Package ‘rosetta’

March 29, 2021

Title Parallel Use of Statistical Packages in Teaching
Version 0.3.6
Description When teaching statistics, it can often be desirable to uncouple the content from specific software packages. To ease such efforts, the Rosetta Stats website (<https://rosettastats.com>) allows comparing analyses in different packages. This package is the companion to the Rosetta Stats website, aiming to provide functions that produce output that is similar to output from other statistical packages, thereby facilitating 'software-agnostic' teaching of statistics.
Maintainer Gjalt-Jorn Peters <gjalt-jorn@userfriendlyscience.com>
License GPL (>= 3)
URL https://r-packages.gitlab.io/rosetta/
BugReports https://gitlab.com/r-packages/rosetta/-/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.0.0)
Suggests GGally (>= 2.0), GPArotation (>= 2014.11), jmvcore (>= 1.0), MBESS (>= 4.8), markdown, testthat
Imports car (>= 3.0.2), diptest (>= 0.75), ggplot2 (>= 2.2), ggrepel (>= 0.8), gridExtra (>= 2.3), methods (>= 3.0), lavaan (>= 0.6-5), lme4 (>= 1.1.19), multcompView (>= 0.1), pander (>= 0.6.3), plyr (>= 1.8.4), psych (>= 1.8.4), pwr (>= 1.2.2), rio (>= 0.5.10), rmdpartials (>= 0.5.8), ufs (>= 0.4.0), knitr, kableExtra, viridis
NeedsCompilation no
Author Gjalt-Jorn Peters [aut, cre] (<https://orcid.org/0000-0002-0336-9589>), Ron Pat-El [ctb] (<https://orcid.org/0000-0002-4742-0163>), Peter Verboon [ctb] (<https://orcid.org/0000-0001-8656-0890>), Melissa Gordon Wolf [ctb] (<https://orcid.org/0000-0001-7677-0659>)
Repository CRAN
Date/Publication 2021-03-29 10:00:03 UTC
R topics documented:

- `buildModMedSemModel` .. 3
- `cat0` ... 4
- `confIntSD` ... 4
- `cpbExample` ... 5
- `crossTab` ... 6
- `descr` .. 7
- `descriptiveCIs` ... 11
- `dlvTheme` ... 12
- `exportToSPSS` ... 15
- `factorAnalysis` ... 18
- `factorAnalysisJMV` ... 21
- `fanova` ... 23
- `formatPvalue` ... 25
- `formatR` ... 26
- `freq` .. 26
- `freqJMV` ... 28
- `gemm` ... 29
- `ggBarChart` ... 30
- `ggBoxplot` ... 31
- `ggScatterPlot` ... 32
- `histogram` ... 33
- `logRegr` ... 34
- `meanDiff` ... 37
- `meanDiff.multi` .. 40
- `means` ... 42
- `oneway` ... 44
- `opts` .. 47
- `partyPanelData` ... 48
- `plot IMM` ... 48
- `plot IMM 3d` ... 49
- `plot SS` ... 49
- `posthocTGH` ... 50
- `prep IMM 3d` ... 51
- `prepPlot IMM` .. 52
- `prepPlot SS` ... 53
- `print.gemm` .. 54
- `recode` .. 54
- `regr` ... 55
- `reliability` .. 56
- `repeatStr` ... 59
- `scatterMatrix` ... 62
- `varView` ... 64
- `vecTxt` ... 66

Index

- 68
buildModMedSemModel

Builds model for moderated mediation analysis using SEM

Description

Builds model for moderated mediation analysis using SEM

Usage

```r
buildModMedSemModel(
  xvar,
  mvars,
  yvar,
  xmmod = NULL,
  mymod = NULL,
  cmvars = NULL,
  cyvars = NULL
)
```

Arguments

- `xvar`: independent variable (predictor)
- `mvars`: vector of names of mediators
- `yvar`: dependent variable
- `xmmod`: moderator of a path(s)
- `mymod`: moderator of b path(s)
- `cmvars`: covariates for predicting the mediators
- `cyvars`: covariates for predicting the dependent variable

Value

lavaan model to be used in moderatedMediationSem

Examples

```r
model <- buildModMedSemModel(xvar="procJustice", mvars=c("cynicism"), yvar = "CPB", xmmod = "insecure", mymod = "gender", cmvars = c("age"))
```
cat0
Concatenate to screen without spaces

Description
The `cat0` function is to `cat` what `paste0` is to `paste`; it simply makes concatenating many strings without a separator easier.

Usage
```r
cat0(..., sep = "")
```

Arguments
- `...` The character vector(s) to print; passed to `cat`.
- `sep` The separator to pass to `cat`, of course, "" by default.

Value
Nothing (invisible NULL, like `cat`).

Examples
```r
cat0("The first variable is ", names(mtcars)[1], ".")
```

confIntSD
Confidence interval for standard deviation

Description
This function is vectorized.

Usage
```r
confIntSD(x, n = NULL, conf.level = 0.95)
```

Arguments
- `x` Either a standard deviation, in which case `n` must also be provided, or a vector, in which case `n` must be NULL.
- `n` The sample size is `x` is a standard deviation.
- `conf.level` The confidence level

Value
A vector or matrix.
Examples

```r
rosetta::confIntSD(mtcars$mpg);
rosetta::confIntSD(c(6, 7), c(32, 32));
```

Description

The data are about the attitudes of employees of an organisation that is in the middle of a reorganization. The model predicts that feelings of procedural injustice may lead to cynicism and less trust in the management. This relation may be stronger among employees who are insecure about their job continuation. Cynicism may lead to contra-productive behaviour (CPB). However, strong personal norms may prevent CPB. Cynicism is expected to increase with age, and men may be more inclined towards CPB than women.

Usage

cpbExample

Format

A data frame with 320 rows and 8 variables:

- **gender** gender participant
- **age** age participant
- **procJustice** procedural justice
- **trust** trust in management
- **cynicism** cynicism about the management
- **CPB** contr-productive behaviour
- **insecure** insecure about job continuation
- **norms** personal norms about CPB
Description

This function produces a cross table, computes Chi Square, and computes the point estimate and confidence interval for Cramer’s V.

Usage

crossTab(x, y = NULL, conf.level = 0.95, digits = 2, pValueDigits = 3, ...)

S3 method for class 'crossTab'
print(x, digits = x$input$digits, pValueDigits = x$input$pValueDigits, ...)

S3 method for class 'crossTab'
pander(x, digits = x$input$digits, pValueDigits = x$input$pValueDigits, ...)

Arguments

x Either a crosstable to analyse, or one of two vectors to use to generate that crosstable. The vector should be a factor, i.e. a categorical variable identified as such by the ‘factor’ class).

y If x is a crosstable, y can (and should) be empty. If x is a vector, y must also be a vector.

conf.level Level of confidence for the confidence interval.

digits Minimum number of digits after the decimal point to show in the result.
pValueDigits Minimum number of digits after the decimal point to show in the Chi Square p value in the result.

... Extra arguments to crossTab are passed on to ufs::confIntV().

Value

The results of ufs::confIntV(), but also prints the cross table and the chi square test results.

Examples

crossTab(infert$education, infert$induced, samples=50);
Description

This function provides a number of descriptives about your data, similar to what SPSS’s DESCRIBETIVES (often called with DESCR) does.

Usage

```r
descr(
  x,
  items = names(x),
  varLabels = NULL,
  mean = TRUE,
  meanCI = TRUE,
  median = TRUE,
  mode = TRUE,
  var = TRUE,
  sd = TRUE,
  se = FALSE,
  min = TRUE,
  max = TRUE,
  q1 = FALSE,
  q3 = FALSE,
  IQR = FALSE,
  skewness = TRUE,
  kurtosis = TRUE,
  dip = TRUE,
  totalN = TRUE,
  missingN = TRUE,
  validN = TRUE,
  histogram = FALSE,
  boxplot = FALSE,
  digits = 2,
  errorOnFactor = FALSE,
  convertFactor = FALSE,
  maxModes = 1,
  maxPlotCols = 4,
  t = FALSE,
  headingLevel = 3,
  conf.level = 0.95,
  quantileType = 2
)
```

```r
rosettaDescr_partial(
  x,
```
digits = attr(x, "digits"),
show = attr(x, "show"),
headingLevel = attr(x, "headingLevel"),
maxPlotCols = attr(x, "maxPlotCols"),
echoPartial = FALSE,
partialFile = NULL,
quiet = TRUE,
...)

S3 method for class 'rosettaDescr'
knit_print(
 x,
digits = attr(x, "digits"),
show = attr(x, "show"),
headingLevel = attr(x, "headingLevel"),
maxPlotCols = attr(x, "maxPlotCols"),
echoPartial = FALSE,
partialFile = NULL,
quiet = TRUE,
...)

S3 method for class 'rosettaDescr'
print(
 x,
digits = attr(x, "digits"),
show = attr(x, "show"),
maxPlotCols = attr(x, "maxPlotCols"),
headingLevel = attr(x, "headingLevel"),
forceKnitrOutput = FALSE,
...)

Arguments

x The object to print (i.e. as produced by descr).

items Optionally, if x is a data frame, the variable names for which to produce the descriptives.

varLabels Optionally, a named vector with 'pretty labels' to show for the variables. This has to be a vector of the same length as items, and if it is not a named vector with the names corresponding to the items, it has to be in the same order.

mean, meanCI, median, mode Whether to compute the mean, its confidence interval, the median, and/or the mode (all logical, so TRUE or FALSE).

var, sd, se Whether to compute the variance, standard deviation, and standard error (all logical, so TRUE or FALSE).
min, max, q1, q3, IQR
Whether to compute the minimum, maximum, first and third quartile, and interquartile range (all logical, so TRUE or FALSE).

skewness, kurtosis, dip
Whether to compute the skewness, kurtosis and dip test (all logical, so TRUE or FALSE).

totalN, missingN, validN
Whether to show the total sample size, the number of missing values, and the number of valid (i.e. non-missing) values (all logical, so TRUE or FALSE).

histogram, boxplot
Whether to show a histogram and/or boxplot

digits
The number of digits to round the results to when showing them.

errorOnFactor, convertFactor
If errorOnFactor is TRUE, factors throw an error. If not, if convertFactor is TRUE, they will be converted to numeric values using as.numeric(as.character(x)), and then the same output will be generated as for numeric variables. If convertFactor is false, the frequency table will be produced.

maxModes
Maximum number of modes to display: displays "multi" if more than this number of modes if found.

maxPlotCols
The maximum number of columns when plotting multiple histograms and/or boxplots.

t
Whether to transpose the dataframes when printing them to the screen (this is easier for users relying on screen readers). **Note: this functionality has not yet been implemented!**

headingLevel
The number of hashes to print in front of the headings when printing while knitting

conf.level
Confidence of confidence interval around the mean in the central tendency measures.

quantileType
The type of quantiles to be used to compute the interquartile range (IQR). See quantile for more information.

show
A vector of elements to show in the results, based on the arguments that activate/deactivate the descriptives (from mean to validN).

dechoPartial
Whether to show the executed code in the R Markdown partial (TRUE) or not (FALSE).

partialFile
This can be used to specify a custom partial file. The file will have object x available.

quiet
Passed on to knitr::knit() whether it should be chatty (FALSE) or quiet (TRUE).

...
Any additional arguments are passed to the default print method by the print method, and to rmdpartials::partial() when knitting an RMarkdown partial.

forceKnitrOutput
Force knitr output.
Details

Note that R (of course) has many similar functions, such as `summary`, `psych::describe()` in the excellent `psych::psych` package.

The Hartigans' Dip Test may be unfamiliar to users; it is a measure of uni- vs. multimodality, computed by `dipTest::dip.test()` from the `dip.test` package. Depending on the sample size, values over .025 can be seen as mildly indicative of multimodality, while values over .05 probably warrant closer inspection (the p-value can be obtained using `dipTest::dip.test()`; also see Table 1 of Hartigan & Hartigan (1985) for an indication as to critical values).

Value

A list of dataframes with the requested values.

Author(s)

Gjalt-Jorn Peters

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

References

See Also

`summary`, `psych::describe()`

Examples

```r
### Simplest example with default settings
desc(mtcars$mpg);

### Also requesting a histogram and boxplot
desc(mtcars$mpg, histogram=TRUE, boxplot=TRUE);

### To show the output as Rmd Partial in the viewer
rosetta::rosettaDescr_partial(
  rosetta::descr(
    mtcars$mpg
  )
);

### Multiple variables, including one factor
rosetta::rosettaDescr_partial(
  rosetta::descr(
    iris
  )
);
```
Descriptives with confidence intervals

Usage

```r
descriptiveCIs(
  data,
  items = NULL,
  itemLabels = NULL,
  conf.level = 0.95,
  digits = 2
)
```

```r
## S3 method for class 'rosettaDescriptiveCIs'
print(x, digits = attr(x, "digits"), forceKnitrOutput = FALSE, ...)
```

Arguments

- `data`: The data frame holding the data, or a vector.
- `items`: If supplying a data frame as `data`, the names of the columns to process.
- `itemLabels`: Optionally, labels to use for the items (optionally, named, with the names corresponding to the items; otherwise, the order of the labels has to match the order of the items).
- `conf.level`: The confidence level of the confidence intervals.
- `digits`: The number of digits to round the output to.
- `x`: The object to print (i.e. the object returned by `descriptiveCIs`).
- `forceKnitrOutput`: Whether to force `knitr` output even when not knitting.
- `...`: Any additional arguments are passed on to `knitr::kable()` or to `base::print()`.

Value

A data frame with class `rosettaDescriptiveCIs` prepended to allow printing neatly while knitting to Markdown.

Examples

```r
descriptiveCIs(mtcars);
```
Description

The `dlvPlot` function produces a dot-violin-line plot, and `dlvTheme` is the default theme.

Usage

```r
dlvTheme(base_size = 11, base_family = "", ...)  
dlvPlot(
  dat,
  x = NULL,
  y,
  z = NULL,
  conf.level = 0.95,
  jitter = "FALSE",
  binnedDots = TRUE,
  binwidth = NULL,
  error = "lines",
  dotsize = "density",
  singleColor = "black",
  comparisonColors = RColorBrewer::brewer.pal(8, "Set1"),
  densityDotBaseSize = 3,
  normalDotBaseSize = 1,
  violinAlpha = 0.2,
  dotAlpha = 0.4,
  lineAlpha = 1,
  connectingLineAlpha = 1,
  meanDotSize = 5,
  posDodge = 0.2,
  errorType = "both",
  outputFile = NULL,
  outputWidth = 10,
  outputHeight = 10,
  ggsaveParams = list(units = "cm", dpi = 300, type = "cairo")
)
```

```r
## S3 method for class 'dlvPlot'
print(x, ...)
```

Arguments

- `base_size`, `base_family`, ...
 Passed on to the ggplot theme_grey() function.
- `dat`
 The dataframe containing `x`, `y` and `z`.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Character value with the name of the predictor ('independent') variable, must refer to a categorical variable (i.e. a factor).</td>
</tr>
<tr>
<td>y</td>
<td>Character value with the name of the criterion ('dependent') variable, must refer to a continuous variable (i.e. a numeric vector).</td>
</tr>
<tr>
<td>z</td>
<td>Character value with the name of the moderator variable, must refer to a categorical variable (i.e. a factor).</td>
</tr>
<tr>
<td>conf.level</td>
<td>Confidence of confidence intervals.</td>
</tr>
<tr>
<td>jitter</td>
<td>Logical value (i.e. TRUE or FALSE) whether or not to jitter individual data-points. Note that jitter cannot be combined with posDodge (see below).</td>
</tr>
<tr>
<td>binnedDots</td>
<td>Logical value indicating whether to use binning to display the dots. Overrides jitter and dotsize.</td>
</tr>
<tr>
<td>binwidth</td>
<td>Numeric value indicating how broadly to bin (larger values is more binning, i.e. combining more dots into one big dot).</td>
</tr>
<tr>
<td>error</td>
<td>Character value: "none", "lines" or "whiskers"; indicates whether to show the confidence interval as lines with (whiskers) or without (lines) horizontal whiskers or not at all (none)</td>
</tr>
<tr>
<td>dotsize</td>
<td>Character value: "density" or "normal"; when "density", the size of each dot corresponds to the density of the distribution at that point.</td>
</tr>
<tr>
<td>singleColor</td>
<td>The color to use when drawing one or more univariate distributions (i.e. when no z is specified).</td>
</tr>
<tr>
<td>comparisonColors</td>
<td>The colors to use when a z is specified. This should be at least as many colors as z has levels. By default, palette Set1 from RColorBrewer is used.</td>
</tr>
<tr>
<td>densityDotBaseSize</td>
<td>Numeric value indicating base size of dots when their size corresponds to the density (bigger = larger dots).</td>
</tr>
<tr>
<td>normalDotBaseSize</td>
<td>Numeric value indicating base size of dots when their size is fixed (bigger = larger dots).</td>
</tr>
<tr>
<td>violinAlpha</td>
<td>Numeric value indicating alpha value of violin layer (0 = completely transparent, 1 = completely opaque).</td>
</tr>
<tr>
<td>dotAlpha</td>
<td>Numeric value indicating alpha value of dot layer (0 = completely transparent, 1 = completely opaque).</td>
</tr>
<tr>
<td>lineAlpha</td>
<td>Numeric value indicating alpha value of the confidence interval line layer (0 = completely transparent, 1 = completely opaque).</td>
</tr>
<tr>
<td>connectingLineAlpha</td>
<td>Numeric value indicating alpha value of the layer with the lines connecting the means (0 = completely transparent, 1 = completely opaque).</td>
</tr>
<tr>
<td>meanDotSize</td>
<td>Numeric value indicating the size of the dot used to indicate the mean in the line layer.</td>
</tr>
<tr>
<td>posDodge</td>
<td>Numeric value indicating the distance to dodge positions (0 for complete overlap).</td>
</tr>
</tbody>
</table>
errorType If the error is shown using lines, this argument indicates whether the error-bars should show the confidence interval (errorType='ci'), the standard errors (errorType='se'), or both (errorType='both'). In this last case, the standard error will be wider than the confidence interval.

outputFile A file to which to save the plot.

outputWidth, outputHeight Width and height of saved plot (specified in centimeters by default, see ggsaveParams).

ggsaveParams Parameters to pass to ggsave when saving the plot.

Details

This function creates Dot Violin Line plots. One image says more than a thousand words; I suggest you run the example :-)

Value

The behavior of this function depends on the arguments.

If no x and z are provided and y is a character value, dlvPlot produces a univariate plot for the numerical y variable.

If no x and z are provided, and y is a character vector, dlvPlot produces multiple Univariate plots, with variable names determining categories on x-axis and with numerical y variables on y-axis.

If both x and y are a character value, and no z is provided, dlvPlot produces a bivariate plot where factor x determines categories on x-axis with numerical variable y on the y-axis (roughly a line plot with a single line).

Finally, if x, y and z are each a character value, dlvPlot produces multivariate plot where factor x determines categories on x-axis, factor z determines the different lines, and with the numerical y variable on the y-axis.

An object is returned with the following elements:

dat.raw Raw datafile provided when calling dlvPlot

dat Transformed (long) datafile dlvPlot uses

descr Dataframe with extracted descriptives used to plot the mean and confidence intervals

yRange The range of the Y variable used to construct the plot

plot The plot itself

Examples

Note: the 'not run' is simply because running takes a lot of time, but these examples are all safe to run!
Not run:
Create simple dataset
dat <- data.frame(x1 = factor(rep(c(0,1), 20)),
x2 = factor(c(rep(0, 20), rep(1, 20))),
y = rep(c(4,5), 20) + rnorm(40));
Generate a simple dlvPlot of y
dlvPlot(dat, y='y');
Now add a predictor
dlvPlot(dat, x='x1', y='y');
And finally also a moderator:
dlvPlot(dat, x='x1', y='y', z='x2');
The number of datapoints might be a bit clearer if we jitter
dlvPlot(dat, x='x1', y='y', z='x2', jitter=TRUE);
Although just dodging the density-sized dots might work better
dlvPlot(dat, x='x1', y='y', z='x2', posDodge=.3);

End(Not run)

Description

Basic functions to make working with R easier for SPSS users: getData and getDat provide an easy way to load SPSS datafiles, and exportToSPSS to write to a datafile and syntax file that SPSS can import; filterBy and useAll allow easy temporary filtering of rows from the dataframe; mediaan and modus compute the median and mode of ordinal or numeric data.

Usage

```r
exportToSPSS(
  dat,
  savfile = NULL,
  datafile = NULL,
  codefile = NULL,
  fileEncoding = "UTF-8",
  newLinesInString = " |n| "
)
```

```r
filterBy(
  dat,
  expression,
  replaceOriginalDataframe = TRUE,
  envir = parent.frame()
)
```

```r
getData(
  filename = NULL,
  file = NULL,
  errorMessage = "[defaultErrorMessage]",
  applyRioLabels = TRUE,
  use.value.labels = FALSE,
  to.data.frame = TRUE,
)```
exportToSPSS

stringsAsFactors = FALSE,
silent = FALSE,
...
)

getDat(..., dfName = "dat", backup = TRUE)

mediaan(vector)

modus(vector)

useAll(dat, replaceFilteredDataframe = TRUE)

Arguments

dat Dataframe to process: for filterBy, dataframe to filter rows from; for useAll, dataframe to restore ('unfilter').
savfile The name of the SPSS format .sav file (alternative for writing a datafile and a codefile).
datafile The name of the data file, a comma separated values file that can be read into SPSS by using the code file.
codefile The name of the code file, the SPSS syntax file that can be used to import the data file.
fileEncoding The encoding to use to write the files.
newLinesInString A string to replace newlines with (SPSS has problems reading newlines).
expression Logical expression determining which rows to keep and which to drop. Can be either a logical vector or a string which is then evaluated. If it’s a string, it’s evaluated using ‘with’ to evaluate the expression using the variable names.
replaceOriginalDataframe Whether to also replace the original dataframe in the parent environment. Very messy, but for maximum compatibility with the 'SPSS way of doing things', by default, this is true. After all, people who care about the messiness/inappropriateness of this function wouldn’t be using it in the first place :-)
envir The environment where to create the 'backup' of the unfiltered dataframe, for when useAll is called and the filter is deactivated again.
filename, file It is possible to specify a path and filename to load here. If not specified, the default R file selection dialogue is shown. file is still available for backward compatibility but will eventually be phased out.
errorMessage The error message that is shown if the file does not exist or does not have the right extension; "[defaultErrorMessage]" is replaced with a default error message (and can be included in longer messages).
applyRioLabels Whether to apply the labels supplied by Rio. This will make variables that has value labels into factors.
use.value.labels
  Only useful when reading from SPSS files: whether to read variables with value labels as factors (TRUE) or numeric vectors (FALSE).

to.data.frame
  Only useful when reading from SPSS files: whether to return a dataframe or not.

stringsAsFactors
  Whether to read strings as strings (FALSE) or factors (TRUE).

silent
  Whether to suppress potentially useful information.

...
  Additional options, passed on to the function used to import the data (which depends on the extension of the file).

dfName
  The name of the dataframe to create in the parent environment.

backup
  Whether to backup an object with name dfName, if one already exists in the parent environment.

vector
  For median and modus, the vector for which to find the median or mode.

replaceFilteredDataframe
  Whether to replace the filtered dataframe passed in the 'dat' argument (see replaceOriginalDataframe).

Value

dataGet returns the imported dataframe, with the filename from which it was read stored in the 'filename' attribute.

dataGet is a simple wrapper for dataGet() which creates a dataframe in the parent environment, by default with the name 'dat'. Therefore, calling dataGet() in the console will allow the user to select a file, and the data from the file will then be read and be available as 'dat'. If an object with dfName (i.e. 'dat' by default) already exists, it will be backed up with a warning. dataGet() therefore returns nothing.

median returns the median, or, in the case of a factor where the median is in between two categories, both categories.

modus returns the mode.

Note

dataGet() currently can’t read from LibreOffice or OpenOffice files. There doesn’t seem to be a platform-independent package that allows this. Non-CRAN package ROOpenOffice from OmegaHat should be able to do the trick, but fails to install (manual download and installation using http://www.omegahat.org produces "ERROR: dependency 'Rcompression' is not available for package 'ROOpenOffice'" - and manual download and installation of RCompression produces "Please define LIB_ZLIB; ERROR: configuration failed for package 'RCompression'"). If you have any suggestions, please let me know!

Examples

## Not run:
### Open a dialogue to read an SPSS file
dataGet();
factorAnalysis

## End(Not run)

### Get a median and a mode

\[
\text{median}(c(1,2,2,3,4,4,5,6,6,6,7));
\]
\[
\text{modus}(c(1,2,2,3,4,4,5,6,6,6,7));
\]

### Create an example dataframe

\[
\text{exampleDat } \leftarrow \text{data.frame}(x=\text{rep}(8, 8), y=\text{rep}(c(0,1), \text{each}=4));
\]

### Filter it, replacing the original dataframe

\[
\text{filterBy}(\text{exampleDat}, "y=0");
\]

### Restore the old dataframe

\[
\text{useAll}(\text{exampleDat});
\]

### Description

This is a wrapper for the psych functions `psych::pca()` and `psych::fa()` to produce output that is similar to the output produced by jamovi.

### Usage

```r
factorAnalysis(
 data,
 nfactors,
 items = names(data),
 rotate = "oblimin",
 covar = FALSE,
 na.rm = TRUE,
 kaiser = 1,
 loadings = TRUE,
 summary = FALSE,
 correlations = FALSE,
 modelFit = FALSE,
 eigenValues = FALSE,
 screePlot = FALSE,
 residuals = FALSE,
 itemLabels = items,
 colorLoadings = FALSE,
 fm = "minres",
 digits = 2,
 headingLevel = 3,
 ...
)
```

principalComponentAnalysis(
factorAnalysis

data, 
items, 
nfactors, 
rotate = "oblimin", 
covar = FALSE, 
na.rm = TRUE, 
kaiser = 1, 
loadings = TRUE, 
summary = FALSE, 
correlations = FALSE, 
eigenValues = FALSE, 
screePlot = FALSE, 
residuals = FALSE, 
itemLabels = items, 
colorLoadings = FALSE, 
digits = 2, 
headingLevel = 3, 
...
)

rosettaDataReduction_partial(
  x, 
digits = x$input$digits, 
headingLevel = x$input$headingLevel, 
echoPartial = FALSE, 
partialFile = NULL, 
quiet = TRUE, 
...
)

## S3 method for class 'rosettaDataReduction'
knit_print(
  x, 
digits = x$input$digits, 
headingLevel = x$input$headingLevel, 
echoPartial = FALSE, 
partialFile = NULL, 
quiet = TRUE, 
...
)

## S3 method for class 'rosettaDataReduction'
print(
  x, 
digits = x$input$digits, 
headingLevel = x$input$headingLevel, 
forceKnitrOutput = FALSE, 
...
Arguments

data The data frame that contains the items.
nfactors The number of factors to extract, or 'eigen' to extract all factors with an eigen value higher than the number specified in kaiser. In the future, parallel can be specified here to extract the number of factors suggested by parallel analysis.
items The items to analyse; if not specified, all variables in data will be used.
rotate Which rotation to use; see psych::fa() for all options. The most common options are 'none' to not rotate at all; 'varimax' for an orthogonal rotation (assuming/imposing that the components or factors are not correlated); or 'oblimin' for an oblique rotation (allowing the components/factors to correlate).
covar Whether to analyse the correlation matrix (FALSE) or the covariance matrix (TRUE).
na.rm Whether to first remove all cases with missing values.
kaiser The minimum eigenvalue when applying the Kaiser criterion (see nfactors).
loadings Whether to display the component or factor loadings.
summary Whether to display the factor or component summary.
correlations Whether to display the correlations between factors of components.
modelFit Whether to display the model fit Only for EFA).
eigenValues Whether to display the eigen values.
screenPlot Whether to display the screen plot.
residuals Whether to display the matrix with residuals.
itemLabels Optionally, labels to use for the items (optionally, named, with the names corresponding to the items; otherwise, the order of the labels has to match the order of the items)
colorLoadings Whether, when producing an Rmd partial (i.e. when calling the command while knitting) to colour the cells using kableExtra::kable_styling().
fm The method to use for the factor analysis: 'fm' for Minimum Residuals; 'ml' for Maximum Likelihood; and 'pa' for Principal Factor.
digits The number of digits to round to.
headingLevel The number of hashes to print in front of the headings when printing while knitting
... Any additional arguments are passed to psych::fa(), psych::pca(), to the default print method by the print method, and to rmdpartials::partial() when knitting an RMarkdown partial.
x The object to print.
echoPartial Whether to show the executed code in the R Markdown partial (TRUE) or not (FALSE).
partialFile This can be used to specify a custom partial file. The file will have object x available.
quiet Passed on to knitr::knit() whether it should be chatty (FALSE) or quiet (TRUE).
forceKnitrOutput Force knitr output.
factorAnalysisjmv

Details

The code in these functions uses parts of the code in jamovi, written by Jonathon Love and Ravi Selker.

Value

An object with the object resulting from the call to the psych functions and some extracted information that will be printed.

Examples

```r
Load example dataset
data("pp15", package="rosetta");

Get variable names with expected
effects of a high dose of MDMA
items <-
 grep(
 "highDose_AttBeliefs_",
 names(pp15),
 value=TRUE
);

Do a factor analysis
rosetta::factorAnalysis(
 data = pp15,
 items = items,
 nfactors = "eigen",
 scree = TRUE
);

To get more output, show the
output as Rmd Partial in the viewer,
and color/size the factor loadings
rosetta::rosettaDataReduction_partial(
 rosetta::factorAnalysis(
 data = pp15,
 items = items,
 nfactors = "eigen",
 summary = TRUE,
 correlations = TRUE,
 colorLoadings = TRUE
)
);```

factorAnalysisjmv
Factor Analysis
factorAnalysisjmv

Description

Factor Analysis

Usage

factorAnalysisjmv(
 data,
 items,
 nFactorMethod = "eigen",
 nFactors = 1,
 minEigen = 1,
 extraction = "minres",
 rotation = "oblimin",
 colorLoadings = TRUE,
 screePlot = FALSE,
 eigen = FALSE,
 factorCor = FALSE,
 factorSummary = FALSE,
 modelFit = FALSE
)

Arguments

data the data as a data frame
items a vector of strings naming the variables of interest in data
nFactorMethod
nFactors
minEigen
extraction
rotation
colorLoadings
screePlot
eigen
factorCor
factorSummary
modelFit

Value

A results object containing:

 results$loadings a html
 results$factorStats$factorSummary a table
 results$factorStats$factorCor a table
 results$modelFit$fit a table
Description

This function is meant as a userfriendly wrapper to approximate the way analysis of variance is done in SPSS.

Usage

```
fanova(
  data,
  y,
  between = NULL,
  covar = NULL,
  plot = FALSE,
  levene = FALSE,
  digits = 2,
  contrast = NULL
)
```

S3 method for class 'fanova'

```
print(x, digits = x$input$digits, ...)
```

Arguments

- `data` The dataset containing the variables to analyse.
- `y` The dependent variable. For oneway anova, factorial anova, or ancova, this is the name of a variable in dataframe `data`. For repeated measures anova, this is a vector with the names of all variable names in dataframe `data`, e.g. `c('t0_value','t1_value','t2_value')`.
- `between` A vector with the variables name(s) of the between subjects factor(s).
- `covar` A vector with the variables name(s) of the covariate(s).
- `plot` Whether to produce a plot. Note that a plot is only produced for oneway and twoway anova and oneway repeated measures designs: if covariates or more than two between-subjects factors are specified, not plot is produced. For twoway anova designs, the second predictor is plotted as moderator (and the first predictor is plotted on the x axis).
- `levene` Whether to show Levene’s test for equality of variances (using car's `leveneTest` function but specifying `mean` as function to compute the center of each group).
digits Number of digits (actually: decimals) to use when printing results. The p-value is printed with one extra digit.

contrast This functionality has not been implemented yet.

x The object to print (i.e. as produced by regr).

... Any additional arguments are ignored.

Details

This wrapper uses oneway and lm and lmer in combination with car’s Anova function to conduct the analysis of variance.

Value

Mainly, this function prints its results, but it also returns them in an object containing three lists:

input The arguments specified when calling the function

intermediate Intermediat objects and values

output The results such as the plot.

Author(s)

Gjalt-Jorn Peters

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

See Also

regr and logRegr for similar functions for linear and logistic regression and oneway, lm, lmer and Anova for the functions used behind the scenes.

Examples

Oneway anova with a plot
fanova(dat=mtcars, y='mpg', between='cyl', plot=TRUE);

Factorial anova
fanova(dat=mtcars, y='mpg', between=c('vs', 'am'), plot=TRUE);

Ancova
fanova(dat=mtcars, y='mpg', between=c('vs', 'am'), covar='hp');

Don't run these examples to not take too much time during testing
for CRAN
Not run:
Repeated measures anova; first generate datafile
dat <- mtcars[, c('am', 'drat', 'wt')];
names(dat) <- c('factor', 't0_dependentVar', 't1_dependentVar');
dat$factor <- factor(dat$factor);

Then do the repeated measures anova
fanova(dat, y=c('t0_dependentVar','t1_dependentVar'),
 between='factor', plot=TRUE);

End(Not run)

formatPvalue Pretty formatting of p values

Description
Pretty formatting of p values

Usage
formatPvalue(values, digits = 3, spaces = TRUE, includeP = TRUE)

Arguments
values The p-values to format.
digits The number of digits to round to. Numbers smaller than this number will be shown as <.001 or <.0001 etc.
spaces Whether to include spaces between symbols, operators, and digits.
includeP Whether to include the 'p' and '='-symbol in the results (the '<' symbol is always included).

Value
A formatted P value, roughly according to APA style guidelines. This means that the noZero function is used to remove the zero preceding the decimal point, and p values that would round to zero given the requested number of digits are shown as e.g. p<.001.

See Also
formatCI(), formatR(), noZero()

Examples
formatPvalue(cor.test(mtcars$mpg,
 mtcars$disp)$p.value);
formatPvalue(cor.test(mtcars$drat,
 mtcars$qsec)$p.value);
formatR
Pretty formatting of correlation coefficients

Description
Pretty formatting of correlation coefficients

Usage
```r
formatR(r, digits = 2)
```

Arguments
- `r`: The Pearson correlation to format.
- `digits`: The number of digits to round to.

Value
The formatted correlation.

See Also
- `noZero()`, `formatCI()`, `formatPvalue()`

Examples
```r
formatR(cor(mtcars$mpg, mtcars$disp));
```

freq
Frequency tables

Description
Function to show frequencies in a manner similar to what SPSS’ "FREQUENCIES" command does. Note that frequency is an alias for freq.

Usage
```r
def freq(
    vector,  
    digits = 1,  
    nsmall = 1,  
    transposed = FALSE,  
    round = 1,  
    plot = FALSE,  
    plotTheme = ggplot2::theme_bw()
)
```

```r
def freq(
    vector,  
    digits = 1,  
    nsmall = 1,  
    transposed = FALSE,  
    round = 1,  
    plot = FALSE,  
    plotTheme = ggplot2::theme_bw()
)
```
freq

S3 method for class 'freq'
print(
 x,
 digits = x$input$digits,
 nsmall = x$input$nsmall,
 transposed = x$input$transposed,
 ...
)

S3 method for class 'freq'
pander(x, ...)

frequencies(
 ...,
 digits = 1,
 nsmall = 1,
 transposed = FALSE,
 round = 1,
 plot = FALSE,
 plotTheme = ggplot2::theme_bw()
)

S3 method for class 'frequencies'
print(x, ...)

S3 method for class 'frequencies'
pander(x, prefix = "###", ...)

Arguments

- **vector**: A vector of values to compute frequencies for.
- **digits**: Minimum number of significant digits to show in result.
- **nsmall**: Minimum number of digits after the decimal point to show in the result.
- **transposed**: Whether to transpose the results when printing them (this can be useful for blind users).
- **round**: Number of digits to round the results to (can be used in conjunction with digits to determine format of results).
- **plot**: If true, a histogram is shown of the variable.
- **plotTheme**: The ggplot2 theme to use.
- **x**: The freq or frequencies object to print.
- **...**: For frequencies, the variables of which to provide frequencies; for the print methods, additional arguments are passed on to the print function.
- **prefix**: The prefix to use when printing frequencies, to easily prepend Markdown headers.
Value

An object with several elements, the most notable of which is:

- **dat** A dataframe with the frequencies

For frequencies, these objects are in a list of their own.

Examples

```r
### Create factor vector
ourFactor <- factor(mtcars$gear, levels = c(3, 4, 5),
                    labels = c("three", "four", "five"));
### Add some missing values
factorWithMissings <- ourFactor;
### Show frequencies
freq(ourFactor);
freq(factorWithMissings);
### ... Or for all of them at one
frequencies(ourFactor, factorWithMissings);
```

freqjmv

Frequencies

Description

Frequencies

Usage

freqjmv(data, vector)

Arguments

- **data**
- **vector**

Value

A results object containing:

- `results$table` a table
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$table$asDF
as.data.frame(results$table)

```
library(gemm)
```

Analyze moderated mediation model using SEM

```
desc = c(“a2” = “xvar”, “b1” = “mvars”, “b2” = “yvar”,
         “c1” = “xmmod”, “c2” = “mymod”, “d” = “cmvars”, “e” = “cyvars”,
         “estMethod” = “bootstrap”, “nboot” = 1000)
```

```
gemm(data = NULL, xvar, mvars, yvar, xmmod = NULL, mymod = NULL, cmvars = NULL, cyvars = NULL, estMethod = “bootstrap”, nboot = 1000)
```

```
Arguments

  data data frame
  xvar predictor variable, must be either numerical or dichotomous
  mvars vector of names of mediator variables
  yvar dependent variable, must be numerical
  xmmod moderator of effect predictor on mediators, must be either numerical or dichotomous
  mymod moderator of effect mediators on dependent variable, must be either numerical or dichotomous
  cmvars covariates for mediators
  cyvars covariates for dependent variable
  estMethod estimation of standard errors method, bootstrap is default
  nboot number of bootstrap samples
```

```
Value

gemm object
```
Examples

```r
## Not run:
data("cpbExample")
res <- gemm(dat = cpbExample, xvar="procJustice", mvars= c("cynicism","trust"),
yvar = "CPB", nboot=500)
print(res)
## End(Not run)
```

ggBarChart
Bar chart using ggplot

Description

This function provides a simple interface to create a `ggplot2::ggplot()` bar chart.

Usage

```r
ggBarChart(vector, plotTheme = ggplot2::theme_bw(), ...)
```

Arguments

- **vector**: The vector to display in the bar chart.
- **plotTheme**: The theme to apply.
- **...**: And additional arguments are passed to `ggplot2::geom_bar()`.

Value

A `ggplot2::ggplot()` plot is returned.

Author(s)

Gjalt-Jorn Peters
Maintainer: Gjalt-Jorn Peters gjalt-jorn@behaviorchange.eu

See Also

- `ggplot2::geom_bar()`

Examples

```r
rosetta::ggBarChart(mtcars$cyl);
```
ggBoxplot
Box plot using ggplot

Description

This function provides a simple interface to create a ggplot box plot, organising different boxplots by levels of a factor is desired, and showing row numbers of outliers.

Usage

```r
ggBoxplot(
  dat, 
  y = NULL, 
  x = NULL, 
  labelOutliers = TRUE, 
  outlierColor = "red", 
  theme = ggplot2::theme_bw(), 
  ... 
)
```

Arguments

- `dat` Either a vector of values (to display in the box plot) or a dataframe containing variables to display in the box plot.
- `y` If `dat` is a dataframe, this is the name of the variable to make the box plot of.
- `x` If `dat` is a dataframe, this is the name of the variable (normally a factor) to place on the X axis. Separate box plots will be generate for each level of this variable.
- `labelOutliers` Whether or not to label outliers.
- `outlierColor` If labeling outliers, this is the color to use.
- `theme` The theme to use for the box plot.
- `...` Any additional arguments will be passed to `geom_boxplot`.

Details

This function is based on JasonAizkalns’ answer to a question on Stack Exchange (Cross Validated; see https://stackoverflow.com/questions/33524669/labeling-outliers-of-boxplots-in-r).

Value

A ggplot plot is returned.

Author(s)

Jason Aizkalns; implemented in this package (and tweaked a bit) by Gjalt-Jorn Peters.

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com
ggScatterPlot

Description

This function provides a simple interface to create a `ggplot2::ggplot()` bar chart.

Usage

```r
ggScatterPlot(
  x,
  y,
  jitter = TRUE,
  size = 3,
  alpha = 0.66,
  shape = 16,
  color = "black",
  fill = "black",
  stroke = 1,
  plotTheme = ggplot2::theme_bw(),
  ...
)
```

Arguments

- **x, y** The vectors to display in the scatter plot. Alternatively, x can be a data frame; then y has to be a vector with (numeric or character) indices, e.g. column names.
- **jitter** Whether to jitter the points (TRUE by default).
- **size, alpha, shape, color, fill, stroke** Quick way to set the aesthetics.
- **plotTheme** The theme to apply.
- **...** And additional arguments are passed to `ggplot2::geom_point()`.

Examples

```r
### A box plot for miles per gallon in the mtcars dataset:
ggBoxplot(mtcars$mpg);

### And separate for each level of 'cyl' (number of cylinder):
ggBoxplot(mtcars, y='mpg', x='cyl');
```

See Also

- `geom_boxplot`
histogram

A `ggplot2::ggplot()` plot is returned.

See Also

`ggplot2::geom_point()`

Examples

`rosetta::ggScatterPlot(mtcars$hp, mtcars$mpg);`

Description

A simple function to create a histogram.

Usage

```r
histogram(vector, bins = NULL, theme = ggplot2::theme_bw())
```

Arguments

- `vector`:
 - A variable or vector.
- `bins`:
 - The number of bins; when 0, either the number of unique values in `vector` or 20, whichever is lower.
- `theme`:
 - The `ggplot2` theme to use.

Value

A `ggplot2` plot.

Examples

```r
rosetta::histogram(mtcars$mpg);
```
logRegr

Userfriendly wrapper to do logistic regression in R

Description

This function is meant as a userfriendly wrapper to approximate the way logistic regression is done in SPSS.

Usage

logRegr(
 formula,
 data = NULL,
 conf.level = 0.95,
 digits = 2,
 predictGroupValue = NULL,
 comparisonGroupValue = NULL,
 pvalueDigits = 3,
 crossTabs = TRUE,
 oddsRatios = TRUE,
 plot = FALSE,
 collinearity = FALSE,
 env = parent.frame(),
 predictionColor = viridis::viridis(3)[3],
 predictionAlpha = 0.5,
 predictionSize = 2,
 dataColor = viridis::viridis(3)[1],
 dataAlpha = 0.33,
 dataSize = 2,
 observedMeansColor = viridis::viridis(3)[2],
 binObservedMeans = 7,
 observedMeansSize = 2,
 observedMeansWidth = NULL,
 observedMeansAlpha = 0.5,
 theme = ggplot2::theme_bw(),
 headingLevel = 3
)

rosettaLogRegr_partial(
 x,
 digits = x$input$digits,
 pvalueDigits = x$input$pvalueDigits,
 headingLevel = x$input$headingLevel,
 echoPartial = FALSE,
 partialFile = NULL,
 quiet = TRUE,
 ...
logRegr

S3 method for class 'rosettaLogRegr'
knit_print(
 x,
 digits = x$input$digits,
 headingLevel = x$input$headingLevel,
 pvalueDigits = x$input$pvalueDigits,
 echoPartial = FALSE,
 partialFile = NULL,
 quiet = TRUE,
 ...
)

S3 method for class 'rosettaLogRegr'
print(
 x,
 digits = x$input$digits,
 pvalueDigits = x$input$pvalueDigits,
 headingLevel = x$input$headingLevel,
 forceKnitrOutput = FALSE,
 ...
)

Arguments

- **formula**: The formula, specified in the same way as for `stats::glm()` (which is used for the actual analysis).
- **data**: Optionally, a dataset containing the variables in the formula (if not specified, the variables must exist in the environment specified in `env`).
- **conf.level**: The confidence level for the confidence intervals.
- **digits**: The number of digits used when printing the results.
- **predictGroupValue**, **comparisonGroupValue**: Can optionally be used to set the value to predict and the value to compare with.
- **pvalueDigits**: The number of digits used when printing the p-values.
- **crossTabs**: Whether to show cross tabulations of the correct predictions for the null model and the tested model, as well as the percentage of correct predictions.
- **oddsRatios**: Whether to also present the regression coefficients as odds ratios (i.e. simply after a call to `base::exp()`).
- **plot**: Whether to display the plot.
- **collinearity**: Whether to show collinearity diagnostics.
- **env**: If no dataframe is specified in data, use this argument to specify the environment holding the variables in the formula.
- **predictionColor**, **dataColor**, **observedMeansColor**: The color of, respectively, the line and confidence interval showing the prediction; the points representing the observed data points; and the means based on the observed data.
predictionAlpha, dataAlpha, observedMeansAlpha
The alpha of, respectively, the confidence interval of the prediction; the points representing the observed data points; and the means based on the observed data (set to 0 to hide an element).

predictionSize, dataSize, observedMeansSize
The size of, respectively, the line of the prediction; the points representing the observed data points; and the means based on the observed data (set to 0 to hide an element).

binObservedMeans
Whether to bin the observed means; either FALSE or a single numeric value specifying the number of bins.

observedMeansWidth
The width of the lines of the observed means. If not specified (i.e. NULL), this is computed automatically and set to the length of the shortest interval between two successive points in the predictor data series (found using ufs::findShortestInterval()).

theme
The theme used to display the plot.

headingLevel
The number of hashes to print in front of the headings

x
The object to print (i.e. as produced by rosetta::logRegr).

echoPartial
Whether to show the executed code in the R Markdown partial (TRUE) or not (FALSE).

partialFile
This can be used to specify a custom partial file. The file will have object x available.

quiet
Passed on to knitr::knit() whether it should be chatty (FALSE) or quiet (TRUE).

...
Any additional arguments are passed to the default print method by the print method, and to rmdpartials::partial() when knitting an RMarkdown partial.

forceKnitrOutput
Force knitr output.

Value
Mainly, this function prints its results, but it also returns them in an object containing three lists:

input
The arguments specified when calling the function

intermediate
Intermediat objects and values

output
The results, such as the plot, the cross tables, and the coefficients.

Author(s)
Ron Pat-El & Gjalt-Jorn Peters (both while at the Open University of the Netherlands)
Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

See Also
regr and fanova for similar functions for linear regression and analysis of variance and stats::glm() for the regular interface for logistic regression.
Examples

```r
### Simplest way to call logRegr
rosetta::logRegr(data=mtcars, formula = vs ~ mpg);

### Also ordering a plot
rosetta::logRegr(
  data=mtcars,
  formula = vs ~ mpg,
  plot=TRUE
);

### Only use five bins
rosetta::logRegr(
  data=mtcars,
  formula = vs ~ mpg,
  plot=TRUE,
  binObservedMeans=5
);

## Not run:
### Mimic output that would be obtained
### when calling from an R Markdown file
rosetta::rosettaLogRegr_partial(
  rosetta::logRegr(
    data=mtcars,
    formula = vs ~ mpg,
    plot=TRUE
  )
);

## End(Not run)
```

Description

The `meanDiff` function compares the means between two groups. It computes Cohen’s d, the unbiased estimate of Cohen’s d (Hedges’ g), and performs a t-test. It also shows the achieved power, and, more usefully, the power to detect small, medium, and large effects.

Usage

```r
meanDiff(
  x,
  y = NULL,
  paired = FALSE,
```
r.prepost = NULL,
var.equal = "test",
conf.level = 0.95,
plot = FALSE,
digits = 2,
envir = parent.frame()
)

S3 method for class 'meanDiff'
print(x, digits = x$digits, powerDigits = x$digits + 2, ...)

S3 method for class 'meanDiff'
pander(x, digits = x$digits, powerDigits = x$digits + 2, ...)

Arguments

x
Dichotomous factor: variable 1; can also be a formula of the form y ~ x, where x must be a factor with two levels (i.e. dichotomous).

y
Numeric vector: variable 2; can be empty if x is a formula.

paired
Boolean; are x & y independent or dependent? Note that if x & y are dependent, they need to have the same length.

r.prepost
Correlation between the pre- and post-test in the case of a paired samples t-test. This is required to compute Cohen’s d using the formula on page 29 of Borenstein et al. (2009). If NULL, the correlation is simply computed from the provided scores (but of course it will then be lower if these is an effect - this will lead to an underestimate of the within-groups variance, and therefore, of the standard error of Cohen’s d, and therefore, to confidence intervals that are too narrow (too liberal). Also, of course, when using this data to compute the within-groups correlation, random variations will also impact that correlation, which means that confidence intervals may in practice deviate from the null hypothesis significance testing p-value in either direction (i.e. the p-value may indicate a significant association while the confidence interval contains 0, or the other way around). Therefore, if the test-retest correlation of the relevant measure is known, please provide this here to enable computation of accurate confidence intervals.

var.equal
String; only relevant if x & y are independent; can be "test" (default; test whether x & y have different variances), "no" (assume x & y have different variances; see the Warning below!), or "yes" (assume x & y have the same variance)

conf.level
Confidence of confidence intervals you want.

plot
Whether to print a dlvPlot.

digits
With what precision you want the results to print.
envir
The environment where to search for the variables (useful when calling meanDiff from a function where the vectors are defined in that functions environment).

powerDigits
With what precision you want the power to print.

...
Additional arguments are passen on to the ggplot2::ggplot() print method.
Details

This function uses the formulae from Borenstein, Hedges, Higgins & Rothstein (2009) (pages 25-32).

Value

An object is returned with the following elements:

- **variables**: Input variables
- **groups**: Levels of the x variable, the dichotomous factor
- **ci.confidence**: Confidence of confidence intervals
- **digits**: Number of digits for output
- **x**: Values of dependent variable in first group
- **y**: Values of dependent variable in second group
- **type**: Type of t-test (independent or dependent, equal variances or not)
- **n**: Sample sizes of the two groups
- **mean**: Means of the two groups
- **sd**: Standard deviations of the two groups
- **objects**: Objects used; the t-test and optionally the test for equal variances
- **variance**: Variance of the difference score
- **meanDiff**: Difference between the means
- **meanDiff.d**: Cohen’s d
- **meanDiff.d.var**: Variance of Cohen’s d
- **meanDiff.d.se**: Standard error of Cohen’s d
- **meanDiff.J**: Correction for Cohen’s d to get to the unbiased Hedges g
- **power**: Achieved power with current effect size and sample size
- **power.small**: Power to detect small effects with current sample size
- **power.medium**: Power to detect medium effects with current sample size
- **power.large**: Power to detect large effects with current sample size
- **meanDiff.g**: Hedges’ g
- **meanDiff.g.var**: Variance of Hedges’ g
- **meanDiff.g.se**: Standard error of Hedges’ g
- **ci.usedZ**: Z value used to compute confidence intervals
- **meanDiff.d.ci.lower**: Lower bound of confidence interval around Cohen’s d
- **meanDiff.d.ci.upper**: Upper bound of confidence interval around Cohen’s d
- **meanDiff.g.ci.lower**: Lower bound of confidence interval around Hedges’ g
- **meanDiff.g.ci.upper**: Upper bound of confidence interval around Hedges’ g
meanDiff.multi

- **meanDiff.ci.lower**: Lower bound of confidence interval around raw mean
- **meanDiff.ci.upper**: Upper bound of confidence interval around raw mean
- **t**: Student t value for Null Hypothesis Significance Testing
- **df**: Degrees of freedom for t value
- **p**: p-value corresponding to t value

Warning

Note that when different variances are assumed for the t-test (i.e. the null-hypothesis test), the values of Cohen’s d are still based on the assumption that the variance is equal. In this case, the confidence interval might, for example, not contain zero even though the NHST has a non-significant p-value (the reverse can probably happen, too).

References

Examples

```r
### Create simple dataset
dat <- PlantGrowth[1:20,];
### Remove third level from group factor
dat$group <- factor(dat$group);
### Compute mean difference and show it
meanDiff(dat$weight ~ dat$group);

### Look at second treatment
dat <- rbind(PlantGrowth[1:10,], PlantGrowth[21:30,]);
### Remove third level from group factor
dat$group <- factor(dat$group);
### Compute mean difference and show it
meanDiff(x=dat$group, y=dat$weight);
```

Description

The `meanDiff.multi` function compares many means for many groups. It presents the results in a dataframe summarizing all relevant information, and produces plot showing the confidence intervals for the effect sizes for each predictor (i.e. dichotomous variable). Like `meanDiff`, it computes Cohen’s d, the unbiased estimate of Cohen’s d (Hedges’ g), and performs a t-test. It also shows the achieved power, and, more usefully, the power to detect small, medium, and large effects.
Usage

meanDiff.multi(
 dat,
 y,
 x = NULL,
 var.equal = "yes",
 conf.level = 0.95,
 digits = 2,
 orientation = "vertical",
 zeroLineColor = "grey",
 zeroLineSize = 1.2,
 envir = parent.frame()
)

S3 method for class 'meanDiff.multi'
print(x, digits = x$digits, powerDigits = x$digits + 2, ...)

Arguments

dat The dataframe containing the variables involved in the mean tests.
y Character vector containing the list of interval variables to include in the tests.
x Character vector containing the list of the dichotomous variables to include in the tests. If x is empty, paired samples t-tests will be conducted.
var.equal String; only relevant if x & y are independent; can be "test" (default; test whether x & y have different variances), "no" (assume x & y have different variances; see the Warning below!), or "yes" (assume x & y have the same variance)
conf.level Confidence of confidence intervals you want.
digits With what precision you want the results to print.
orientation Whether to plot the effect size confidence intervals vertically (like a forest plot, the default) or horizontally.
zeroLineColor Color of the horizontal line at an effect size of 0 (set to 'white' to not display the line; also adjust the size to 0 then).
zeroLineSize Size of the horizontal line at an effect size of 0 (set to 0 to not display the line; also adjust the color to 'white' then).
envir The environment where to search for the variables (useful when calling meanDiff from a function where the vectors are defined in that functions environment).
powerDigits With what precision you want the power to print.
... Additional arguments are passed on to the meanDiff() print methods.

Details

This function uses the meanDiff function, which uses the formulae from Borenstein, Hedges, Higgins & Rothstein (2009) (pages 25-32).
Value

An object is returned with the following elements:

- **results.raw**: Objects returned by the calls to meanDiff.
- **plots**: For every comparison, a plot with the datapoints, means, and confidence intervals in the two groups.
- **results.compiled**: Dataframe with the most important results from each comparison.
- **plots.compiled**: For every dichotomous (x) variable, a plot with the confidence interval for the effect size of each dependent (y) variable.
- **input**: The arguments with which the function was called.

Warning

Note that when different variances are assumed for the t-test (i.e. the null-hypothesis test), the values of Cohen's d are still based on the assumption that the variance is equal. In this case, the confidence interval might, for example, not contain zero even though the NHST has a non-significant p-value (the reverse can probably happen, too).

References

Examples

```r
### Create simple dataset
dat <- data.frame(x1 = factor(rep(c(0,1), 20)),
x2 = factor(c(rep(0, 20), rep(1, 20))),
y=rep(c(4,5), 20) + rnorm(40));
### Compute mean difference and show it
meanDiff.multi(dat, x=c("x1", "x2"), y="y", var.equal="yes");
```

Description

These functions allow easily computing means and sums. Note that if you attach rosetta to the search path,
Usage

```r
means(
    ..., 
    data = NULL,
    requiredValidValues = 0,
    returnIfInvalid = NA,
    silent = FALSE
)
```

```r
sums(
    ..., 
    data = NULL,
    requiredValidValues = 0,
    returnIfInvalid = NA,
    silent = FALSE
)
```

Arguments

... The dataframe or vectors for which to compute the means or sums. When passing a dataframe as unnamed argument (i.e. in the "dots", ...), the means or sums for all columns in the dataframe will be computed. If you want to select one or more columns, make sure to pass the dataframe as `data`.

`data` If a dataframe is passed as `data`, the values passed in the "dots" (...) will be taken as column names or indices in that dataframe. This allows easy indexing.

`requiredValidValues` The number (if larger than 1) or proportion (if between 0 and 1) of values that have to be valid (i.e. nonmissing) before the mean or sum is returned.

`returnIfInvalid` Which value to return for rows not meeting the criterion specified in `requiredValidValues`.

`silent` Whether to suppress messages.

Value

The means or sums.

Examples

```r
rosetta::means(mtcars$mpg, mtcars$disp, mtcars$wt);
rosetta::means(data=mtcars, 'mpg', 'disp', 'wt');
rosetta::sums(mtcars$mpg, mtcars$disp, mtcars$wt);
rosetta::sums(data=mtcars, 'mpg', 'disp', 'wt');
```
Description

The oneway function wraps a number of analysis of variance functions into one convenient interface that is similar to the oneway anova command in SPSS.

Usage

```r
oneway(
  y,
  x,
  posthoc = NULL,
  means = FALSE,
  fullDescribe = FALSE,
  levene = FALSE,
  plot = FALSE,
  digits = 2,
  omegasq = TRUE,
  etasq = TRUE,
  corrections = FALSE,
  pvalueDigits = 3,
  t = FALSE,
  conf.level = 0.95,
  posthocLetters = FALSE,
  posthocLetterAlpha = 0.05,
  overrideVarNames = NULL,
  silent = FALSE
)
```

```r
## S3 method for class 'oneway'
print(
  x,
  digits = x$input$digits,
  pvalueDigits = x$input$pvalueDigits,
  na.print = "",
  ...
)
```

```r
## S3 method for class 'oneway'
pander(
  x,
  digits = x$input$digits,
  pvalueDigits = x$input$pvalueDigits,
  headerStyle = "**",
  na.print = "",
..."
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>y has to be a numeric vector.</td>
</tr>
<tr>
<td>x</td>
<td>x has to be a vector that either is a factor or can be converted into one.</td>
</tr>
<tr>
<td>posthoc</td>
<td>Which post-hoc tests to conduct. Valid values are any correction methods in</td>
</tr>
<tr>
<td></td>
<td>p.adjust.methods (at the time of writing of this document, &quot;holm&quot;, &quot;hochberg&quot;,</td>
</tr>
<tr>
<td></td>
<td>&quot;hommel&quot;, &quot;bonferroni&quot;, &quot;BH&quot;, &quot;BY&quot;, &quot;fdr&quot;, &quot;none&quot;), as well as &quot;tukey&quot; and</td>
</tr>
<tr>
<td></td>
<td>&quot;games-howell&quot;.</td>
</tr>
<tr>
<td>means</td>
<td>Whether to show the means for the y variable in each of the groups determined</td>
</tr>
<tr>
<td></td>
<td>by the x variable.</td>
</tr>
<tr>
<td>fullDescribe</td>
<td>If TRUE, not only the means are shown, but all statistics acquired through</td>
</tr>
<tr>
<td></td>
<td>the 'describe' function in the 'psych' package are shown.</td>
</tr>
<tr>
<td>levene</td>
<td>Whether to show Levene's test for equality of variances (using car's leveneTest</td>
</tr>
<tr>
<td></td>
<td>function but specifying mean as function to compute the center of each group).</td>
</tr>
<tr>
<td>plot</td>
<td>Whether to show a plot of the means of the y variable in each of the groups</td>
</tr>
<tr>
<td></td>
<td>determined by the x variable.</td>
</tr>
<tr>
<td>digits</td>
<td>The number of digits to show in the output.</td>
</tr>
<tr>
<td>omegasq</td>
<td>Whether to show the omega squared effect size.</td>
</tr>
<tr>
<td>etasq</td>
<td>Whether to show the eta squared effect size (this is biased and generally advised</td>
</tr>
<tr>
<td></td>
<td>against; omega squared is less biased).</td>
</tr>
<tr>
<td>corrections</td>
<td>Whether to show the corrections for unequal variances (Welch and Brown-Forsythe).</td>
</tr>
<tr>
<td>pvalueDigits</td>
<td>The number of digits to show for p-values; smaller p-values will be shown as</td>
</tr>
<tr>
<td></td>
<td>&lt;.001 or &lt;.0001 etc.</td>
</tr>
<tr>
<td>t</td>
<td>Whether to transpose the dataframes with the means (if requested) and the anova</td>
</tr>
<tr>
<td></td>
<td>results. This can be useful for blind people.</td>
</tr>
<tr>
<td>conf.level</td>
<td>Confidence level to use when computing the confidence interval for eta^2. Note</td>
</tr>
<tr>
<td></td>
<td>that the function we use doubles the 'unconfidence' level to maintain consist-</td>
</tr>
<tr>
<td>posthocLetters</td>
<td>Whether to also compute and show the letters signifying differences between</td>
</tr>
<tr>
<td></td>
<td>groups when conducting post hoc tests. This requires package multcompView to</td>
</tr>
<tr>
<td></td>
<td>be installed.</td>
</tr>
<tr>
<td>posthocLetterAlpha</td>
<td>The alpha to use when determining whether groups have different means when</td>
</tr>
<tr>
<td></td>
<td>using posthocLetters.</td>
</tr>
<tr>
<td>overrideVarNames</td>
<td>Can be used to override the variable names (most useful in functions).</td>
</tr>
<tr>
<td>silent</td>
<td>Whether to show warnings and other diagnostic information or remain silent.</td>
</tr>
</tbody>
</table>
na.print  How to print missing values.
...
Any additional arguments are passed to the `print` or `pander` function.

headerStyle  The header pre- and suffix to use when pandering the result (useful when working with Markdown).

Value

A list of three elements:

input  List with input arguments
intermediate  List of intermediate objects, such as the aov and Anova (from the car package) objects.
output  List with etasq, the effect size, and dat, a dataframe with the Oneway Anova results.

Note

By my knowledge the Brown-Forsythe correction was not yet available in R. I took this from the original paper (directed there by Field, 2014). Note that this is the corrected $F$ value, not the Brown-Forsythe test for normality!

Author(s)

Gjalt-Jorn Peters

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

References


Examples

```r
Do a oneway Anova
oneway(y=ChickWeight$weight, x=ChickWeight$Diet);

Also order means and transpose the results
oneway(y=ChickWeight$weight, x=ChickWeight$Diet, means=TRUE, t=TRUE);
```
The `rosetta::opts` object contains three functions to set, get, and reset options used by the `rosetta` package. Use `rosetta::opts$set` to set options, `rosetta::opts$get` to get options, or `rosetta::opts$reset` to reset specific or all options to their default values.

**Usage**

```r
opts
```

**Format**

An object of class `list` of length 4.

**Details**

It is normally not necessary to get or set `rosetta` options.

The following arguments can be passed:

- `...` For `rosetta::opts$set`, the dots can be used to specify the options to set, in the format `option = value`, for example, `varViewCols = c("values", "level")`. For `rosetta::opts$reset`, a list of options to be reset can be passed.

- `option` For `rosetta::opts$set`, the name of the option to set.

- `default` For `rosetta::opts$get`, the default value to return if the option has not been manually specified.

The following options can be set:

- `varViewCols` The order and names of the columns to include in the variable view.

- `showLabellerWarning` Whether to show a warning if labeller labels are encountered.

**Examples**

```r
Get the default columns in the variable view
rosetta::opts$get(varViewCols);

Set it to a custom version
rosetta::opts$set(varViewCols = c("values", "level"));

Check that it worked
rosetta::opts$get(varViewCols);

Reset this option to its default value
rosetta::opts$reset(varViewCols);
```
### Check that the reset worked, too
rosetta::opts$get(varViewCols);

**partypanelData**

*Subsets of the Party Panel 2015 dataset*

**Description**

This is a subsets of the Party Panel 2015 dataset. Party Panel is an annual semi-panel determinant study among Dutch nightlife patrons, where every year, the determinants of another nightlife-related risk behavior are mapped. In 2015, determinants were measured of behaviors related to using highly dosed ecstasy pills.

**Usage**

```r
data(pp15)
```

**Format**

A `data.frame` with 128 columns and 829 rows. Note that many rows contain missing values; the columns and rows were taken directly from the original Party Panel dataset, and represent all participants that made it past a given behavior.

**Details**

The full dataset is publicly available through the Open Science Framework (https://osf.io/s4fmu/). Also see the GitLab repository (https://gitlab.com/partypanel) and the website at https://partypanel.eu.

**Examples**

```r
data('pp15', package='rosetta');
rosetta::freq(pp15$gender);
```

**plotIMM**

*Makes plot of Index of Moderated Mediation of gemm object*

**Description**

Makes plot of Index of Moderated Mediation of gemm object

**Usage**

```r
plotIMM(x, ...)
```
plotIMM3d

Arguments

x          object moderatedMediationSem
...         optional

Value

simple slope plots for each mediator and simple slopes parameter estimates

plotIMM3d  Makes 3D plots of Index of Moderated Mediation of gemm object

Description

Makes 3D plots of Index of Moderated Mediation of gemm object

Usage

plotIMM3d(x, ...)

Arguments

x                              results of gemm function
...                            optional

Value

empty, directly plots all indices of mediation

plotSS  Makes simple slope plots of gemm object

Description

Makes simple slope plots of gemm object

Usage

plotSS(x, ...)

Arguments

x          object moderatedMediationSem
...         optional

Value

simple slope plots for each mediator and simple slopes parameter estimates
posthocTGH

Description

This function is used by the ‘oneway’ function for oneway analysis of variance in case a user requests post-hoc tests using the Tukey or Games-Howell methods.

Usage

posthocTGH(
  y, 
  x, 
  method = c("games-howell", "tukey"), 
  conf.level = 0.95, 
  digits = 2, 
  p.adjust = "none", 
  formatPvalue = TRUE
)

## S3 method for class 'posthocTGH'
print(x, digits = x$input$digits, ...)

Arguments

y  
y has to be a numeric vector.

x  
x has to be vector that either is a factor or can be converted into one.

method  
Which post-hoc tests to conduct. Valid values are "tukey" and "games-howell".

conf.level  
Confidence level of the confidence intervals.

digits  
The number of digits to show in the output.

p.adjust  
Any valid p.adjust method.

formatPvalue  
Whether to format the p values according to APA standards (i.e. replace all values lower than .001 with ‘<.001’). This only applies to the printing of the object, not to the way the p values are stored in the object.

...  
Any additional arguments are passed on to the print function.

Value

A list of three elements:

input  
List with input arguments

intermediate  
List of intermediate objects.

output  
List with two objects ‘tukey’ and ‘games.howell’, containing the outcomes for the respective post-hoc tests.
Note

This function is based on a file that was once hosted at http://www.psych.yorku.ca/cribbie/6130/games_howell.R, but has been removed since. It was then adjusted for implementation in the userfriendlyscience package. Jeffrey Baggett needed the confidence intervals, and so emailed them, after which his updated function was used. In the meantime, it appears Aaron Schlegel (https://rpubs.com/aaronsc32) independently developed a version with confidence intervals and posted it on RPubs at https://rpubs.com/aaronsc32/games-howell-test.

Also, for some reason, p.adjust can be used to specify additional correction of p values. I’m not sure why I implemented this, but I’m not entirely sure it was a mistake either. Therefore, in userfriendlyscience version 0.6-2, the default of this setting changed from “holm” to “none” (also see https://stats.stackexchange.com/questions/83941/games-howell-post-hoc-test-in-r).

Author(s)

Gjalt-Jorn Peters (Open University of the Netherlands) & Jeff Bagget (University of Wisconsin - La Crosse)

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

Examples

```r
Compute post-hoc statistics using the tukey method
posthocTGH(y=ChickWeight$weight, x=ChickWeight$Diet, method="tukey");
Compute post-hoc statistics using the games-howell method
posthocTGH(y=ChickWeight$weight, x=ChickWeight$Diet);
```

`prepIMM3d`  
*Computes Index of moderated mediation of gemm object*

Description

Computes Index of moderated mediation of gemm object

Usage

`prepIMM3d(M1, M2, parEst = parEst, i = 1)`

Arguments

- `M1`: moderator of x-m path
- `M2`: moderator of m-y path
- `parEst`: parameter estimates from lavaan results
- `i`: index of vector of mediators names

Value

vector of index of moderated mediation with CI limits for a given mediator
PrepPlotIMM  

Makes Index of Mediated Moderated plots

Description

Makes Index of Mediated Moderated plots

Usage

prepPlotIMM(  
data,
xvar,
yvar,
mod,
mvars,
parEst,
v dichotomous,
modLevels,
path = NULL
)

Arguments

data  
data frame containing the variables of the model
xvar  
predictor variable name
yvar  
dependent variable name
mod  
mediator name
mvars  
vector of mediators names
parEst  
parameter estimates from lavaan results
vdichotomous  
indicates whether moderator is dichotomous (TRUE)
modLevels  
levels of dichotomous moderator
path  
which path is used

Value

empty, directly plots all simple slopes and all indices of mediation
prepPlotSS  

**Description**

Makes simple slope plots

**Usage**

```r
prepPlotSS(
 data,
 xvar,
 yvar,
 mod,
 mvars,
 parEst,
 vdichotomous,
 modLevels,
 predLevels = NULL,
 xquant,
 yquant,
 path = NULL
)
```

**Arguments**

- `data` : data frame containing the variables of the model
- `xvar` : predictor variable name
- `yvar` : dependent variable name
- `mod` : moderator name
- `mvars` : vector of mediators names
- `parEst` : parameter estimates from lavaan results
- `vdichotomous` : indicates whether moderator is dichotomous (TRUE)
- `modLevels` : levels of dichotomous moderator
- `predLevels` : levels of dichotomous moderator
- `xquant` : quantiles of x
- `yquant` : quantiles of y
- `path` : which path is used

**Value**

empty, directly plots all simple slopes and all indices of mediation
print.gemm

**print method of object of class gemm**

### Description

print method of object of class gemm

### Usage

```r
S3 method for class 'gemm'
print(x, ..., digits = 2, silence = FALSE)
```

### Arguments

- `x`: object of class gemm
- `...`: additional pars
- `digits`: number of digits
- `silence`: boolean, if true out is not printed

---

randomSlug

*Generate a random slug*

### Description

idSlug is a convenience function with swapped argument order.

### Usage

```r
randomSlug(x = 10, id = NULL, chars = c(letters, LETTERS, 0:9))
idSlug(id = NULL, x = 10, chars = c(letters, LETTERS, 0:9))
```

### Arguments

- `x`: Length of slug
- `id`: If not NULL, prepended to slug (separated with a dash) as id; in that case, it’s also braces and a hash is added.
- `chars`: Characters to sample from

### Value

A character value.

### Examples

```r
randomSlug();
idSlug("identifier");
```
recode

Recode a Variable (car version)

Description

This function is from the car package. Please see that help page for details: car::recode().

Usage

recode(var, recodes, as.factor, as.numeric = TRUE, levels)

Arguments

var numeric vector, character vector, or factor.
recodes character string of recode specifications: see below.
as.factor return a factor; default is TRUE if var is a factor, FALSE otherwise.
as.numeric if TRUE (the default), and as.factor is FALSE, then the result will be coerced to numeric if all values in the result are numerals—i.e., represent numbers.
levels an optional argument specifying the order of the levels in the returned factor; the default is to use the sort order of the level names.

Author(s)

John Fox <jfox@mcmaster.ca>

References


Examples

x<-rep(1:3,3)
x
rosetta::recode(  x,  "c(1,2)='A'; else='B'"
);
rosetta::recode(  x,  "1:2='A'; 3='B'"
);
Description

The `regr` function wraps a number of linear regression functions into one convenient interface that provides similar output to the regression function in SPSS. It automatically provides confidence intervals and standardized coefficients. Note that this function is meant for teaching purposes, and therefore it’s only for very basic regression analyses; for more functionality, use the base R function `lm` or e.g. the `lme4` package.

Usage

```r
regr(
 formula,
 data = NULL,
 conf.level = 0.95,
 digits = 2,
 pvalueDigits = 3,
 coefficients = c("raw", "scaled"),
 plot = FALSE,
 pointAlpha = 0.5,
 collinearity = FALSE,
 influential = FALSE,
 ci.method = c("widest", "r.con", "olkinfinn"),
 ci.method.note = FALSE,
 headingLevel = 3,
 env = parent.frame()
)

rosettaRegr_partial(
 x,
 digits = x$input$digits,
 pvalueDigits = x$input$pvalueDigits,
 headingLevel = x$input$headingLevel,
 echoPartial = FALSE,
 partialFile = NULL,
 quiet = TRUE,
 ...
)
```

```r
S3 method for class 'rosettaRegr'
knit_print(
 x,
 digits = x$input$digits,
 headingLevel = x$input$headingLevel,
 pvalueDigits = x$input$pvalueDigits,
)```
regr

```r
echoPartial = FALSE,
partialFile = NULL,
quiet = TRUE,
...
)

## S3 method for class 'rosettaRegr'
print(
x,
digits = x$input$digits,
pvalueDigits = x$input$pvalueDigits,
headingLevel = x$input$headingLevel,
forceKnitrOutput = FALSE,
...
)

## S3 method for class 'rosettaRegr'
pander(x, digits = x$input$digits, pvalueDigits = x$input$pvalueDigits, ...)
```

Arguments

- `formula`:
 The formula of the regression analysis, of the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the predictors.

- `data`:
 If the terms in the formula aren't vectors but variable names, this should be the dataframe where those variables are stored.

- `conf.level`:
 The confidence of the confidence interval around the regression coefficients.

- `digits`:
 Number of digits to round the output to.

- `pvalueDigits`:
 The number of digits to show for p-values; smaller p-values will be shown as <.001 or <.0001 etc.

- `coefficients`:
 Which coefficients to show; can be "raw" to only show the raw (unstandardized) coefficients; "scaled" to only show the scaled (standardized) coefficients), or c("raw","scaled") to show both.

- `plot`:
 For regression analyses with only one predictor (also sometimes confusingly referred to as 'univariate' regression analyses), scatterplots with regression lines and their standard errors can be produced.

- `pointAlpha`:
 The alpha channel (transparency, or rather: 'opaqueness') of the points drawn in the plot.

- `collinearity`:
 Whether to compute and show collinearity diagnostics (specifically, the tolerance \((1 - R^2)\), where \(R^2\) is the one obtained when regressing each predictor on all the other predictors) and the Variance Inflation Factor (VIF), which is the reciprocal of the tolerance, i.e. \(VIF = 1 / \text{tolerance}\).

- `influential`:
 Whether to compute diagnostics for influential cases. These are stored in the returned object in the `lm.influence.raw` and `lm.influence.scaled` objects in the intermediate object. They are not printed.

- `ci.method, ci.method.note`:
 Which method to use for the confidence interval around R squared, and whether to display a note about this choice.
headingLevel The number of hashes to print in front of the headings when printing while knitting

env The environment where to evaluate the formula.

x The object to print (i.e. as produced by regr).

echoPartial Whether to show the executed code in the R Markdown partial (TRUE) or not (FALSE).

partialFile This can be used to specify a custom partial file. The file will have object x available.

quiet Passed on to knitr::knit() whether it should be chatty (FALSE) or quiet (TRUE).

... Any additional arguments are passed to the default print method by the print method, and to rmpartials::partial() when knitting an RMarkdown partial.

forceKnitrOutput Force knitr output.

Value

A list of three elements:

input List with input arguments

intermediate List of intermediate objects, such as the lm and confint objects.

output List with two dataframes, one with the raw coefficients, and one with the scaled coefficients.

Author(s)

Gjalt-Jorn Peters

Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

Examples

Do a simple regression analysis
rosetta::regr(age ~ circumference, dat=Orange);

Show more digits for the p-value
rosetta::regr(Orange$age ~ Orange$circumference, pvalueDigits=18);

Not run:
An example with an interaction term, showing in the
viewer
rosetta::rosettaRegr_partial(
 rosetta::regr(
 mpg ~ wt + hp + wt:hp,
 dat=mtcars,
 coefficients = "raw",
 plot=TRUE,
 collinearity=TRUE
)
Conduct reliability analyses with output similar to jamovi and SPSS

Description

The reliability() analysis is the only one most users will need. It tries to apply best practices by, as much as possible, complementing point estimates with confidence intervals.

Usage

reliability(
 data,
 items = NULL,
 scaleStructure = TRUE,
 descriptives = FALSE,
 itemLevel = FALSE,
 scatterMatrix = FALSE,
 scatterMatrixArgs = list(progress = FALSE),
 digits = 2,
 conf.level = 0.95,
 itemLabels = NULL,
 itemOmittedCorsWithRest = FALSE,
 itemOmittedCorsWithTotal = FALSE,
 alphaOmittedCIs = FALSE,
 omegaFromMBESS = FALSE,
 omegaFromPsych = TRUE,
 ordinal = FALSE,
 headingLevel = 3,
 ...
)

rosettaReliability_partial(
 x,
 digits = x$digits,
 headingLevel = x$headingLevel,
 printPlots = TRUE,
 echoPartial = FALSE,
 partialFile = NULL,
 quiet = TRUE,
 ...
)
S3 method for class 'rosettaReliability'

knit_print(
 x,
 digits = x$digits,
 headingLevel = x$headingLevel,
 printPlots = TRUE,
 echoPartial = FALSE,
 partialFile = NULL,
 quiet = TRUE,
 ...
)

S3 method for class 'rosettaReliability'

print(
 x,
 digits = x$digits,
 headingLevel = x$headingLevel,
 forceKnitrOutput = FALSE,
 printPlots = TRUE,
 ...
)

Arguments

data The data frame
items The items (if omitted, all columns are used)
scaleStructure Whether to include scale-level estimates using `ufs::scaleStructure()`
descriptives Whether to include mean and standard deviation estimates and their confidence intervals
itemLevel Whether to include item-level internal consistency estimates
scatterMatrix, scatterMatrixArgs Whether to produce a scatter matrix, and the arguments to pass to the `scatterMatrix()` function.
digits The number of digits to round the result to
conf.level The confidence level of confidence intervals
itemLabels Optionally, labels to use for the items (optionally, named, with the names corresponding to the items; otherwise, the order of the labels has to match the order of the items)
itemOmittedCorsWithRest, itemOmittedCorsWithTotal Whether to include each item’s correlations with, respectively, the scale with that item omitted, or the full scale.
alphaOmittedCIs Whether to include the confidence intervals for the Coefficient Alpha estimates with the item omitted.
omegaFromMBESS, omegaFromPsych Whether to include omega from MBESS and/or psych
ordinal Wheather to set poly=TRUE when calling \texttt{ufs::scaleStructure()}, which will compute the polychoric correlation matrix to provide the scale estimates assuming ordinal-level items. Note that this may throw a variety of errors from within the psych package if the data are somehow not what psych expects.

headingLevel The number of hashes to print in front of the headings when printing while knitting

... Any additional arguments are passed to \texttt{ufs::scaleStructure()} by reliability, to the default print method by \texttt{print.reliability}, and to \texttt{rmdpartials::partial()} when knitting an RMarkdown partial.

x The object to print

printPlots Whether to print plots (can be used to suppress plots, which can be useful sometimes)

echoPartial Whether to show the executed code in the R Markdown partial (TRUE) or not (FALSE).

partialFile This can be used to specify a custom partial file. The file will have object \texttt{x} available.

quiet Passed on to \texttt{knitr::knit()} whether it should be chatty (FALSE) or quiet (TRUE).

forceKnitrOutput Force knitr output

Details

The \texttt{rosettaReliability} object that is returned has its own \texttt{print()} method, that, when using knitr, will use the rmdpartials package to insert an RMarkdown partial. That partial is created using \texttt{rosettaReliability_partial()}, which is also called by a specific \texttt{knit_print()} method.

Value

An object with all results

Examples

```r
### These examples aren't run during tests
### because they can take quite long
## Not run:
### Simple example with only main reliability results
data(pp15, package="rosetta");
rosetta::reliability(
  pp15,
  c(
    "highDose_AttGeneral_good",
    "highDose_AttGeneral_prettig",
    "highDose_AttGeneral.slim",
    "highDose_AttGeneral_gezond",
    "highDose_AttGeneral_spannend"
  )
);
```
More extensive example with an RMarkdown partial that displays in the viewer

```r
rosetta::rosettaReliability_partial(
  rosetta::reliability(
    attitude,
    descriptives = TRUE,
    itemLevel = TRUE,
    scatterMatrix = TRUE
  )
);
```

End(Not run)

repeatStr

Repeat a string a number of times

Description

Repeat a string a number of times

Usage

```r
repeatStr(n = 1, str = " ")
```

Arguments

- `n`, `str`
 Normally, respectively the frequency with which to repeat the string and the string to repeat; but the order of the inputs can be switched as well.

Value

A character vector of length 1.

Examples

10 spaces:

```r
repStr(10);
```

Three euro symbols:

```r
repStr("\u20ac", 3);
```
scatterMatrix Scatter Matrix

Description

scatterMatrix produces a matrix with jittered scatterplots, histograms, and correlation coefficients.

Usage

scatterMatrix(
 dat,
 items = NULL,
 itemLabels = NULL,
 plotSize = 180,
 sizeMultiplier = 1,
 pointSize = 1,
 axisLabels = "none",
 normalHist = TRUE,
 progress = NULL,
 theme = ggplot2::theme_minimal(),
 hideGrid = TRUE,
 conf.level = 0.95,
 ...
)

Arguments

dat A dataframe containing the items in the scale. All variables in this dataframe will be used if items is NULL.

items If not NULL, this should be a character vector with the names of the variables in the dataframe that represent items in the scale.

itemLabels Optionally, labels to use for the items (optionally, named, with the names corresponding to the items; otherwise, the order of the labels has to match the order of the items)

plotSize Size of the final plot in millimeters.

sizeMultiplier Allows more flexible control over the size of the plot elements

pointSize Size of the points in the scatterplots

axisLabels Passed to ggpairs function to set axisLabels.

normalHist Whether to use the default ggpairs histogram on the diagonal of the scattermatrix, or whether to use the normalHist() version.

progress Whether to show a progress bar; set to FALSE to disable. See GGally::ggpairs() help for more information.

theme The ggplot2 theme to use.

hideGrid Whether to hide the gridlines in the plot.
conf.level The confidence level of confidence intervals

... Additional arguments for scatterMatrix() are passed on to normalHist(), and additional arguments for the print method are passed on to the default print method.

Value

An object with the input and several output variables. Most notably:

output$scatterMatrix

A scattermatrix with histograms on the diagonal and correlation coefficients in the upper right half.

Examples

Note: the 'not run' is simply because running takes a lot of time, but these examples are all safe to run!
Not run:

Generate a datafile to use
exampleData <- data.frame(item1=rnorm(100));
exampleData$item2 <- exampleData$item1+rnorm(100);
exampleData$item3 <- exampleData$item1+rnorm(100);
exampleData$item4 <- exampleData$item2+rnorm(100);
exampleData$item5 <- exampleData$item2+rnorm(100);

Use all items
scatterMatrix(dat=exampleData);

End(Not run)

varView

Variable View

Description

This function provides an overview of the variables in a dataframe, allowing efficient inspection of the factor levels, ranges for numeric variables, and numbers of missing values.

Usage

```r
varView(
data,
columns = names(data),
varViewCols = rosetta::opts$get(varViewCols),
varViewRownames = TRUE,
maxLevels = 10,
```
truncLevelsAt = 50,
showLabellerWarning = rosetta::opts$get(showLabellerWarning),
output = rosetta::opts$get("tableOutput")
)

S3 method for class 'rosettaVarView'
print(x, output = attr(x, "output"), ...)

Arguments

data The dataframe containing the variables to view.
columns The columns to include.
varViewCols The columns of the variable view.
varViewRownames Whether to set the variable names as row names of the variable view dataframe that is returned.
maxLevels For factors, the maximum number of levels to show.
truncLevelsAt For factors levels, the number of characters at which to truncate.
showLabellerWarning Whether to show a warning if labeller labels are encountered.
output A character vector containing one or more of "console", "viewer", and one or more filenames in existing directories. If output contains viewer and RStudio is used, the variable view is shown in the RStudio viewer.
x The varView data frame to print.
... Any additional arguments are passed along to the print.data.frame() function.

Value

A dataframe with the variable view.

Author(s)

Gjalt-Jorn Peters & Melissa Gordon Wolf

Examples

The default variable view
rosetta::varView(iris);

Only for a few variables in the dataset
rosetta::varView(iris, columns=c("Sepal.Length", "Species"));

Set some variable and value labels using the 'labelled' standard, which is also used by 'haven'
dat <- iris;
atr(dat$Sepal.Length, "label") <- "Sepal length";
atr(dat$Sepal.Length, "labels") <-
vecTxtQ(vector, useQuote = """, ...)
vecTxtB(vector, useQuote = "\", ...)
vecTxtM(vector, useQuote = "$", ...)

Arguments

vector The vector to process.
delimiter, firstDelimiter, lastDelimiter The delimiters to use for respectively the middle, first firstElements, and last lastElements elements.
vecTxt

useQuote This character string is pre- and appended to all elements; so use this to quote all elements (useQuote=""""), doublequote all elements (useQuote='"''), or anything else (e.g. useQuote=' | '). The only difference between vecTxt and vecTxtQ is that the latter by default quotes the elements.

firstElements, lastElements The number of elements for which to use the first respective last delimiters

lastHasPrecedence If the vector is very short, it’s possible that the sum of firstElements and lastElements is larger than the vector length. In that case, downwardly adjust the number of elements to separate with the first delimiter (TRUE) or the number of elements to separate with the last delimiter (FALSE)?

... Any addition arguments to vecTxtQ are passed on to vecTxt.

Value A character vector of length 1.

Examples

vecTxtQ(names(mtcars));
Index

* **bivar**
 crossTab, 6
* **datasets**
 cpbExample, 5
 opts, 47
* **data**
 partypanelData, 48
* **file**
 exportToSPSS, 15
* **hpplot**
 fanova, 23
 ggBoxplot, 31
 logRegr, 34
* **htest**
 fanova, 23
 logRegr, 34
* **models**
 logRegr, 34
* **nonlinear**
 logRegr, 34
* **regression**
 logRegr, 34
* **univariate**
 descr, 7
* **univar**
 exportToSPSS, 15
 freq, 26
 scatterMatrix, 63
* **utilities**
 dlvTheme, 12
 exportToSPSS, 15
 meanDiff, 37
 meanDiff.multi, 40
 oneWay, 44
 posthocTGH, 50
 scatterMatrix, 63

Anova, 24
as.data.frame, 29

base::exp(), 35
base::print(), 11
basicSPSStranslation (exportToSPSS), 15
buildModMedSemModel, 3
car::recode(), 55
cat, 4
cat0, 4
confIntSD, 4
confIntV (crossTab), 6
cpbExample, 5
cramersV (crossTab), 6
crossTab, 6
dataReduction (factorAnalysis), 18
descr, 7
descriptiveCIs, 11
descriptives (descr), 7
diptest::dip.test(), 10
dlvPlot (dlvTheme), 12
dlvTheme, 12
exportToSPSS, 15
factorAnalysis, 18
factorAnalysisjmv, 21
fanova, 23, 36
filterBy (exportToSPSS), 15
formatCI (), 25, 26
formatPvalue, 25
formatPvalue (), 26
formatR, 26
formatR (), 25
freq, 26
freqjmv, 28
frequencies (freq), 26
Frequency (freq), 26
gemm, 29
geom_boxplot, 31, 32
get (opts), 47
INDEX

getDat (exportToSPSS), 15
getData (exportToSPSS), 15
GGally::ggpairs(), 63
ggBarChart, 30
ggBoxplot, 31
ggplot, 31
ggplot2::geom_bar(), 30
ggplot2::geom_point(), 32, 33
ggplot2::ggplot(), 30, 32, 33, 38
ggScatterPlot, 32

histogram, 33

idSlug (randomSlug), 54

kableExtra::kable_styling(), 20
knit_print.rosettaDataReduction (factorAnalysis), 18
knit_print.rosettaDescr (descr), 7
knit_print.rosettaLogRegr (logRegr), 34
knit_print.rosettaRegr (regr), 56
knit_print.rosettaReliability (reliability), 59

leveneTest, 23, 45

lm, 24
lmer, 24
logRegr, 24, 34

mean, 23, 45
meanDiff, 37
meanDiff(), 41
meanDiff.multi, 40
means, 42
mediaan (exportToSPSS), 15
modus (exportToSPSS), 15

normalHist, 63, 64
noZero, 25
noZero(), 25, 26

oneway, 24, 44
opts, 47

p.adjust, 50
pander.crossTab (crossTab), 6
pander.freq (freq), 26
pander.frequencies (freq), 26

pander.meanDiff (meanDiff), 37
pander.oneway (oneway), 44
pander.rosettaRegr (regr), 56
partypanelData, 48
plotIMM, 48
plotIMM3d, 49
plotSS, 49
posthocTGH, 50
pp15 (partypanelData), 48
prepIMM3d, 51
prepPlotIMM, 52
prepPlotSS, 53
principalComponentAnalysis (factorAnalysis), 18
print.crossTab (crossTab), 6
print.data.frame(), 65
print.dlvPlot (dlvTheme), 12
print.fanova (fanova), 23
print.freq (freq), 26
print.frequencies (freq), 26
print.gemm, 54
print.meanDiff (meanDiff), 37
print.meanDiff.multi (meanDiff.multi), 40
print.oneway (oneway), 44
print.posthocTGH (posthocTGH), 50
print.rosettaDataReduction (factorAnalysis), 18
print.rosettaDescr (descr), 7
print.rosettaDescriptiveCIs (descriptiveCIs), 11
print.rosettaLogRegr (logRegr), 34
print.rosettaRegr (regr), 56
print.rosettaReliability (reliability), 59
print.rosettaVarView (varView), 64
psych::describe(), 10
psych::fa(), 18, 20
psych::pca(), 18, 20
psych::psych, 10

quantile, 9

randomSlug, 54
recode, 55
regr, 24, 36, 56
reliability, 59
reliability,print.reliability (reliability), 59
repeatStr, 62
repStr(repeatStr), 62
reset(opts), 47
rmddpartials::partial(), 9, 20, 36, 58, 61
rosettaDataReduction_partial
 (factorAnalysis), 18
rosettaDescr_partial(descr), 7
rosettaLogRegr_partial(logRegr), 34
rosettaRegr_partial(regr), 56
rosettaReliability_partial
 (reliability), 59

scatterMatrix, 63
scatterMatrix(), 60
set(opts), 47
stats::glm(), 35, 36
summary, 10
sums(means), 42

ufs::confIntV(), 6
ufs::findShortestInterval(), 36
ufs::scaleStructure(), 60, 61
useAll(exportToSPSS), 15

varView, 64
vecTxt, 66
vecTxtB(vecTxt), 66
vecTxtM(vecTxt), 66
vecTxtQ(vecTxt), 66