Package ‘roptions’

May 11, 2020

Title Option Strategies and Valuation
Version 1.0.3
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports purrr, ggplot2, plotly, stats
Depends R (>= 2.10)
NeedsCompilation no
Author Anurag Agrawal [aut, cre] (<https://orcid.org/0000-0003-2272-8273>)
Maintainer Anurag Agrawal <agrawalanurag1999@gmail.com>
Repository CRAN
Date/Publication 2020-05-11 11:10:06 UTC

R topics documented:

box.spread ... 2
butterfly.call .. 3
butterfly.put .. 4
call.delta ... 6
call.estimate .. 6
call.gamma .. 7
call.greek ... 8
call.minorgreek 9
call.premium.est 10
call.rho ... 10
call.spread ... 11
This function can be used to develop a box spread strategy for options. A box spread is an options arbitrage strategy that combines buying a bull call spread with a matching bear put spread.

Usage

box.spread(
 k_long_call,
 k_short_call,
 k_long_put,
 k_short_put,
 c1,
 c2,
 p1,
 p2,
 llimit = 20,
 ulimit = 20
)
butterfly.call

Arguments

k_long_call Exercise Price of Long call Option
k_short_call Exercise Price of Short call Option
k_long_put Exercise Price of Long Put Option
k_short_put Exercise Price of Short Put Option
c1 Premium of Long Call Option
c2 Premium of Short Call Option
c3 Premium of Long Put Option
c3 Premium of Short Put Option
llimit Lower limit of stock price at Expiration., Default: 20
ulimit Upper Limit of Stock Price at Expiration, Default: 20

Details

To construct a box spread, a trader buys an in-the-money (ITM) call, sells an out-of-the-money (OTM) call, buys an ITM put and sells an OTM put. In other words, buy an ITM call and put and then sell an OTM call and put.

Value

Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

box.spread(100, 105, 95, 110, 3.2, 2.6, 1.1, 2.4)

butterfly.call Butterfly Call Spread Strategy Function

Description

This function can be used to develop a Butterfly call Spread Strategy.

Usage

butterfly.call(
 k1, # Exercise Price of Long call Option
 k2, # Exercise Price of Short call Option
 k3, # Exercise Price of Long Put Option
 k_short, # Exercise Price of Short Put Option
 c1, # Premium of Long Call Option
 c2, # Premium of Short Call Option
 c3, # Premium of Long Put Option
 c3, # Premium of Short Put Option
 spread = c("long", "short"),
 llimit = 20,
 ulimit = 20
)

Arguments

- **k1**: Exercise Price of 1st Long call Option (Long Spread) / Exercise Price of 1st Short call Option (Short Spread)
- **k2**: Exercise Price of Short call Option (Long Spread) / Exercise Price of Long call Option (Short Spread)
- **k3**: Exercise Price of 2nd Long call Option (Long Spread) / Exercise Price of 2nd Short call Option (Short Spread)
- **c1**: Premium of 1st Long call Option (Long Spread) / Premium of 1st Short call Option (Short Spread)
- **c2**: Premium of Short call Option (Long Spread) / Premium of Long call Option (Short Spread)
- **c3**: Premium of 2nd Long call Option (Long Spread) / Premium of 2nd Short call Option (Short Spread)
- **spread**: Type of Spread, Default: c("long", "short")
- **llimit**: Lower limit of stock price at Expiration., Default: 20
- **ulimit**: Upper Limit of Stock Price at Expiration, Default: 20

Details

The long butterfly call spread is created by buying one in-the-money call option with a low strike price, writing two at-the-money call options, and buying one out-of-the-money call option with a higher strike price. The short butterfly spread is created by selling one in-the-money call option with a lower strike price, buying two at-the-money call options, and selling an out-of-the-money call option at a higher strike price.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

```r
butterfly.call(100, 95, 105, 2.3, 1.25, 3.2, spread = 'long')
```

Description

This function can be used to develop a Butterfly Put Spread Strategy
Usage

butterfly.put(
 k1,
 k2,
 k3,
 p1,
 p2,
 p3,
 spread = c("long", "short"),
 llimit = 20,
 ulimit = 20
)

Arguments

k1 Excercise Price of 1st Long Put Option (Long Spread)/ Excercise Price of 1st Short Put Option (Short Spread)
k2 Excercise Price of Short Put Option (Long Spread) / Excercise Price of Long Put Option (Short Spread)
k3 Excercise Price of 2nd Long Put Option (Long Spread) / Excercise Price of 2nd Short Put Option (Short Spread)
p1 Premium of 1st Long Put Option (Long Spread)/ Premium of 1st Short Put Option (Short Spread)
p2 Premium of Short Put Option (Long Spread) / Premium of Long Put Option (Short Spread)
p3 Premium of 2nd Long Put Option (Long Spread) / Premium of 2nd Short Put Option (Short Spread)
spread Type of Spread, Default: c("long", "short")
llimit Lower limit of stock price at Expiration., Default: 20
ulimit Upper Limit of Stock Price at Expiration, Default: 20

Details

The long put butterfly spread is created by buying one put with a lower strike price, selling two at-the-money puts, and buying a put with a higher strike price. Net debt is created when entering the position. The short put butterfly spread is created by writing one out-of-the-money put option with a low strike price, buying two at-the-money puts, and writing an in-the-money put option at a higher strike price.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

butterfly.put(100, 105, 95, 2.2, 3.2, 1.25, spread = 'long')
call.delta
Call Delta

Description
Calculate the Delta (Option Greek) of a Contract

Usage
```r
call.delta(s, k, t, sd, r, d = 0)
```

Arguments
- `s`: Spot Price of Underlying Asset
- `k`: Exercise Price of Contract
- `t`: Time to Expiration
- `sd`: Volatility
- `r`: Risk free rate of return
- `d`: Dividend Yield (use cont.rate()), Default: 0

Details
Delta represents the rate of change between the option’s price and a $1 change in the underlying asset’s price.

Value
Output gives the delta of a Option Contract.

Examples
```r
call.delta(100, 105, 0.25, 0.35, 0.0488)
```

call.estimate
Option Greek and Estimated Premium of Call Option

Description
Calculate the Option Greek of a Contract and Estimated Premium of Contract

Usage
```r
call.estimate(s, k, t, sd, r, d = 0)
```

Details
Delta represents the rate of change between the option’s price and a $1 change in the underlying asset’s price.
call.gamma

Arguments

- `s` Spot Price of Underlying Asset
- `k` Exercise Price of Contract
- `t` Time to Expiration
- `sd` Volatility
- `r` Risk free rate of return
- `d` Dividend Yield (use cont.rate()), Default: 0

Details

"Greeks" is a term used in the options market to describe the different dimensions of risk involved in taking an options position. These Greeks are calculated in this function along with the premium of the option contract using the BSM Model.

Value

Output gives the Option Greek of a Option Contract. Also the Premium of the contract is estimated.

Examples

```r
call.estimate(100, 105, 0.25, 0.35, 0.0488)
```

call.gamma
Call Gamma

Description

Calculate the Gamma (Option Greek) of a Contract

Usage

```r
call.gamma(s, k, t, sd, r, d = 0)
```

Arguments

- `s` Spot Price of Underlying Asset
- `k` Exercise Price of Contract
- `t` Time to Expiration
- `sd` Volatility
- `r` Risk free rate of return
- `d` Dividend Yield (use cont.rate()), Default: 0

Details

Gamma represents the rate of change between an option’s delta and the underlying asset’s price.
Value

Output gives the Gamma of a Option Contract.

Examples

```r
call.gamma(100, 105, 0.25, 0.35, 0.0488)
```

Description

Calculate the Specified Option Greek of a Contract

Usage

```r
call.greek(
  greek = c("delta", "gamma", "theta", "vega", "rho"),
  s,
  k,
  t,
  sd,
  r,
  d = 0
)
```

Arguments

- `greek` Character String of the greek to be calculated
- `s` Spot Price of Underlying Asset
- `k` Exercise Price of Contract
- `t` Time to Expiration
- `sd` Volatility
- `r` Risk free rate of return
- `d` Dividend Yield (use cont.rate()), Default: 0

Details

Delta represents the rate of change between the option’s price and a $1 change in the underlying asset’s price. Theta represents the rate of change between the option price and time, or time sensitivity - sometimes known as an option’s time decay. Gamma represents the rate of change between an option’s delta and the underlying asset’s price. Vega represents the rate of change between an option’s value and the underlying asset’s implied volatility. Rho represents the rate of change between an option’s value and a 1% change in the interest rate.
call.minorgreek

Value

Output gives the Specified Greek of a Option Contract.

Examples

call.greek('delta', 100, 105, 0.25, 0.35, 0.0488)

call.minorgreek

Specified Minor Option Greek

Description

Calculate the Specified Minor Option Greek of a Contract

Usage

call.minorgreek(minorgreek = c("lambda", "vomma"), s, k, t, sd, r, d = 0)

Arguments

- minorgreek: Character String of the minor greek to be calculated
- s: Spot Price of Underlying Asset
- k: Exercise Price of Contract
- t: Time to Expiration
- sd: Volatality
- r: Risk free rate of return
- d: Dividend Yield (use cont.rate()), Default: 0

Details

Vomma is the rate at which the vega of an option will react to volatility in the market. In options trading, Lambda is the Greek letter assigned to variable which tells the ratio of how much leverage an option is providing as the price of that option changes.

Value

Output gives the Specified Minor Greek of a Option Contract.

Examples

call.minorgreek('lambda', 100, 105, 0.25, 0.35, 0.0488)
call.premium.est Estimated Premium of Option Contract

Description
Calculate the Estimated Premium of Option Contract

Usage
call.premium.est(s, k, t, sd, r, d = 0)

Arguments
- **s**: Spot Price of Underlying Asset
- **k**: Exercise Price of Contract
- **t**: Time to Expiration
- **sd**: Volatility
- **r**: Risk free rate of return
- **d**: Dividend Yield (use cont.rate()), Default: 0

Details
Estimate is calculated based on Black-Scholes Model. The Black Scholes model, also known as the Black-Scholes-Merton (BSM) model, is a mathematical model for pricing an options contract.

Value
Output gives the Estimated Premium of a Option Contract.

Examples
call.premium.est(100, 105, 0.25, 0.35, 0.0488)

call.rho Call Rho

Description
Calculate the Rho (Option Greek) of Option Contract

Usage
call.rho(s, k, t, sd, r, d = 0)
call.spread

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Spot Price of Underlying Asset</td>
</tr>
<tr>
<td>k</td>
<td>Exercise Price of Contract</td>
</tr>
<tr>
<td>t</td>
<td>Time to Expiration</td>
</tr>
<tr>
<td>sd</td>
<td>Volatility</td>
</tr>
<tr>
<td>r</td>
<td>Risk free rate of return</td>
</tr>
<tr>
<td>d</td>
<td>Divident Yield (use cont.rate()), Default: 0</td>
</tr>
</tbody>
</table>

Details

Rho represents the rate of change between an option's value and a 1% change in the interest rate.

Value

Output gives the Rho of a Option Contract.

Examples

```
call.rho(100, 105, 0.25, 0.35, 0.0488)
```

call.spread

Bull/Bear Call Spread Strategy Function

Description

This function can be used to develop a Bull/Bear Call Strategy.

Usage

```
call.spread(k1, k2, c1, c2, llimit = 20, ulimit = 20)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>Exercise Price of Long call Option</td>
</tr>
<tr>
<td>k2</td>
<td>Exercise Price of Short Call Option</td>
</tr>
<tr>
<td>c1</td>
<td>Premium of Long call Option</td>
</tr>
<tr>
<td>c2</td>
<td>Premium of Short Call Option</td>
</tr>
<tr>
<td>llimit</td>
<td>Lower limit of stock price at Expiration., Default: 20</td>
</tr>
<tr>
<td>ulimit</td>
<td>Upper Limit of Stock Price at Expiration, Default: 20</td>
</tr>
</tbody>
</table>

Details

Bull Call Spread uses two call options to create a range consisting of a lower strike price and an upper strike price. bear call spread is achieved by purchasing call options at a specific strike price while also selling the same number of calls with the same expiration date, but at a lower strike price.
Call Theta

Description

Calculate the Theta (Option Greek) of Option Contract

Usage

call.theta(s, k, t, sd, r, d = 0)

Arguments

s Spot Price of Underlying Asset
k Exercise Price of Contract
t Time to Expiration
sd Volatility
r Risk free rate of return
d Dividend Yield (use cont.rate()), Default: 0

Details

Theta represents the rate of change between the option price and time, or time sensitivity - sometimes known as an option’s time decay.

Value

Output gives the Theta of a Option Contract.

Examples

call.theta(100, 105, 0.25, 0.35, 0.0488)
call.vega

Call Vega

Description

Calculate the Vega (Option Greek) of Option Contract

Usage

```python
call.vega(s, k, t, sd, r, d = 0)
```

Arguments

- `s` Spot Price of Underlying Asset
- `k` Exercise Price of Contract
- `t` Time to Expiration
- `sd` Volatility
- `r` Risk free rate of return
- `d` Dividend Yield (use cont.rate()), Default: 0

Details

Vega represents the rate of change between an option’s value and the underlying asset’s implied volatility.

Value

Output gives the Vega of a Option Contract.

Examples

```python
call.vega(100, 105, 0.25, 0.35, 0.0488)
```

cont.rate

Continous Rate

Description

Converts nominal rate into Continously compounded Rate

Usage

```python
cont.rate(r, t)
```
Arguments

- r rate (nominal)
- t number of compounding period

Details

Generates Continuously Compounded Rate

Value

Generates Continuously Compounded Rate

Examples

```
cont.rate(0.025, 4)
```

iron.condour

Iron Condour Strategy Function

Description

This function can be used to develop a Iron Condour Strategy.

Usage

```
iron.condour(
    k_long_call,
    k_short_call,
    k_long_put,
    k_short_put,
    c1,
    c2,
    p1,
    p2,
    llimit = 20,
    ulimit = 20
)
```

Arguments

- `k_long_call` Excercise Price of Long call Option
- `k_short_call` Excercise Price of Short call Option
- `k_long_put` Excercise Price of Long Put Option
- `k_short_put` Excercise Price of Short Put Option
- `c1` Premium of Long callOption
Details

An Iron condor is an options strategy created with four options consisting of two puts (one long and one short) and two calls (one long and one short), and four strike prices, all with the same expiration date.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

iron.condour(100, 95, 105, 102, 2.3, 1.25, 3.2, 2.3)

put.delta

Put Delta

Description

Calculate the Delta (Option Greek) of a Contract

Usage

put.delta(s, k, t, sd, r, d = 0)

Arguments

s Spot Price of Underlying Asset
k Exercise Price of Contract
t Time to Expiration
sd Volatility
r Risk free rate of return
d Dividend Yield (use cont.rate()), Default: 0

Details

Delta represents the rate of change between the option’s price and a $1 change in the underlying asset’s price.
Value

Output gives the delta of a Option Contract.

Examples

put.delta(100, 105, 0.25, 0.35, 0.0488)

put.estimate
Option Greek and Estimated Premium of Put Option

Description

Calculate the Option Greek of a Contract and Estimated Premium of Contract

Usage

put.estimate(s, k, t, sd, r, d = 0)

Arguments

- s: Spot Price of Underlying Asset
- k: Exercise Price of Contract
- t: Time to Expiration
- sd: Volatility
- r: Risk free rate of return
- d: Dividend Yield (use cont.rate()), Default: 0

Details

"Greeks" is a term used in the options market to describe the different dimensions of risk involved in taking an options position. These Greeks are calculated in this function along with the premium of the option contract using the BSM Model.

Value

Output gives the Option Greek of a Option Contract. Also the Premium of the contract is estimated.

Examples

put.estimate(100, 105, 0.25, 0.35, 0.0488)
Put Gamma

Description

Calculate the Gamma (Option Greek) of a Contract

Usage

```r
put.gamma(s, k, t, sd, r, d = 0)
```

Arguments

- `s`: Spot Price of Underlying Asset
- `k`: Exercise Price of Contract
- `t`: Time to Expiration
- `sd`: Volatility
- `r`: Risk free rate of return
- `d`: Dividend Yield (use cont.rate()), Default: 0

Details

Gamma represents the rate of change between an option’s delta and the underlying asset’s price.

Value

Output gives the Gamma of a Option Contract.

Examples

```r
put.gamma(100, 105, 0.25, 0.35, 0.0488)
```

Put Greeks

Description

Calculate the Specified Option Greek of a Contract
Usage

```r
put.greek(greek = c("delta", "gamma", "theta", "vega", "rho"),
        s, k, t, sd, r, d = 0)
```

Arguments

- `greek` Character String of the greek to be calculated
- `s` Spot Price of Underlying Asset
- `k` Exercise Price of Contract
- `t` Time to Expiration
- `sd` Volatility
- `r` Risk free rate of return
- `d` Dividend Yield (use cont.rate()), Default: 0

Details

Delta represents the rate of change between the option’s price and a $1 change in the underlying asset’s price. Theta represents the rate of change between the option price and time, or time sensitivity - sometimes known as an option’s time decay. Gamma represents the rate of change between an option’s delta and the underlying asset’s price. Vega represents the rate of change between an option’s value and the underlying asset’s implied volatility. Rho represents the rate of change between an option’s value and a 1% change in the interest rate.

Value

Output gives the Specified Greek of a Option Contract.

Examples

```r
put.greek('delta', 100, 105, 0.25, 0.35, 0.0488)
```
Description
Calculate the Specified Minor Option Greek of a Contract

Usage

```r
put.minorgreek(minorgreek = c("lambda", "vomma"), s, k, t, sd, r, d = 0)
```

Arguments

- `minorgreek`: Character String of the minor greek to be calculated
- `s`: Spot Price of Underlying Asset
- `k`: Exercise Price of Contract
- `t`: Time to Expiration
- `sd`: Volatility
- `r`: Risk free rate of return
- `d`: Dividend Yield (use cont.rate()), Default: 0

Details
Vomma is the rate at which the vega of an option will react to volatility in the market. In options trading, Lambda is the Greek letter assigned to variable which tells the ratio of how much leverage an option is providing as the price of that option changes.

Value
Output gives the Specified Minor Greek of a Option Contract.

Examples

```r
put.minorgreek('lambda', 100, 105, 0.25, 0.35, 0.0488)
```
put.premium.est Estimated Premium of Put Option

Description
Calculate the Estimated Premium of Option Contract

Usage
put.premium.est(s, k, t, sd, r, d = 0)

Arguments
s Spot Price of Underlying Asset
k Exercise Price of Contract
t Time to Expiration
sd Volatility
r Risk free rate of return
d Dividend Yield (use cont.rate()), Default: 0

Details
Estimate is calculated based on Black-Scholes Model. The Black Scholes model, also known as the Black-Scholes-Merton (BSM) model, is a mathematical model for pricing an options contract.

Value
Output gives the Estimated Premium of an Option Contract.

Examples
put.premium.est(100, 105, 0.25, 0.35, 0.0488)

put.rho Put Rho

description
Calculate the Rho (Option Greek) of Option Contract

Usage
put.rho(s, k, t, sd, r, d = 0)
Arguments

- \(s \)
 Spot Price of Underlying Asset
- \(k \)
 Exercise Price of Contract
- \(t \)
 Time to Expiration
- \(sd \)
 Volatility
- \(r \)
 Risk free rate of return
- \(d \)
 Dividend Yield (use cont.rate()), Default: 0

Details

Rho represents the rate of change between an option’s value and a 1% change in the interest rate.

Value

Output gives the Estimated Premium of a Option Contract.

Examples

```
put.rho(100, 105, 0.25, 0.35, 0.0488)
```

put.spread
* Bull/Bear Put Spread Strategy Function

Description

This function can be used to develop a Bull/Bear Put Strategy.

Usage

```
put.spread(k1, k2, long_put, short_put, llimit = 20, ulimit = 20)
```

Arguments

- \(k1 \)
 Exercise Price of Long Put Option
- \(k2 \)
 Exercise Price of Short Put Option
- \(long_put \)
 Premium of Long Put Option
- \(short_put \)
 Premium of Short Put Option
- \(llimit \)
 Lower limit of stock price at Expiration., Default: 20
- \(ulimit \)
 Upper Limit of Stock Price at Expiration, Default: 20

Details

The strategy uses two put options to form a range consisting of a high strike price and a low strike price.
Value

OUTPUT DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

```r
put.spread(1.2, 3.2, 100, 105)
```

put.theta
Put Theta

Description

Calculate the Theta (Option Greek) of Option Contract

Usage

```r
put.theta(s, k, t, sd, r, d = 0)
```

Arguments

- `s`
 Spot Price of Underlying Asset
- `k`
 Exercise Price of Contract
- `t`
 Time to Expiration
- `sd`
 Volatility
- `r`
 Risk free rate of return
- `d`
 Dividend Yield (use cont.rate()), Default: 0

Details

Theta represents the rate of change between the option price and time, or time sensitivity - sometimes known as an option’s time decay.

Value

Output gives the Theta of a Option Contract.

Examples

```r
put.theta(100, 105, 0.25, 0.35, 0.0488)
```
put.vega

Description

Calculate the Vega (Option Greek) of Option Contract

Usage

\[
\text{put.vega}(s, k, t, sd, r, d = 0)
\]

Arguments

\begin{itemize}
\item \textbf{s} \quad \text{Spot Price of Underlying Asset}
\item \textbf{k} \quad \text{Exercise Price of Contract}
\item \textbf{t} \quad \text{Time to Expiration}
\item \textbf{sd} \quad \text{Volatility}
\item \textbf{r} \quad \text{Risk free rate of return}
\item \textbf{d} \quad \text{Dividend Yield (use cont.rate()), Default: 0}
\end{itemize}

Details

Vega represents the rate of change between an option’s value and the underlying asset's implied volatility.

Value

Output gives the Vega of a Option Contract.

Examples

\[
\text{put.vega}(100, 105, 0.25, 0.35, 0.0488)
\]

straddle.long

Long Straddle Strategy Function

Description

This function can be used to develop a Long Straddle Strategy.

Usage

\[
\text{straddle.long}(c, p, k, ulimit = 10, llimit = 10)
\]
Arguments

- **c**: Premium of Long call Option
- **p**: Premium of Long Put Option
- **k**: Exercise Price of Long call and Put Option
- **ulimit**: Upper Limit of Stock Price at Expiration, Default: 20
- **llimit**: Lower limit of stock price at Expiration., Default: 20

Details

A straddle is a neutral options strategy that involves simultaneously buying both a put option and a call option for the underlying security with the same strike price and the same expiration date.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

```r
straddle.long(1.2, 3.2, 100)
```

straddle.short
Short Straddle Strategy Function

Description

This function can be used to develop a Short Straddle Strategy.

Usage

```r
straddle.short(c, p, k, ulimit = 10, llimit = 10)
```

Arguments

- **c**: Premium of Short call Option
- **p**: Premium of Short Put Option
- **k**: Exercise Price of Short call and Put Option
- **ulimit**: Upper Limit of Stock Price at Expiration, Default: 20
- **llimit**: Lower limit of stock price at Expiration., Default: 20

Details

A straddle is a neutral options strategy that involves simultaneously selling both a put option and a call option for the underlying security with the same strike price and the same expiration date.
strangle.long

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

straddle.short(1.2, 3.2, 100)

strangle.long Long Strangle Strategy Function

Description

This function can be used to develop a Long Strangle Strategy.

Usage

strangle.long(c, p, k_call, k_put, ulimit = 10, llimit = 10)

Arguments

- **c** Premium of Long call Option
- **p** Premium of Long Put Option
- **k_call** Exercise Price of Long call Option
- **k_put** Exercise Price of Long Put Option
- **ulimit** Upper Limit of Stock Price at Expiration, Default: 20
- **llimit** Lower limit of stock price at Expiration, Default: 20

Details

A strangle is an options strategy where the investor holds a position in both a call and a put option with different strike prices, but with the same expiration date and underlying asset.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

strangle.long(1.2, 3.2, 100, 105)
strangle.short

Short Strangle Strategy Function

Description

This function can be used to develop a Short Strangle Strategy.

Usage

strangle.short(c, p, k_call, k_put, ulimit = 10, llimit = 10)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Premium of Short call Option</td>
</tr>
<tr>
<td>p</td>
<td>Premium of Short Put Option</td>
</tr>
<tr>
<td>k_call</td>
<td>Exercise Price of Short call Option</td>
</tr>
<tr>
<td>k_put</td>
<td>Exercise Price of Short Put Option</td>
</tr>
<tr>
<td>ulimit</td>
<td>Upper Limit of Stock Price at Expiration, Default: 20</td>
</tr>
<tr>
<td>llimit</td>
<td>Lower limit of stock price at Expiration, Default: 20</td>
</tr>
</tbody>
</table>

Details

A strangle is an options strategy where the investor holds a position in both a call and a put option with different strike prices, but with the same expiration date and underlying asset.

Value

OUTPUT_DESCRIPTION Returns the profit/loss generated from the strategy along with the profit/loss of individual contract and an interactive graph for the same.

Examples

strangle.short(1.2, 3.2, 100, 105)
Index

box.spread, 2
butterfly.call, 3
butterfly.put, 4
call.delta, 6
call.estimate, 6
call.gamma, 7
call.greek, 8
call.minorgreek, 9
call.premium.est, 10
call.rho, 10
call.spread, 11
call.theta, 12
call.vega, 13
cont.rate, 13
iron.condour, 14
put.delta, 15
put.estimate, 16
put.gamma, 17
put.greek, 17
put.minorgreek, 19
put.premium.est, 20
put.rho, 20
put.spread, 21
put.theta, 22
put.vega, 23
straddle.long, 23
straddle.short, 24
strangle.long, 25
strangle.short, 26