times The number of bootstrap samples.
strata A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
breaks A single number giving the number of bins desired to stratify a numeric stratification variable.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
apparent A logical. Should an extra resample be added where the analysis and holdout subset are the entire data set. This is required for some estimators used by the summary function that require the apparent error rate.
... These dots are for future extensions and must be empty.

Details

The argument apparent enables the option of an additional "resample" where the analysis and assessment data sets are the same as the original data set. This can be required for some types of analysis of the bootstrap results.

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see make_strata() for more details.

Value

A tibble with classes bootstraps, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.
Examples

```r
library(purrr)
library(modeldata)
data(wa_churn)

set.seed(13)
resample1 <- bootstraps(wa_churn, times = 3)
map_dbl(resample1$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})

set.seed(13)
resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
map_dbl(resample2$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})

set.seed(13)
resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
map_dbl(resample3$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})
```

clustering_cv
Cluster Cross-Validation

Description

Cluster cross-validation splits the data into V groups of disjointed sets using k-means clustering of some variables. A resample of the analysis data consists of V-1 of the folds/clusters while the assessment set contains the final fold/cluster. In basic cross-validation (i.e. no repeats), the number of resamples is equal to V.
Usage

```r
clustering_cv(
    data,
    vars,
    v = 10,
    repeats = 1,
    distance_function = "dist",
    cluster_function = c("kmeans", "hclust"),
    ...
)
```

Arguments

data
A data frame.

vars
A vector of bare variable names to use to cluster the data.

v
The number of partitions of the data set.

repeats
The number of times to repeat the clustered partitioning.

distance_function
Which function should be used for distance calculations? Defaults to `stats::dist()`.
You can also provide your own function; see Details.

cluster_function
Which function should be used for clustering? Options are either "kmeans" (to use `stats::kmeans()`) or "hclust" (to use `stats::hclust()`). You can also provide your own function; see Details.

...
Extra arguments passed on to `cluster_function`.

Details

The variables in the `vars` argument are used for k-means clustering of the data into disjointed sets or for hierarchical clustering of the data. These clusters are used as the folds for cross-validation. Depending on how the data are distributed, there may not be an equal number of points in each fold.

You can optionally provide a custom function to `distance_function`. The function should take a data frame (as created via `data[vars]`) and return a `stats::dist()` object with distances between data points.

You can optionally provide a custom function to `cluster_function`. The function must take three arguments:

- `dists`, a `stats::dist()` object with distances between data points
- `v`, a length-1 numeric for the number of folds to create
- `...`, to pass any additional named arguments to your function

The function should return a vector of cluster assignments of length `nrow(data)`, with each element of the vector corresponding to the matching row of the data frame.

Value

A tibble with classes `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and an identification variable `id`.
Examples

```r
data(ames, package = "modeldata")
clustering_cv(ames, vars = c(Sale_Price, First_Flr_SF, Second_Flr_SF), v = 2)
```

complement

* Determine the Assessment Samples

Description

This method and function help find which data belong in the analysis and assessment sets.

Usage

```r
complement(x, ...)
```

S3 method for class 'rsplit'
```r
complement(x, ...)
```

S3 method for class 'rof_split'
```r
complement(x, ...)
```

S3 method for class 'sliding_window_split'
```r
complement(x, ...)
```

S3 method for class 'sliding_index_split'
```r
complement(x, ...)
```

S3 method for class 'sliding_period_split'
```r
complement(x, ...)
```

S3 method for class 'apparent_split'
```r
complement(x, ...)
```

Arguments

- `x` An rsplit object.
- `...` Not currently used.

Details

Given an rsplit object, complement() will determine which of the data rows are contained in the assessment set. To save space, many of the rsplit objects will not contain indices for the assessment split.
form_pred

Value
A integer vector.

See Also
populate()

Examples

```r
set.seed(28432)
fold_rs <- vfold_cv(mtcars)
head(fold_rs$splits[[1]]$in_id)
fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])
```

form_pred

Extract Predictor Names from Formula or Terms

Description
all.vars returns all variables used in a formula. This function only returns the variables explicitly used on the right-hand side (i.e., it will not resolve dots unless the object is terms with a data set specified).

Usage

```r
form_pred(object, ...)
```

Arguments

- `object`: A model formula or `stats::terms()` object.
- `...`: Arguments to pass to `all.vars()`

Value
A character vector of names

Examples

```r
form_pred(y ~ x + z)
form_pred(terms(y ~ x + z))
form_pred(y ~ x + log(z))
form_pred(log(y) ~ x + z)
form_pred(y1 + y2 ~ x + z)
form_pred(log(y1) + y2 ~ x + z)
```
will fail:
form_pred(y ~ .)

form_pred(terms(mpg ~ (.)^2, data = mtcars))
form_pred(terms(~ (.)^2, data = mtcars))

get_rsplit

Retrieve individual rsplits objects from an rset

Description

Retrieve individual rsplits objects from an rset.

Usage

```
get_rsplit(x, index, ...)
```

```
## S3 method for class 'rset'
get_rsplit(x, index, ...)
```

```
## Default S3 method:
get_rsplit(x, index, ...)
```

Arguments

- `x` The rset object to retrieve an rsplit from.
- `index` An integer indicating which rsplit to retrieve: 1 for the rsplit in the first row of the rset, 2 for the second, and so on.
- `...` Not currently used.

Value

The rsplit object in row `index` of `rset`.

Examples

```
set.seed(123)
(starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
ge_rsplit(starting_splits, 1)
```
group_bootstraps

Description

Group bootstrapping creates splits of the data based on some grouping variable (which may have more than a single row associated with it). A common use of this kind of resampling is when you have repeated measures of the same subject. A bootstrap sample is a sample that is the same size as the original data set that is made using replacement. This results in analysis samples that have multiple replicates of some of the original rows of the data. The assessment set is defined as the rows of the original data that were not included in the bootstrap sample. This is often referred to as the "out-of-bag" (OOB) sample.

Usage

group_bootstraps(
 data,
 group,
 times = 25,
 apparent = FALSE,
 ...,
 strata = NULL,
 pool = 0.1
)

Arguments

data A data frame.
group A variable in data (single character or name) used for grouping observations with the same value to either the analysis or assessment set within a fold.
times The number of bootstrap samples.
apparent A logical. Should an extra resample be added where the analysis and holdout subset are the entire data set. This is required for some estimators used by the summary function that require the apparent error rate.
... These dots are for future extensions and must be empty.
strata A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
Details

The argument apparent enables the option of an additional "resample" where the analysis and assessment data sets are the same as the original data set. This can be required for some types of analysis of the bootstrap results.

Value

An tibble with classes group_bootstraps bootstraps, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.

Examples

data(ames, package = "modeldata")
set.seed(13)
group_bootstraps(ames, Neighborhood, times = 3)
group_bootstraps(ames, Neighborhood, times = 3, apparent = TRUE)
Arguments

data A data frame.
group A variable in data (single character or name) used for grouping observations with the same value to either the analysis or assessment set within a fold.
prop The proportion of data to be retained for modeling/analysis.
times The number of times to repeat the sampling.
... These dots are for future extensions and must be empty.
strata A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.

Value

A tibble with classes group_mc_cv, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and an identification variable.

Examples

data(ames, package = "modeldata")
set.seed(123)
group_mc_cv(ames, group = Neighborhood, times = 5)

Description

Group V-fold cross-validation creates splits of the data based on some grouping variable (which may have more than a single row associated with it). The function can create as many splits as there are unique values of the grouping variable or it can create a smaller set of splits where more than one group is left out at a time. A common use of this kind of resampling is when you have repeated measures of the same subject.
Usage

```r
group_vfold_cv(
  data,
  group = NULL,
  v = NULL,
  repeats = 1,
  balance = c("groups", "observations"),
  ..., 
  strata = NULL,
  pool = 0.1
)
```

Arguments

- **data**: A data frame.
- **group**: A variable in `data` (single character or name) used for grouping observations with the same value to either the analysis or assessment set within a fold.
- **v**: The number of partitions of the data set. If left as `NULL` (the default), `v` will be set to the number of unique values in the grouping variable, creating "leave-one-group-out" splits.
- **repeats**: The number of times to repeat the V-fold partitioning.
- **balance**: If `v` is less than the number of unique groups, how should groups be combined into folds? Should be one of "groups", which will assign roughly the same number of groups to each fold, or "observations", which will assign roughly the same number of observations to each fold.
- ... These dots are for future extensions and must be empty.
- **strata**: A variable in `data` (single character or name) used to conduct stratified sampling. When not `NULL`, each resample is created within the stratification variable. Numeric `strata` are binned into quartiles.
- **pool**: A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.

Value

A tibble with classes `group_vfold_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and an identification variable.

Examples

```r
data(ames, package = "modeldata")
set.seed(123)
group_vfold_cv(ames, group = Neighborhood, v = 5)
group_vfold_cv(
```
ames,
group = Neighborhood,
v = 5,
balance = "observations"
)
group_vfold_cv(ames, group = Neighborhood, v = 5, repeats = 2)

Leave-one-group-out CV
group_vfold_cv(ames, group = Neighborhood)

library(dplyr)
data(Sacramento, package = "modeldata")

city_strata <- Sacramento %>%
group_by(city) %>%
summarize(strata = mean(price)) %>%
summarize(city = city,
 strata = cut(strata, quantile(strata), include.lowest = TRUE))
sacramento_data <- Sacramento %>%
full_join(city_strata, by = "city")
group_vfold_cv(sacramento_data, city, strata = strata)

initial_split

Simple Training/Test Set Splitting

Description

initial_split creates a single binary split of the data into a training set and testing set. initial_time_split does the same, but takes the first prop samples for training, instead of a random selection. group_initial_split creates splits of the data based on some grouping variable, so that all data in a "group" is assigned to the same split. training and testing are used to extract the resulting data.

Usage

initial_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)

initial_time_split(data, prop = 3/4, lag = 0, ...)

training(x, ...)

Default S3 method:
training(x, ...)

S3 method for class 'rsplit'
training(x, ...)
testing(x, ...)

Default S3 method:
 testing(x, ...)

S3 method for class 'rsplit'
 testing(x, ...)

group_initial_split(data, group, prop = 3/4, ..., strata = NULL, pool = 0.1)

Arguments

data A data frame.
prop The proportion of data to be retained for modeling/analysis.
strata A variable in data (single character or name) used to conduct stratified sampling. When not NULL, each resample is created within the stratification variable. Numeric strata are binned into quartiles.
breaks A single number giving the number of bins desired to stratify a numeric stratification variable.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
... These dots are for future extensions and must be empty.
lag A value to include a lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
x An rsplit object produced by initial_split() or initial_time_split().
group A variable in data (single character or name) used for grouping observations with the same value to either the analysis or assessment set within a fold.

Details

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see make_strata() for more details.

Value

An rsplit object that can be used with the training and testing functions to extract the data in each split.

Examples

set.seed(1353)
car_split <- initial_split(mtcars)
train_data <- training(car_split)
test_data <- testing(car_split)

data(drinks, package = "modeldata")
drinks_split <- initial_time_split(drinks)
train_data <- training(drinks_split)
test_data <- testing(drinks_split)
c(max(train_data$date), min(test_data$date)) # no lag

With 12 period lag
drinks_lag_split <- initial_time_split(drinks, lag = 12)
train_data <- training(drinks_lag_split)
test_data <- testing(drinks_lag_split)
c(max(train_data$date), min(test_data$date)) # 12 period lag

set.seed(1353)
car_split <- group_initial_split(mtcars, cyl)
train_data <- training(car_split)
test_data <- testing(car_split)

initial_validation_split

Create an Initial Train/Validation/Test Split

Description

`initial_validation_split()` creates a random three-way split of the data into a training set, a validation set, and a testing set. `initial_validation_time_split()` does the same, but instead of a random selection the training, validation, and testing set are in order of the full data set, with the first observations being put into the training set. `group_initial_validation_split()` creates similar random splits of the data based on some grouping variable, so that all data in a "group" are assigned to the same partition. `training()`, `validation()`, and `testing()` can be used to extract the resulting data sets. Use `validation_set()` to create an rset object for use with functions from the tune package such as `tune::tune_grid()`.

Usage

```r
initial_validation_split(
  data,
  prop = c(0.6, 0.2),
  strata = NULL,
  breaks = 4,
  pool = 0.1,
  ...
)
```

`initial_validation_time_split(data, prop = c(0.6, 0.2), ...)}`
```r
# no code snippet provided

Arguments

data
prop
strata
breaks
pool
... 
group
x

Details

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification
```
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see `make_strata()` for more details.

Value

An initial_validation_split object that can be used with the `training()`, `validation()`, and `testing()` functions to extract the data in each split.

See Also

`validation_set()`

Examples

```r
set.seed(1353)
car_split <- initial_validation_split(mtcars)
train_data <- training(car_split)
validation_data <- validation(car_split)
test_data <- testing(car_split)

data(drinks, package = "modeldata")
drinks_split <- initial_validation_time_split(drinks)
train_data <- training(drinks_split)
validation_data <- validation(drinks_split)
c(max(train_data$date), min(validation_data$date))

data(ames, package = "modeldata")
set.seed(1353)
ames_split <- group_initial_validation_split(ames, group = Neighborhood)
train_data <- training(ames_split)
validation_data <- validation(ames_split)
test_data <- testing(ames_split)
```

int_pctl

Bootstrap confidence intervals

Description

Calculate bootstrap confidence intervals using various methods.

Usage

```r
int_pctl(.data, ...) 
```

S3 method for class ‘bootstraps’

```r
int_pctl(.data, statistics, alpha = 0.05, ...)
```
int_t(.data, ...)
S3 method for class 'bootstraps'
int_t(.data, statistics, alpha = 0.05, ...)
int_bca(.data, ...)
S3 method for class 'bootstraps'
int_bca(.data, statistics, alpha = 0.05, .fn, ...)

Arguments
.data A data frame containing the bootstrap resamples created using bootstraps(). For t- and BCa-intervals, the apparent argument should be set to TRUE. Even if the apparent argument is set to TRUE for the percentile method, the apparent data is never used in calculating the percentile confidence interval.
... Arguments to pass to .fn (int_bca() only).
statistics An unquoted column name or dplyr selector that identifies a single column in the data set containing the individual bootstrap estimates. This must be a list column of tidy tibbles (with columns term and estimate). For t-intervals, a standard tidy column (usually called std.err) is required. See the examples below.
alpha Level of significance.
.fn A function to calculate statistic of interest. The function should take an rsplit as the first argument and the ... are required.

Details
Percentile intervals are the standard method of obtaining confidence intervals but require thousands of resamples to be accurate. T-intervals may need fewer resamples but require a corresponding variance estimate. Bias-corrected and accelerated intervals require the original function that was used to create the statistics of interest and are computationally taxing.

Value
Each function returns a tibble with columns .lower, .estimate, .upper, .alpha, .method, and term. .method is the type of interval (eg. "percentile", "student-t", or "BCa"). term is the name of the estimate. Note the .estimate returned from int_pctl() is the mean of the estimates from the bootstrap resamples and not the estimate from the apparent model.

References
https://rsample.tidymodels.org/articles/Applications/Intervals.html

See Also
reg_intervals()
Examples

```r
library(broom)
library(dplyr)
library(purrr)
library(tibble)

lm_est <- function(split, ...) {
  lm(mpg ~ disp + hp, data = analysis(split)) %%
  tidy()
}

set.seed(52156)
car_rs <-
  bootstraps(mtcars, 500, apparent = TRUE) %%
  mutate(results = map(splits, lm_est))

int_pctl(car_rs, results)
int_t(car_rs, results)
int_bca(car_rs, results, .fn = lm_est)

# putting results into a tidy format
rank_corr <- function(split) {
  dat <- analysis(split)
  tibble(
    term = "corr",
    estimate = cor(dat$sqft, dat$price, method = "spearman"),
    # don't know the analytical std.err so no t-intervals
    std.err = NA_real_
  )
}

set.seed(69325)
data(Sacramento, package = "modeldata")
bootstraps(Sacramento, 1000, apparent = TRUE) %%
mutate(correlations = map(splits, rank_corr)) %%
int_pctl(correlations)
```

labels.rset

Find Labels from rset Object

Description

Produce a vector of resampling labels (e.g. "Fold1") from an rset object. Currently, nested_cv is not supported.
Usage

```r
## S3 method for class 'rset'
labels(object, make_factor = FALSE, ...)

## S3 method for class 'vfold_cv'
labels(object, make_factor = FALSE, ...)
```

Arguments

- `object`: An `rset` object
- `make_factor`: A logical for whether the results should be a character or a factor.
- `...`: Not currently used.

Value

A single character or factor vector.

Examples

```r
labels(vfold_cv(mtcars))
```

`labels.rsplit` | Find Labels from `rsplit` Object

Description

Produce a tibble of identification variables so that single splits can be linked to a particular resample.

Usage

```r
## S3 method for class 'rsplit'
labels(object, ...)
```

Arguments

- `object`: An `rsplit` object
- `...`: Not currently used.

Value

A tibble.

See Also

`add_resample_id`
Examples

```r
cv_splits <- vfold_cv(mtcars)
labels(cv_splits$splits[[1]])
```

loo_cv
Leave-One-Out Cross-Validation

Description

Leave-one-out (LOO) cross-validation uses one data point in the original set as the assessment data and all other data points as the analysis set. A LOO resampling set has as many resamples as rows in the original data set.

Usage

```r
loo_cv(data, ...)
```

Arguments

- `data`
 A data frame.

- `...`
 These dots are for future extensions and must be empty.

Value

An tibble with classes `loo_cv`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split objects and one column called `id` that has a character string with the resample identifier.

Examples

```r
loo_cv(mtcars)
```

make_splits
Constructors for split objects

Description

Constructors for split objects
Usage

make_splits(x, ...)

Default S3 method:
make_splits(x, ...)

S3 method for class 'list'
make_splits(x, data, class = NULL, ...)

S3 method for class 'data.frame'
make_splits(x, assessment, ...)

Arguments

x A list of integers with names "analysis" and "assessment", or a data frame of
 analysis or training data.
...
 Not currently used.
data
 A data frame.
class
 An optional class to give the object.
assessment
 A data frame of assessment or testing data, which can be empty.

Examples

df <- data.frame(
 year = 1900:1999,
 value = 10 + 8*1900:1999 + runif(100L, 0, 100)
)
split_from_indices <- make_splits(
x = list(analysis = which(df$year <= 1980),
 assessment = which(df$year > 1980)),
 data = df
)
split_from_data_frame <- make_splits(
x = df[df$year <= 1980,],
 assessment = df[df$year > 1980,]
)
identical(split_from_indices, split_from_data_frame)

make_strata

Create or Modify Stratification Variables

Description

This function can create strata from numeric data and make non-numeric data more conducive for stratification.
make_strata

Usage

make_strata(x, breaks = 4, nunique = 5, pool = 0.1, depth = 20)

Arguments

x An input vector.
breaks A single number giving the number of bins desired to stratify a numeric stratification variable.
nunique An integer for the number of unique value threshold in the algorithm.
pool A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
depth An integer that is used to determine the best number of percentiles that should be used. The number of bins are based on \(\min(5, \text{floor}(n / \text{depth})) \) where \(n = \text{length}(x) \). If \(x \) is numeric, there must be at least 40 rows in the data set (when depth = 20) to conduct stratified sampling.

Details

For numeric data, if the number of unique levels is less than nunique, the data are treated as categorical data.

For categorical inputs, the function will find levels of \(x \) than occur in the data with percentage less than pool. The values from these groups will be randomly assigned to the remaining strata (as will data points that have missing values in \(x \)).

For numeric data with more unique values than nunique, the data will be converted to being categorical based on percentiles of the data. The percentile groups will have no more than 20 percent of the data in each group. Again, missing values in \(x \) are randomly assigned to groups.

Value

A factor vector.

Examples

set.seed(61)
x1 <- rpois(100, lambda = 5)
table(x1)
table(make_strata(x1))

set.seed(554)
x2 <- rpois(100, lambda = 1)
table(x2)
table(make_strata(x2))

small groups are randomly assigned
x3 <- factor(x2)
table(x3)
table(make_strata(x3))

'oilType' data from 'caret'
x4 <- rep(LETTERS[1:7], c(3, 7, 2, 3, 7, 11, 2))
table(x4)
table(make_strata(x4))
table(make_strata(x4, pool = 0.1))
table(make_strata(x4, pool = 0.0))

not enough data to stratify
x5 <- rnorm(20)
table(make_strata(x5))

set.seed(483)
x6 <- rnorm(200)
quantile(x6, probs = (0:10) / 10)
table(make_strata(x6, breaks = 10))

manual_rset

Description

`manual_rset()` is used for constructing the most minimal rset possible. It can be useful when you have custom rsplit objects built from `make_splits()`, or when you want to create a new rset from splits contained within an existing rset.

Usage

`manual_rset(splits, ids)`

Arguments

- **splits**: A list of "rsplit" objects. It is easiest to create these using `make_splits()`.
- **ids**: A character vector of ids. The length of `ids` must be the same as the length of `splits`.

Examples

df <- data.frame(x = c(1, 2, 3, 4, 5, 6))

Create an rset from custom indices
indices <- list(
 list(analysis = c(1L, 2L), assessment = 3L),
 list(analysis = c(4L, 5L), assessment = 6L)
)
splits <- lapply(indices, make_splits, data = df)
mc_cv

manual_rset(splits, c("Split 1", "Split 2"))

You can also use this to create an rset from a subset of an
existing rset
resamples <- vfold_cv(mtcars)
best_split <- resamples[5,]
manual_rset(best_split$splits, best_split$id)
Examples

```r
mc_cv(mtcars, times = 2)
mc_cv(mtcars, prop = .5, times = 2)

library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
map_dbl(resample1$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})

set.seed(13)
resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
map_dbl(resample2$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})

set.seed(13)
resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
map_dbl(resample3$splits, function(x) {
  dat <- as.data.frame(x)$churn
  mean(dat == "Yes")
})
```

nested_cv

Nested or Double Resampling

Description

`nested_cv` can be used to take the results of one resampling procedure and conduct further resamples within each split. Any type of resampling used in `rsample` can be used.

Usage

`nested_cv(data, outside, inside)`
Arguments

data A data frame.
outside The initial resampling specification. This can be an already created object or an expression of a new object (see the examples below). If the latter is used, the data argument does not need to be specified and, if it is given, will be ignored.
inside An expression for the type of resampling to be conducted within the initial procedure.

Details

It is a bad idea to use bootstrapping as the outer resampling procedure (see the example below)

Value

An tibble with nested_cv class and any other classes that outer resampling process normally contains. The results include a column for the outer data split objects, one or more id columns, and a column of nested tibbles called inner_resamples with the additional resamples.

Examples

```r
## Using expressions for the resampling procedures:
nested_cv(mtcars, outside = vfold_cv(v = 3), inside = bootstraps(times = 5))

## Using an existing object:
folds <- vfold_cv(mtcars)
nested_cv(mtcars, folds, inside = bootstraps(times = 5))

## The dangers of outer bootstraps:
set.seed(2222)
bad_idea <- nested_cv(mtcars, outside = bootstraps(times = 5), inside = vfold_cv(v = 3))

first_outer_split <- bad_idea$splits[[1]]
outer_analysis <- as.data.frame(first_outer_split)
sum(grepl("Volvo 142E", rownames(outer_analysis)))

first_inner_split <- bad_idea$inner_resamples[[1]]$splits[[1]]
inner_analysis <- as.data.frame(first_inner_split)
inner_assess <- as.data.frame(first_inner_split, data = "assessment")

sum(grepl("Volvo 142E", rownames(inner_analysis)))
sum(grepl("Volvo 142E", rownames(inner_assess)))
```
Description

A permutation sample is the same size as the original data set and is made by permuting/shuffling one or more columns. This results in analysis samples where some columns are in their original order and some columns are permuted to a random order. Unlike other sampling functions in \texttt{rsample}, there is no assessment set and calling \texttt{assessment()} on a permutation split will throw an error.

Usage

\texttt{permutations(data, permute = NULL, times = 25, apparent = FALSE, \ldots)}

Arguments

- \texttt{data}: A data frame.
- \texttt{permute}: One or more columns to shuffle. This argument supports tidyselect selectors. Multiple expressions can be combined with \texttt{c()}. Variable names can be used as if they were positions in the data frame, so expressions like \texttt{x:y} can be used to select a range of variables. See \texttt{language} for more details.
- \texttt{times}: The number of permutation samples.
- \texttt{apparent}: A logical. Should an extra resample be added where the analysis is the standard data set.
- \texttt{\ldots}: These dots are for future extensions and must be empty.

Details

The argument \texttt{apparent} enables the option of an additional "resample" where the analysis data set is the same as the original data set. Permutation-based resampling can be especially helpful for computing a statistic under the null hypothesis (e.g. t-statistic). This forms the basis of a permutation test, which computes a test statistic under all possible permutations of the data.

Value

A \texttt{tibble} with classes \texttt{permutations}, \texttt{rset}, \texttt{tbl_df}, \texttt{tbl}, and \texttt{data.frame}. The results include a column for the data split objects and a column called \texttt{id} that has a character string with the resample identifier.

Examples

\begin{verbatim}
permutations(mtcars, mpg, times = 2)
permutations(mtcars, mpg, times = 2, apparent = TRUE)

library(purrr)
resample1 <- permutations(mtcars, starts_with("c"), times = 1)
\end{verbatim}
```r
resample1$splits[[1]] %>% analysis()

resample2 <- permutations(mtcars, hp, times = 10, apparent = TRUE)
map_dbl(resample2$splits, function(x) {
  t.test(hp ~ vs, data = analysis(x))$statistic
})
```

Add Assessment Indices

Description

Many `rsplit` and `rset` objects do not contain indicators for the assessment samples. `populate()` can be used to fill the slot for the appropriate indices.

Usage

```r
populate(x, ...)
```

Arguments

- **x**: A `rsplit` and `rset` object.
- **...**: Not currently used.

Value

An object of the same kind with the integer indices.

Examples

```r
set.seed(28432)
fold_rs <- vfold_cv(mtcars)
fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])

populate(fold_rs$splits[[1]])$out_id

fold_rs_all <- populate(fold_rs)
fold_rs_all$splits[[1]]$out_id
```
reg_intervals

A convenience function for confidence intervals with linear-ish parametric models

Description

A convenience function for confidence intervals with linear-ish parametric models

Usage

reg_intervals(
 formula,
 data,
 model_fn = "lm",
 type = "student-t",
 times = NULL,
 alpha = 0.05,
 filter = term != "(Intercept)",
 keep_reps = FALSE,
 ...
)

Arguments

formula An R model formula with one outcome and at least one predictor.
data A data frame.
model_fn The model to fit. Allowable values are "lm", "glm", "survreg", and "coxph". The latter two require that the survival package be installed.
type The type of bootstrap confidence interval. Values of "student-t" and "percentile" are allowed.
times A single integer for the number of bootstrap samples. If left NULL, 1,001 are used for t-intervals and 2,001 for percentile intervals.
alpha Level of significance.
filter A logical expression used to remove rows from the final result, or NULL to keep all rows.
keep_reps Should the individual parameter estimates for each bootstrap sample be retained?
... Options to pass to the model function (such as family for glm()).

Value

A tibble with columns "term", ".lower", ".estimate", ".upper", ".alpha", and ".method". If keep_reps = TRUE, an additional list column called ".replicates" is also returned.
reshuffle_rset

References

Bootstrap Confidence Intervals, https://rsample.tidymodels.org/articles/Applications/Intervals.html

See Also
int_pctl(), int_t()

Examples

set.seed(1)
reg_intervals(mpg ~ I(1 / sqrt(disp)), data = mtcars)

set.seed(1)
reg_intervals(mpg ~ I(1 / sqrt(disp)), data = mtcars, keep_reps = TRUE)

Description
This function re-generates an rset object, using the same arguments used to generate the original.

Usage

```r
reshuffle_rset(rset)
```

Arguments

- `rset` The rset object to be reshuffled

Value
An rset of the same class as `rset`.

Examples

```r
set.seed(123)
(starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
reshuffle_rset(starting_splits)
```
reverse_splits
Reverse the analysis and assessment sets

Description
This function "swaps" the analysis and assessment sets of either a single rsplit or all r splits in the splits column of an rset object.

Usage
reverse_splits(x, ...)
Default S3 method:
reverse_splits(x, ...)
S3 method for class 'permutations'
reverse_splits(x, ...)
S3 method for class 'perm_split'
reverse_splits(x, ...)
S3 method for class 'rsplit'
reverse_splits(x, ...)
S3 method for class 'rset'
reverse_splits(x, ...)

Arguments
x
An rset or rsplit object.
...
Not currently used.

Value
An object of the same class as x

Examples
set.seed(123)
starting_splits <- vfold_cv(mtcars, v = 3)
reverse_splits(starting_splits)
reverse_splits(starting_splits$splits[[1]])
rolling_origin

Rolling Origin Forecast Resampling

Description

This resampling method is useful when the data set has a strong time component. The resamples are not random and contain data points that are consecutive values. The function assumes that the original data set are sorted in time order.

Usage

```r
rolling_origin(
  data,
  initial = 5,
  assess = 1,
  cumulative = TRUE,
  skip = 0,
  lag = 0,
  ...
)
```

Arguments

- **data** A data frame.
- **initial** The number of samples used for analysis/modeling in the initial resample.
- **assess** The number of samples used for each assessment resample.
- **cumulative** A logical. Should the analysis resample grow beyond the size specified by `initial` at each resample?.
- **skip** A integer indicating how many (if any) additional resamples to skip to thin the total amount of data points in the analysis resample. See the example below.
- **lag** A value to include a lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
- **...** These dots are for future extensions and must be empty.

Details

The main options, `initial` and `assess`, control the number of data points from the original data that are in the analysis and assessment set, respectively. When `cumulative = TRUE`, the analysis set will grow as resampling continues while the assessment set size will always remain static. `skip` enables the function to not use every data point in the resamples. When `skip = 0`, the resampling data sets will increment by one position. Suppose that the rows of a data set are consecutive days. Using `skip = 6` will make the analysis data set to operate on weeks instead of days. The assessment set size is not affected by this option.
Value

An tibble with classes rolling_origin, rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.

See Also

sliding_window(), sliding_index(), and sliding_period() for additional time based resampling functions.

Examples

```r
set.seed(1131)
ex_data <- data.frame(row = 1:20, some_var = rnorm(20))
dim(rolling_origin(ex_data))
dim(rolling_origin(ex_data, skip = 2))
dim(rolling_origin(ex_data, skip = 2, cumulative = FALSE))

# You can also roll over calendar periods by first nesting by that period, # which is especially useful for irregular series where a fixed window # is not useful. This example slides over 5 years at a time.
library(dplyr)
library(tidyr)
data(drinks, package = "modeldata")
drinks_annual <- drinks %>%
  mutate(year = as.POSIXlt(date)$year + 1900) %>%
  nest(data = c(-year))
multi_year_roll <- rolling_origin(drinks_annual, cumulative = FALSE)

analysis(multi_year_roll$splits[[1]])
assessment(multi_year_roll$splits[[1]])
```

Description

This page lays out the compatibility between rsample and dplyr. The rset objects from rsample are a specific subclass of tibbles, hence standard dplyr operations like joins as well row or column modifications work. However, whether the operation returns an rset or a tibble depends on the details of the operation.

The overarching principle is that any operation which leaves the specific characteristics of an rset intact will return an rset. If an operation modifies any of the following characteristics, the result will be a tibble rather than an rset:
- **Rows**: The number of rows needs to remain unchanged to retain the rset property. For example, you can’t have a 10-fold CV object without 10 rows. The order of the rows can be changed though and the object remains an rset.

- **Columns**: The splits column and the id column(s) are required for an rset and need to remain untouched. They cannot be dropped, renamed, or modified if the result should remain an rset.

Joins:
The following affect all of the dplyr joins, such as `left_join()`, `right_join()`, `full_join()`, and `inner_join()`.
The resulting object is an rset if the number of rows is unaffected. Rows can be reordered but not added or removed, otherwise the resulting object is a tibble.

<table>
<thead>
<tr>
<th>operation</th>
<th>same rows, possibly reordered</th>
<th>add or remove rows</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>join(rset, tbl)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
</tbody>
</table>

Row Operations:
The resulting object is an rset if the number of rows is unaffected. Rows can be reordered but not added or removed, otherwise the resulting object is a tibble.

<table>
<thead>
<tr>
<th>operation</th>
<th>same rows, possibly reordered</th>
<th>add or remove rows</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rset[ind,]</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>slice(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>filter(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>arrange(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
</tbody>
</table>

Column Operations:
The resulting object is an rset if the required splits and id columns remain unaltered. Otherwise the resulting object is a tibble.

<table>
<thead>
<tr>
<th>operation</th>
<th>required columns unaltered</th>
<th>required columns removed, renamed, or modified</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rset[,ind]</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>select(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>rename(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
<tr>
<td><code>mutate(rset)</code></td>
<td><code>rset</code></td>
<td><code>tibble</code></td>
</tr>
</tbody>
</table>

rsample2caret: *Convert Resampling Objects to Other Formats*

Description

These functions can convert resampling objects between `rsample` and `caret`.
Usage

rsample2caret(object, data = c("analysis", "assessment"))
caret2rsample(ctrl, data = NULL)

Arguments

object An rset object. Currently, nested_cv is not supported.
data The data that was originally used to produce the ctrl object.
ctrl An object produced by trainControl that has had the index and indexOut elements populated by integers. One method of getting this is to extract the control objects from an object produced by train.

Value

rsample2caret returns a list that mimics the index and indexOut elements of a trainControl object. caret2rsample returns an rset object of the appropriate class.

Description

rset_reconstruct() encapsulates the logic for allowing new rset subclasses to work properly with vctrs (through vctrs::vec_restore()) and dplyr (through dplyr::dplyr_reconstruct()). It is intended to be a developer tool, and is not required for normal usage of rsample.

Usage

rset_reconstruct(x, to)

Arguments

x A data frame to restore to an rset subclass.
to An rset subclass to restore to.

Details

rset objects are considered "reconstructable" after a vctrs/dplyr operation if:

• x and to both have an identical column named "splits" (column and row order do not matter).
• x and to both have identical columns prefixed with "id" (column and row order do not matter).

Value

x restored to the rset subclass of to.
Examples

to <- bootstraps(mtcars, times = 25)

Imitate a vctrs/dplyr operation,
where the class might be lost along the way
x <- tibble::as_tibble(to)

Say we added a new column to 'x'. Here we mock a 'mutate()'.
x$foo <- "bar"

This is still reconstructable to 'to'
rset_reconstruct(x, to)

Say we lose the first row
x <- x[-1,]

This is no longer reconstructable to 'to', as 'x' is no longer an rset
bootstraps object with 25 bootstraps if one is lost!
rset_reconstruct(x, to)

description

These resampling functions are focused on various forms of time series resampling.

- **sliding_window()** uses the row number when computing the resampling indices. It is independent of any time index, but is useful with completely regular series.

- **sliding_index()** computes resampling indices relative to the index column. This is often a Date or POSIXct column, but doesn’t have to be. This is useful when resampling irregular series, or for using irregular lookback periods such as lookback = lubridate::years(1) with daily data (where the number of days in a year may vary).

- **sliding_period()** first breaks up the index into less granular groups based on period, and then uses that to construct the resampling indices. This is extremely useful for constructing rolling monthly or yearly windows from daily data.

Usage

sliding_window(
 data,
 ..., # other arguments
 lookback = 0L,
 assess_start = 1L,
 assess_stop = 1L,
 complete = TRUE,
 step = 1L,
 skip = 0L
)
sliding_index(
 data,
 index,
 ...,
 lookback = 0L,
 assess_start = 1L,
 assess_stop = 1L,
 complete = TRUE,
 step = 1L,
 skip = 0L
)

sliding_period(
 data,
 index,
 period,
 ...,
 lookback = 0L,
 assess_start = 1L,
 assess_stop = 1L,
 complete = TRUE,
 step = 1L,
 skip = 0L,
 every = 1L,
 origin = NULL
)

Arguments

data A data frame.
...
lookback The number of elements to look back from the current element when computing
 the resampling indices of the analysis set. The current row is always included in
 the analysis set.

 • For sliding_window(), a single integer defining the number of rows to
 look back from the current row.
 • For sliding_index(), a single object that will be subtracted from the
 index as index - lookback to define the boundary of where to start search-
 ing for rows to include in the current resample. This is often an integer value
 corresponding to the number of days to look back, or a lubridate Period ob-
 ject.
 • For sliding_period(), a single integer defining the number of groups
 to look back from the current group, where the groups were defined from
 breaking up the index according to the period.

In all cases, Inf is also allowed to force an expanding window.
assess_start, assess_stop

This combination of arguments determines how far into the future to look when constructing the assessment set. Together they construct a range of \([\text{index} + \text{assess_start}, \text{index} + \text{assess_stop}]\) to search for rows to include in the assessment set.

Generally, \(\text{assess_start}\) will always be 1 to indicate that the first value to potentially include in the assessment set should start one element after the current row, but it can be increased to a larger value to create "gaps" between the analysis and assessment set if you are worried about high levels of correlation in short term forecasting.

- For `sliding_window()`, these are both single integers defining the number of rows to look forward from the current row.
- For `sliding_index()`, these are single objects that will be added to the index to compute the range to search for rows to include in the assessment set. This is often an integer value corresponding to the number of days to look forward, or a lubridate Period object.
- For `sliding_period()`, these are both single integers defining the number of groups to look forward from the current group, where the groups were defined from breaking up the index according to the period.

complete

A single logical. When using `lookback` to compute the analysis sets, should only complete windows be considered? If set to `FALSE`, partial windows will be used until it is possible to create a complete window (based on `lookback`). This is a way to use an expanding window up to a certain point, and then switch to a sliding window.

step

A single positive integer. After computing the resampling indices, `step` is used to thin out the results by selecting every `step`-th result by subsetting the indices with `seq(1L, n_indices, by = step)`. Note that `step` is independent of any time index used.

skip

A single positive integer, or zero. After computing the resampling indices, the first `skip` results will be dropped by subsetting the indices with `seq(skip + 1L, n_indices)`. This can be especially useful when combined with `lookback = Inf`, which creates an expanding window starting from the first row. By skipping forward, you can drop the first few windows that have very few data points. `skip` is applied before `step`. Note that `skip` is independent of any time index used.

index

The index to compute resampling indices relative to, specified as a bare column name. This must be an existing column in data.

- For `sliding_index()`, this is commonly a date vector, but is not required.
- For `sliding_period()`, it is required that this is a Date or POSIXct vector.

The index must be an increasing vector, but duplicate values are allowed. Additionally, the index cannot contain any missing values.

period

The period to group the index by. This is specified as a single string, such as "year" or "month". See the `.period` argument of `slider::slide_period()` for the full list of options and further explanation.

every

A single positive integer. The number of periods to group together.

For example, if the `period` was set to "year" with an every value of 2, then the years 1970 and 1971 would be placed in the same group.
origin
The reference date time value. The default when left as NULL is the epoch time of 1970-01-01 00:00:00, in the time zone of the index.
This is generally used to define the anchor time to count from, which is relevant when the every value is > 1.

See Also
rolling_origin()
slider::slide(), slider::slide_index(), and slider::slide_period(), which power these resamplers.

Examples

library(vctrs)
library(tibble)
library(modeldata)
data("Chicago")

index <- new_date(c(1, 3, 4, 7, 8, 9, 13, 15, 16, 17))
df <- tibble(x = 1:10, index = index)
df

Look back two rows beyond the current row, for a total of three rows
in each analysis set. Each assessment set is composed of the two rows after
the current row.
sliding_window(df, lookback = 2, assess_stop = 2)

Same as before, but step forward by 3 rows between each resampling slice,
rather than just by 1.
rset <- sliding_window(df, lookback = 2, assess_stop = 2, step = 3)
rset

analysis(rset$splits[[1]])
analysis(rset$splits[[2]])

Now slide relative to the `index` column in `df`. This time we look back
2 days from the current row’s `index` value, and 2 days forward from
it to construct the assessment set. Note that this series is irregular,
so it produces different results than `sliding_window()`. Additionally,
note that it is entirely possible for the assessment set to contain no
data if you have a highly irregular series and “look forward” into a
date range where no data points actually exist!
sliding_index(df, index, lookback = 2, assess_stop = 2)

With `sliding_period()`, we can break up our date index into less granular
chunks, and slide over them instead of the index directly. Here we’ll use
the Chicago data, which contains daily data spanning 16 years, and we’ll
break it up into rolling yearly chunks. Three years worth of data will
be used for the analysis set, and one years worth of data will be held out
for performance assessment.
sliding_period(
tidy.rsplit

Tidy Resampling Object

Description

The tidy function from the broom package can be used on rset and rsplit objects to generate tibbles with which rows are in the analysis and assessment sets.

Usage

```r
## S3 method for class 'rsplit'
tidy(x, unique_ind = TRUE, ...)
```
S3 method for class 'rset'
```r
tidy(x, unique_ind = TRUE, ...)
```

S3 method for class 'vfold_cv'
```r
tidy(x, ...)
```

S3 method for class 'nested_cv'
```r
tidy(x, unique_ind = TRUE, ...)
```

Arguments

- **x** A `rset` or `rsplit` object
- **unique_ind** Should unique row identifiers be returned? For example, if `FALSE` then bootstrapping results will include multiple rows in the sample for the same row in the original data.
- **...** These dots are for future extensions and must be empty.

Details

Note that for nested resampling, the rows of the inner resample, named `inner_Row`, are relative row indices and do not correspond to the rows in the original data set.

Value

A tibble with columns `Row` and `Data`. The latter has possible values "Analysis" or "Assessment". For `rset` inputs, identification columns are also returned but their names and values depend on the type of resampling. `vfold_cv` contains a column "Fold" and, if repeats are used, another called "Repeats". `bootstraps` and `mc_cv` use the column "Resample".

Examples

```r
library(ggplot2)
theme_set(theme_bw())

set.seed(4121)
cv <- tidy(vfold_cv(mtcars, v = 5))
ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +
  geom_tile() +
  scale_fill_brewer()

set.seed(4121)
rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +
  geom_tile() +
  facet_wrap(~Repeat) +
  scale_fill_brewer()

set.seed(4121)
mccv <- tidy(mc_cv(mtcars, times = 5))
```
validation_set

Create a Validation Split for Tuning

Description

Create a Validation Split for Tuning

Usage

validation_set(split, ...)

S3 method for class 'val_split'
analysis(x, ...)

S3 method for class 'val_split'
assessment(x, ...)

S3 method for class 'val_split'
training(x, ...)

S3 method for class 'val_split'
validation(x, ...)

S3 method for class 'val_split'
testing(x, ...)
Arguments

- **split**: An object of class `initial_validation_split`, such as resulting from `initial_validation_split()` or `group_initial_validation_split()`.
- **...**: These dots are for future extensions and must be empty.
- **x**: An `rsplit` object produced by `validation_set()`.

Value

An tibble with classes `validation_set`, `rset`, `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data split object and a column called `id` that has a character string with the resample identifier.

Examples

```r
set.seed(1353)
car_split <- initial_validation_split(mtcars)
car_set <- validation_set(car_split)
```

vfold_cv

V-Fold Cross-Validation

Description

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the data into V groups of roughly equal size (called "folds"). A resample of the analysis data consists of V-1 of the folds while the assessment set contains the final fold. In basic V-fold cross-validation (i.e. no repeats), the number of resamples is equal to V.

Usage

`vfold_cv(data, v = 10, repeats = 1, strata = NULL, breaks = 4, pool = 0.1, ...)`

Arguments

- **data**: A data frame.
- **v**: The number of partitions of the data set.
- **repeats**: The number of times to repeat the V-fold partitioning.
- **strata**: A variable in `data` (single character or name) used to conduct stratified sampling. When not `NULL`, each resample is created within the stratification variable. Numeric `strata` are binned into quartiles.
- **breaks**: A single number giving the number of bins desired to stratify a numeric stratification variable.
- **pool**: A proportion of data used to determine if a particular group is too small and should be pooled into another group. We do not recommend decreasing this argument below its default of 0.1 because of the dangers of stratifying groups that are too small.
- **...**: These dots are for future extensions and must be empty.
Details

With more than one repeat, the basic V-fold cross-validation is conducted each time. For example, if three repeats are used with \(v = 10 \), there are a total of 30 splits: three groups of 10 that are generated separately.

With a strata argument, the random sampling is conducted within the stratification variable. This can help ensure that the resamples have equivalent proportions as the original data set. For a categorical variable, sampling is conducted separately within each class. For a numeric stratification variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the total are pooled together; see \texttt{make_strata()} for more details.

Value

A tibble with classes \texttt{vfold_cv}, \texttt{rset}, \texttt{tbl_df}, \texttt{tbl}, and \texttt{data.frame}. The results include a column for the data split objects and one or more identification variables. For a single repeat, there will be one column called \texttt{id} that has a character string with the fold identifier. For repeats, \texttt{id} is the repeat number and an additional column called \texttt{id2} that contains the fold information (within repeat).

Examples

\begin{verbatim}
library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
folds1 <- vfold_cv(wa_churn, v = 5)
map_dbl(folds1$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 }
)

set.seed(13)
folds2 <- vfold_cv(wa_churn, strata = churn, v = 5)
map_dbl(folds2$splits,
 function(x) {
 dat <- as.data.frame(x)$churn
 mean(dat == "Yes")
 }
)

set.seed(13)
folds3 <- vfold_cv(wa_churn, strata = tenure, breaks = 6, v = 5)
map_dbl(folds3$splits,
 function(x) {

```
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)
}
Index

.get_fingerprint, 3
add_resample_id, 4
all.vars(), 11
analysis(as.data.frame.rsplit), 5
analysis.val_split(validation_set), 47
apparent, 5
as.data.frame.rsplit, 5
assessment(as.data.frame.rsplit), 5
assessment.val_split(validation_set), 47

bootstraps, 6

caret2rsample(rsample2caret), 39
clustering_cv, 8
complement, 10

form_pred, 11

get_rsplit, 12
group_bootstraps, 13
group_initial_split(initial_split), 17
group_initial_validation_split
  (initial_validation_split), 19
group_initial_validation_split(), 48
group_mc_cv, 14
group_vfold_cv, 15

initial_split, 17
initial_time_split(initial_split), 17
initial_validation_split, 19
initial_validation_split(), 48
initial_validation_time_split
  (initial_validation_split), 19
int_bca(int_pctl), 21
int_pctl, 21
int_pctl(), 35
int_t(int_pctl), 21
int_t(), 35

labels.rset, 23
labels.rsplit, 24
labels.vfold_cv(labels.rset), 23
language, 32
loo_cv, 25

make_splits, 25
make_splits(), 28
make_strata, 26
make_strata(), 7, 18, 21, 29, 49
manual_rset, 28
mc_cv, 29

nested_cv, 30

permutations, 32
populate, 33
populate(), 11

reg_intervals, 34
reg_intervals(), 22
reshuffle_rset, 35
reverse_splits, 36
rolling_origin, 37
rolling_origin(), 44
rsample-dplyr, 38
rsample2caret, 39
rset_reconstruct, 40

slide-resampling, 41
slider::slide, 44
slider::slide_index, 44
slider::slide_period, 43, 44
sliding_index (slide-resampling), 41
sliding_index(), 38
sliding_period (slide-resampling), 41
sliding_period(), 38
sliding_window (slide-resampling), 41
sliding_window(), 38
stats::dist, 9
stats::hclust, 9
stats::kmeans(), 9
stats::terms(), 11

testing(initial_split), 17
testing(), 21
testing.initial_validation_split(initial_validation_split), 19
testing.val_split(validation_set), 47
tidy_nested_cv(tidy.rsplit), 45
tidy.rset(tidy.rsplit), 45
tidy.rsplit, 45
tidy.vfold_cv(tidy.rsplit), 45
training(initial_split), 17
training(), 21
training.initial_validation_split(initial_validation_split), 19
training.val_split(validation_set), 47

validation(initial_validation_split), 19
validation(), 21
validation.val_split(validation_set), 47
validation_set, 47
validation_set(), 19, 21
vfold_cv, 48