Package ‘rrscale’

March 13, 2019

Title Robust Re-Scaling to Better Recover Latent Effects in Data

Version 0.1.3

Description Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation.

Date 2019-3-11

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Imports foreach, parallel, doParallel, DEoptim, abind

Suggests knitr, rmarkdown, testthat, ggplot2, reshape2

VignetteBuilder knitr

NeedsCompilation no

Author Gregory Hunt [aut, cre]

Maintainer Gregory Hunt <ghunt@wm.edu>

Repository CRAN

Date/Publication 2019-03-13 14:00:07 UTC

R topics documented:

asinh .. 2
box_cox .. 2
box_cox_exp .. 3
box_cox_negative 3
box_cox_plus1 4
box_cox_plusmin 4
box_cox_shift 5
center ... 5
asinh

Arc-hyperbolic-sine transformation

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T_deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

asinh

Format

An object of class list of length 2.

box_cox

Traditional box-cox power transformation. Accepts one real parameter.

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T_deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

box_cox

Format

An object of class list of length 2.
box_cox_exp

box_cox_exp *Exponential of the traditional box-cox transformation*

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T.deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

```r
box_cox_exp
```

Format

An object of class list of length 2.

box_cox_negative

box_cox_negative *A generalized box-cox transformation that can handle negative data*

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T.deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

```r
box_cox_negative
```

Format

An object of class list of length 2.
box_cox_plus1

Box-cox transformation with a shift of 1 added to the data

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T_deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

box_cox_plus1

Format

An object of class list of length 2.

box_cox_plusmin

Box-cox transformation with the data shifted so that it is positive

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation.
- T_deriv the transformation with arguments Y, the data, lambda the parameter.

Usage

box_cox_plusmin

Format

An object of class list of length 2.
Box-cox transformation of shifted variable

Description

- T the transformation with arguments Y, the data, lambda the parameter, and boolean inverse to calculate inverse transformation. The parameter lambda has two real elements (1) the power and (2) the additive shift to the data.

- T_{deriv} the transformation with arguments Y, the data, lambda the parameter.

Usage

```r
box_cox_shift
```

Format

An object of class `list` of length 2.

center

Centers the data column-wise

Description

Centers the data column-wise

Usage

```r
center(x)
```

Arguments

- `x` the data.
gm_mean

Calculate the geometric mean

Description

Calculate the geometric mean

Usage

```r
gm_mean(x)
```

Arguments

- `x` the data.

Examples

```r
Y <- rlnorm(10)
gm <- gm_mean(Y)
```

list_transformations

List possible transformations

Description

Returns list of transformations. Each transformation is a transformation function ("T") accepting a parameter and the derivative of this transformation function ("T_deriv").

Usage

```r
list_transformations()
```

log_box_cox

Log of the traditional box-cox transformation

Description

- `T` the transformation with arguments `Y`, the data, `lambda` the parameter, and boolean `inverse` to calculate inverse transformation.
- `T_deriv` the transformation with arguments `Y`, the data, `lambda` the parameter.

Usage

```r
log_box_cox
```
power

Format

An object of class list of length 2.

| power | Simple power transformation |

Description

- `T` the transformation with arguments `Y`, the data, `lambda` the parameter, and boolean `inverse` to calculate inverse transformation.
- `T_deriv` the transformation with arguments `Y`, the data, `lambda` the parameter.

Usage

```
power
```

Format

An object of class list of length 2.

| rrscale | Re-scale a data matrix |

Description

This transformation is three steps (1) Gaussianize the data, (2) z-score Transform the data, and (3) remove extreme outliers from the data. The sequence of these transformations helps focus further analyses on consequential variance in the data rather than having it be focused on variation resulting from the feature’s measurement scale or outliers.

Usage

```
rrscale(Y, trans_list = list(box_cox_negative = box_cox_negative, asinh = asinh), lims_list = list(box_cox_negative = c(-100, 100), asinh = list(0, 100)), opt_control = NULL, ncores = NULL, z = 4, q = 0.001, run_parallel = TRUE, verbose = FALSE, zeros = FALSE, opts = FALSE, seed = NULL)
```
Arguments

Y
Data matrix to be transformed.

trans_list
List of transformations to be considered. See function list_transformations. Each element of the list should be a list containing the transformation function as the first element and the derivative of the transformation function as the second argument. The first argument of each function should be the data, the second the transformation parameter.

lims_list
List of optimization limits for each transformation from trans_list. This should be a list with one element per transformation parameter. The element of the list for each transformation family should be a list of two-element vectors control the limits for each parameter of the transformation family.

opt_control
Optional optimization controlling parameters for DEoptim control argument. See the DEoptim package for details.

ncores
Number of cores to use if running parallel.

z
The O-step cutoff value. Points are removed if their robust z-score is above z in magnitude.

q
The Z-step winsorizing quantile cutoff. The quantile at which to winsorize the data when calculating the robust z-scores.

run_parallel
a boolean, if TRUE the method will be run column-wise in parallel.

verbose
a boolean, if TRUE then save optimization output in local directory ‘.rrscale’

zeros
How to deal with zeros in the data set. If set to FALSE the algorithm will fail if it encounters a zero. If set to a number or ‘NA’ then the zeros are replaced by this number or ‘NA’.

opts
Boolean determining if optimization output is returned. Defaults to FALSE.

seed
Sets the seed before running any other analyses.

Value

A list of output:

• opts: the optimization output for all transformation families and all columns
• pars: the optimal parameters for each column for the optimal family
• par_hat: the estimated optimal parameter
• NT: the original data
• RR: the robust-rescaled data
• G: gaussianized data
• Z: robust z-transformed data
• O: data with outliers removed
• rr_fn: a function to apply the estimated RR transformation to new data. Takes arguments
 – Y: the data,
 – z: the z-score cutoff (defaults to 4),
 – q: the winsorizing quantile cutoff (defaults to 0.001),
– lambda: the transformation parameter to use (defaults to the estimated one),
– T: the transformation function family (defaults to the optimal estimated family),
– mu: the mean to be used in the robust z-score step (re-estimates if NULL)
– sigma: the s.d. to be used in the robust z-score step (re-estimates if NULL)

• T: the optimal family
• T_deriv: the derivative of the optimal family
• T_name: name of the optimal family
• alg_control: the parameters passed to the algorithm

Examples

```r
Y <- rlnorm(10)%*%t(rlnorm(10))
rr.out <- rrscale(Y,run_parallel=FALSE)
Yt <- rr.out$RR
```

svdc The completed SVD

Description

This calculates right and left singular vectors of a data matrix possibly containing missing values.

Usage

```r
svdc(X, nu = NULL, nv = NULL)
```

Arguments

X the data matrix of which to calculate the completed SVD.

nu the number of left singular vectors to calculate

nv the number of right singular vectors to calculate

Examples

```r
Y <- rnorm(10)%*%t(rnorm(10))
Y[1,1] <- NA
svdc.out <- svdc(Y)
```
Description

Winsorizes the data

Usage

\[\text{winsor}(x, \text{fraction} = 0.01) \]

Arguments

- \(x \): the data.
- \(\text{fraction} \): the top and bottom quantiles to cap.

Examples

\begin{verbatim}
Y <- rlnorm(10) + rlnorm(10)
YW <- winsor(Y, 0.01)
\end{verbatim}
Index

*Topic datasets
 asinh, 2
 box_cox, 2
 box_cox_exp, 3
 box_cox_negative, 3
 box_cox_plus1, 4
 box_cox_plusmin, 4
 box_cox_shift, 5
 log_box_cox, 6
 power, 7

asinh, 2

box_cox, 2
box_cox_exp, 3
box_cox_negative, 3
box_cox_plus1, 4
box_cox_plusmin, 4
box_cox_shift, 5

center, 5

gm_mean, 6

list_transformations, 6
log_box_cox, 6

power, 7

rrscale, 7

svdc, 9

winsor, 10