Package ‘romic’

July 20, 2021

Type Package

Title R for High-Dimensional Omic Data

Version 1.0.0

Maintainer Sean Hackett <sean@calicolabs.com>

Description Represents high-dimensional data as tables of features, samples and measurements, and a design list for tracking the meaning of individual variables. Using this format, filtering, normalization, and other transformations of a dataset can be carried out in a flexible manner. ‘romic’ takes advantage of these transformations to create interactive ‘shiny’ apps for exploratory data analysis such as an interactive heatmap.

Depends R (>= 3.2.3)

Imports checkmate, dplyr, ggplot2, glue, purrr, readr, reshape2, rlang, shiny (>= 1.5.0), stringr, tibble, tidyr (>= 1.0.0)

Suggests knitr, lazyeval, plotly, rmarkdown, usethis, testthat

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Sean Hackett [aut, cre] (<https://orcid.org/0000-0002-9553-4341>), Calico Life Sciences LLC [cph, fnd]

Repository CRAN

Date/Publication 2021-07-20 09:00:02 UTC

R topics documented:

add_pca_loadings ... 3
app_flow ... 4
app_heatmap ... 4
app_pcs .. 5
R topics documented:

brauer_2008 ... 6
center_tomic ... 7
check_tidy_omic ... 7
check_tomic ... 8
check_triple_omic ... 8
convertWide_to_tidy_omic ... 9
create_tidy_omic ... 10
create_triple_omic ... 11
export_tomic_as_tidy ... 13
export_tomic_as_triple .. 14
export_tomic_as_wide ... 14
filterInput .. 15
filterServer ... 16
filter_tomic .. 16
format_names_for_plotting ... 18
get_design_tbl ... 18
ggBivOutput ... 19
ggBivServer ... 19
ggplotOutput ... 20
ggplotServer .. 20
ggUnivOutput ... 21
ggUnivServer ... 21
hclust_order ... 22
infer_tomic_table_type .. 23
lassoInput .. 23
lassoServer .. 24
organizeInput ... 24
organizeServer ... 25
plotsaverInput .. 25
plotsaverServer ... 26
plot_bivariate ... 26
plot_heatmap ... 27
plot_univariate ... 28
prepare_example_datasets ... 29
reconcile_triple_omic ... 29
remove_missing_values .. 30
romic ... 31
shiny_filter_test .. 31
shiny_ggbiv_test ... 32
shiny_ggplot_test ... 32
shiny_gguniv_test ... 33
shiny_lasso_test .. 34
shiny_lasso_test_reactval ... 34
shiny_organize_test ... 35
shiny_plotsaver_test ... 36
shiny_sort_test ... 36
sortInput ... 37
sortServer .. 37
add_pca_loadings

Description

Add Principal Components Analysis Loadings to a tidy or triple omics dataset.

Usage

```r
add_pca_loadings(
  tomic,
  value_var = NULL,
  center_rows = TRUE,
 npcs = NULL,
  missing_val_method = "drop_samples"
)
```

Arguments

- `tomic`: Either a tidy_omic or triple_omic object
- `value_var`: An abundance value to use with hclust
- `center_rows`: center rows before performing PCA
- `npcs`: number of principal component loadings to add to samples (default is number of samples)
- `missing_val_method`: Approach to remove missing values:
 - `drop_features`: Drop features with missing values
 - `drop_samples`: Drop samples which are missing all features, then drop features
 - `impute`: Impute missing values

Value

A tomic object with principal components added to samples.
Examples

```r
add_pca_loadings(brauer_2008_triple, npcs = 5)
```

app_flow

Flow

Description

Using shiny comb through datasets by iterating between plotting steps, and lassoing steps to select points of interest.

Usage

```r
app_flow(tomic)
```

Arguments

- `tomic` Either a `tidy_omic` or `triple_omic` object

Value

A shiny app

Examples

```r
if (interactive()) {
  # library(reactlog)
  # reactlog_enable()
  app_flow(brauer_2008_triple)
  # shiny::reactlogShow()
}
```

app_heatmap

Interactive Heatmap

Description

Generate a shiny interactive heatmap that allows for on demand filtering, ordering and faceting by variables of interest.

Usage

```r
app_heatmap(tomic)
```
app_pcs

Arguments

tomic Either a tidy_omic or triple_omic object

Value

A shiny app

Examples

if (interactive()) {
 app_heatmap(brauer_2008_tidy)
}

Description

Generate a Shiny interactive scatter plot which allows visualization of features, measurements, and samples (with principal components added).

Usage

app_pcs(tomic)

Arguments

tomic Either a tidy_omic or triple_omic object

Value

A shiny app

Examples

if (interactive()) {
 app_pcs(brauer_2008_tidy)
}
Description

An RNA expression (microarray) dataset looking at how yeast gene expression changes as nutrient sources and nutrient richness changes.

brauer_2008 formatted as a tidy_omic object
brauer_2008 formatted as a triple_omic object

Usage

brauer_2008

brauer_2008_tidy

brauer_2008_triple

Format

A tibble with 18,000 rows and 8 columns:

name Common gene name
BP Gene ontology biological process of the gene
MF Gene ontology molecular function of the gene
sample Sample name
nutrient Which nutrient limits growth (Glucose, Nitrogen, Phosphorous, Sulfur, Uracil, Leucine
DR Dilution rate of the culture - basically how fast the cells are growing
expression Expression level of the gene, log2 observation relative to a replicate of G0.3

An object of class tidy_omic (inherits from tomic, general) of length 2.
An object of class triple_omic (inherits from tomic, general) of length 4.

Details

This version of the dataset contains only 500 genes randomly selected from the ~6K genes in the complete dataset.

Source

center_tomic

Center T* Omic

Description

Center each measurement by subtracting the mean.

Usage

```r
center_tomic(tomic, measurement_vars = "all")
```

Arguments

- `tomic`: Either a `tidy_omic` or `triple_omic` object
- `measurement_vars`: measurement variables to center

Value

A `tomic` object where one or more measurements have been centered on a feature-by-feature basis.

Examples

```r
center_tomic(brauer_2008_tidy)
```

check_tidy_omic

Check Tidy Omic

Description

Check a tidy omic dataset for consistency between the data and design and validate that the dataset follows the `tidy_omic/tomic` specification.

Usage

```r
check_tidy_omic(tidy_omic, fast_check = TRUE)
```

Arguments

- `tidy_omic`: an object of class `tidy_omic` produced by `create_tidy_omic`
- `fast_check`: if TRUE then skip some checks which are slow and that are generally only needed when a `tomic` object is first created.

Value

Error and warning messages are printed and the input `tidy_omic` object is returned.
check_tomic

Description
Check a tidy or triple ’omic object for common pathologies, such as a mismatch between data and schema and non-uniqueness of primary keys.

Usage
```
check_tomic(tomic, fast_check = TRUE)
```

Arguments
- `tomic`: Either a tidy_omic or triple_omic object
- `fast_check`: if TRUE then skip some checks which are slow and that are generally only needed when a tomic object is first created.

Value
0 invisibly

Examples
```
check_tomic(brauer_2008_triple)
```

check_triple_omic

Description
Check a triple omic dataset for consistency between the data and design and validate that the dataset follows the triple_omic/tomic specification.

Usage
```
check_triple_omic(triple_omic, fast_check = TRUE)
```

Arguments
- `triple_omic`: an object of class triple_omic produced by `create_triple_omic`
- `fast_check`: if TRUE then skip some checks which are slow and that are generally only needed when a tomic object is first created.

Value
Error and warning messages are printed and the input tidy_omic object is returned
Description

Convert a wide dataset of species’ abundances (gene product, metabolites, lipids, ...) into a tripleomic dataset (one observation per row)

Usage

```r
convert_wide_to_tidy_omic(
  wide_df,
  feature_pk,
  feature_vars = NULL,
  sample_var = "sample",
  measurement_var = "abundance",
  omic_type_tag = "general"
)
```

Arguments

- `wide_df` a data.frame (or tibble) containing 1+ columns of feature attributes and many columns of samples
- `feature_pk` A unique identifier for features
- `feature_vars` a character vector of additional feature-level variables (or NULL if there are no additional variables)
- `sample_var` variable name to use for samples
- `measurement_var` variable name to use for measurements
- `omic_type_tag` an optional subtype of omic data: metabolomics, lipidomics, proteomics, genomics, general

Value

A tidyomic object as produced by `create_tidy_omic`.

Examples

```r
library(dplyr)

wide_measurements <- brauer_2008_triple[["measurements"]]
wide_df <- brauer_2008_triple[["features"]]
```
create_tidy_omic

Description

A tidy omics object contains a formatted dataset and a summary of the experimental design.

Usage

create_tidy_omic(
 df,
 feature_pk,
 feature_vars = NULL,
 sample_pk,
 sample_vars = NULL,
 omic_type_tag = "general"
)

Arguments

df a data.frame (or tibble) containing some combination of feature, sample and observation-level variables
feature_pk A unique identifier for features
feature_vars a character vector of additional feature-level variables (or NULL if there are no additional variables)
sample_pk A unique identifier for samples
sample_vars a character vector of additional sample-level variables (or NULL if there are no additional variables)
omic_type_tag an optional subtype of omic data: metabolomics, lipidomics, proteomics, genomics, general

Value

An S3 tidy_omic/tomic object built on a list:

data A tibble with one row per measurement (i.e., features x samples)
design A list which organized the dataset's meta-data:

 feature_pk variable specifying a unique feature
 sample_pk variable specifying a unique sample
create_triple_omic

features tibble of feature attributes
samples tibble of sample attributes
measurements tibble of measurement attributes

Examples

library(dplyr)

measurement_df <- tidyr::expand_grid(
 feature_id = 1:10,
 sample_id = LETTERS[1:5]
) %>%
 dplyr::mutate(value = rnorm(n()))

feature_df <- tibble(
 feature_id = 1:10,
 feature_group = rep(c("a", "b"), each = 5)
)

sample_df <- tibble(
 sample_id = LETTERS[1:5],
 sample_group = c("a", "a", "b", "b", "b")
)

triple_omic <- create_triple_omic(
 measurement_df, feature_df, sample_df,
 "feature_id", "sample_id"
)

raw_tidy_omic <- triple_to_tidy(triple_omic)$data

create_tidy_omic(raw_tidy_omic,
 feature_pk = "feature_id",
 feature_vars = "feature_group", sample_pk = "sample_id",
 sample_vars = "sample_group"
)

create_triple_omic Create Triple Omic

Description

A triple omics class contains three data.frames, one for features, one for samples, and one for abundances. This is a good format when there is a large amount of meta data associated with features or samples.

Usage

create_triple_omic(
 measurement_df,
create_triple_omic

```r
feature_df = NULL,
sample_df = NULL,
feature_pk,
sample_pk,
omic_type_tag = "general"
)

Arguments

- **measurement_df**: A data.frame (or tibble) of measurements - one row for each combination of feature and sample
- **feature_df**: A data.frame (or tibble) of features - one row per feature
- **sample_df**: A data.frame (or tibble) of samples - one row per sample
- **feature_pk**: A unique identifier for features
- **sample_pk**: A unique identifier for samples
- **omic_type_tag**: an optional subtype of omic data: metabolomics, lipidomics, proteomics, genomics, general

Details

for now primary keys are unique (rather than allowing for a multi-index)

Value

An S3 `triple_omic/tomic` object built on a list:

- **features**: A tibble of feature meta-data (one row per feature)
- **samples**: A tibble of sample meta-data (one row per sample)
- **measurements**: A tibble with one row per measurement (i.e., features x samples)
- **design**: A list which organized the dataset’s meta-data:
  - **feature_pk**: variable specifying a unique feature
  - **sample_pk**: variable specifying a unique sample
  - **features**: tibble of feature attributes
  - **samples**: tibble of sample attributes
  - **measurements**: tibble of measurement attributes

Examples

```r
library(dplyr)

measurement_df <- tidyr::expand_grid(
 feature_id = 1:10,
sample_id = LETTERS[1:5]
) %>%
dplyr::mutate(value = rnorm(n()))
Export T*Omic in Tidy Format

Description

Export a data table including all fields from features, samples and measurements.

Usage

export_tomic_as_tidy(tomic, dir_path, name_preamble)

Arguments

tomic Either a tidy_omic or triple_omic object
dir_path path to save outputs
name_preamble start of output file name

Value

Export one table which is one row per peak, which includes all feature and sample attributes.

Examples

if (interactive()) {
 export_tomic_as_tidy(brauer_2008_triple, "/tmp", "brauer")
}
Export T*Omic as Triple

Description

Export features, samples and measurements tables

Usage

export_tomic_as_triple(tomic, dir_path, name_preamble)

Arguments

tomic Either a tidy_omic or triple_omic object
dir_path path to save outputs
name_preamble start of output file name

Value

Export three tables:

• features: one row per features measured (i.e., a metabolite)
• sample: one row per sample
• measurements: one row per measurement (i.e., one metabolite in one sample)

Examples

if (interactive()) {
 export_tomic_as_triple(brauer_2008_triple, "/tmp", "brauer")
}

Export T*Omic as Wide Data

Description

abundances form a matrix with metabolites as rows and samples as columns. Use transpose to treat samples as rows filename
Usage

```r
export_tomic_as_wide(
  tomic,
  dir_path,
  name_preamble,
  value_var = NULL,
  transpose = FALSE
)
```

Arguments

- `tomic`: Either a `tidy_omic` or `triple_omic` object
- `dir_path`: path to save outputs
- `name_preamble`: start of output file name
- `value_var`: measurement variable to use for the matrix
- `transpose`: if TRUE then samples will be stored as rows

Value

Export one table which contains metabolites as rows and samples as columns.

Examples

```r
if (interactive()) {
  export_tomic_as_wide(brauer_2008_triple, "/tmp", "brauer")
}
```

filterInput Filter Input

Description

UI components for the filter module.

Usage

```r
filterInput(id, filter_table)
```

Arguments

- `id`: An ID string that corresponds with the ID used to call the module’s UI function.
- `filter_table`: table to filter

Value

A shiny UI
filterServer
Filter Server

Description

Server components for the filter module.

Usage

```r
filterServer(id, tidy_omic, filter_table)
```

Arguments

- `id`
 An ID string that corresponds with the ID used to call the module's UI function.
- `tidy_omic`
 an object of class tidy_omic produced by `create_tidy_omic`
- `filter_table`
 table to filter

Value

A tidy_omic with some features and/or samples filtered.

filter_tomic
Filter T Omics

Description

Filter a tidy or triple omic to entries of interest.

Usage

```r
filter_tomic(
  tomic,
  filter_type,
  filter_table,
  filter_value,
  filter_variable = NULL
)
```
Arguments

tomic

Either a tidy_omic or triple_omic object

filter_type

category filter filter_variable to categories specified in filter_value
range filter filter_variable to using the range (i.e., lower and upper limit) provided in filter_value
apply a quosure as a filter_value to a table of interest

filter_table

table where the filter should be applied

filter_value

values to filter based on

filter_variable

variable to apply the filter to

Value

A tomic object where a subset of features, samples or measurements have been filtered.

Examples

filter_tomic(
 brauer_2008_triple,
 filter_type = "category",
 filter_table = "features",
 filter_variable = "BP",
 filter_value = c("biological process unknown", "vacuolar acidification")
)

filter_tomic(
 brauer_2008_triple,
 filter_type = "category",
 filter_table = "samples",
 filter_variable = "DR",
 filter_value = 0.05
)

filter_tomic(
 brauer_2008_tidy,
 filter_type = "range",
 filter_table = "samples",
 filter_variable = "DR",
 filter_value = c(0, 0.2)
)

filter_tomic(
 brauer_2008_triple,
 filter_type = "quo",
 filter_table = "features",
 filter_value = rlang::quo(BP == "biological process unknown")
)
format_names_for_plotting

Format Names for Plotting

Description

Wrap long names over multiple lines so that they will look better on plots.

Usage

```r
format_names_for_plotting(chars, width = 40, truncate_at = 80)
```

Arguments

- `chars`: a character vector (or a variable that can be converted to one).
- `width`: positive integer giving target line width in characters. A width less than or equal to 1 will put each word on its own line.
- `truncate_at`: max character length

Value

a reformatted character vector of the same length as the input.

Examples

```r
cchars <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer ac arcu semper erat porttitor egestas. Etiam sagittis, sapien at mattis."

format_names_for_plotting(chars)
```

get_design_tbl

Get Design Table

Description

Get a tabular summary of all variables.

Usage

```r
get_design_tbl(tomic)
```

Arguments

- `tomic`: Either a `tidy_omic` or `triple_omic` object
Value
tibble reflecting the `omic` object’s design.

Examples
```r
get_design_tbl(brauer_2008_triple)
```

Description
UI components for the `ggBivariate` module.

Usage
```r
ggBivOutput(id, return_brushed_points = FALSE)
```

Arguments
- `id` An ID string that corresponds with the ID used to call the module’s UI function.
- `return_brushed_points` Return values selected on the plot

Value
A shiny UI

Description
Server components for the `ggBivariate` module.

Usage
```r
ggBivServer(id, `omic`, plot_table, return_brushed_points = FALSE)
```

Arguments
- `id` An ID string that corresponds with the ID used to call the module’s UI function.
- `omic` Either a `tidy_omic` or `triple_omic` object
- `plot_table` table containing the data to be plotted
- `return_brushed_points` Return values selected on the plot
ggplotServer

Value

a `tomic_table` if `return_brushed_points` is `TRUE`, and 0 otherwise

ggplotOutput ggplot Output

Description

UI components for the ggplot module.

Usage

`ggplotOutput(id)`

Arguments

- `id`
 An ID string that corresponds with the ID used to call the module’s UI function.

Value

A shiny UI

ggplotServer ggplot Server

Description

Server components for the ggplot module.

Usage

`ggplotServer(id, tomic, return_brushed_points = FALSE)`

Arguments

- `id`
 An ID string that corresponds with the ID used to call the module’s UI function.
- `tomic`
 Either a `tidy_omic` or `triple_omic` object
- `return_brushed_points`
 Return values selected on the plot

Value

A `tibble` of selected observations if `return_brushed_points` is `TRUE`. Otherwise, returns `NULL`.
Description

UI components for the ggUnivariate module.

Usage

```r
ggUnivOutput(id, return_brushed_points = FALSE)
```

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.
- **return_brushed_points**: Return values selected on the plot

Value

A shiny UI

Description

Server components for the ggUnivariate module.

Usage

```r
ggUnivServer(id, tomic, plot_table, return_brushed_points = FALSE)
```

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.
- **tomic**: Either a tidy_omic or triple_omic object
- **plot_table**: table containing the data to be plotted
- **return_brushed_points**: Return values selected on the plot

Value

- a tomic_table if return_brushed_points is TRUE, and 0 otherwise.
hclust_order

Hierarchical clustering order

Description

Format and hierarchically cluster a data.frame. If hclust could not normally be produced (usually because no samples are in common for a feature) pad the matrix with zeros and still calculate the distance.

Usage

hclust_order(
 df,
 feature_pk,
 sample_pk,
 value_var,
 cluster_dim,
 distance_measure = "dist",
 hclust_method = "ward.D2"
)

Arguments

df data.frame to cluster
feature_pk variable uniquely defining a row
sample_pk variable uniquely defining a sample
value_var An abundance value to use with hclust
cluster_dim rows, columns, or both
distance_measure variable to use for computing dis-similarity
 corr pearson correlation
dist euclidean distance
hclust_method method from stats::hclust to use for clustering

Value

a list containing a hierarchically clustered set of rows and/or columns

Examples

library(dplyr)

df <- tidyr::crossing(letters = LETTERS, numbers = 1:10) %>%
 mutate(noise = rnorm(n()))
hclust_order(df, "letters", "numbers", "noise", "rows")
infer_tomic_table_type

Infer Tomic Table Type

Description
From a tomic_table, choose whether it reflects features, samples or measurements

Usage
infer_tomic_table_type(tomic, tomic_table)

Arguments
- tomic: Either a tidy_omic or triple_omic object
- tomic_table: A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value
features, samples or measurements

lassoInput

Lasso Input

Description
UI components for the lasso module.

Usage
lassoInput(id)

Arguments
- id: An ID string that corresponds with the ID used to call the module’s UI function.

Value
A shiny UI
lassoServer

Lasso Server

Description

Take a subset of entries from a `tomic` table (generally selected using the lasso function) and then either filter a `tomic` object to these entries or tag the entries of interest with a user-specified variable.

Usage

lassoServer(id, `tomic`, `tomic_table`)

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.
- **`tomic`**: Either a `tidy_omic` or `triple_omic` object
- **`tomic_table`**: A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

A `tomic` object amended based on the lasso selection.

organizeInput

Organize Input

Description

UI components for the organize input module.

Usage

organizeInput(id)

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.

Value

A shiny UI
organizeServer

Organize Servers

Description
Server components for the organize input module.

Usage
organizeServer(id, tidy_omic, feature_vars, sample_vars, value_var)

Arguments
- **id**
 An ID string that corresponds with the ID used to call the module’s UI function.
- **tidy_omic**
 an object of class tidy_omic produced by `create_tidy_omic`
- **feature_vars**
 variables available for arranging features
- **sample_vars**
 variables available for arrange samples
- **value_var**
 An abundance value to use with hclust

Value
A atomic with sorted features and/or samples.

plotsaverInput

Plot Saver Input

Description
UI components for the plot saver module.

Usage
plotsaverInput(id)

Arguments
- **id**
 An ID string that corresponds with the ID used to call the module’s UI function.

Value
a shiny UI
plotsaverServer

Plot Saver Server

Description

Server components for the plot saver module.

Usage

```r
plotsaverServer(id, grob)
```

Arguments

- `id` An ID string that corresponds with the ID used to call the module’s UI function.
- `grob` a ggplot2 plot

Value

None

plot_bivariate

Bivariate Plot

Description

Create a scatter or boxplot from a tomic dataset.

Usage

```r
plot_bivariate(tomic_table, x_var, y_var, color_var = NULL)
```

Arguments

- `tomic_table` A table taken from a tidy (i.e., augmented measurements) or triple omic dataset
- `x_var` x-axis variable
- `y_var` y-axis variable
- `color_var` coloring variable (NULL to suppress coloring)

Value

a ggplot2 grob
Examples

```r
library(dplyr)

brauer_augmented <- brauer_2008_tidy %>%
  add_pca_loadings(npcs = 5) %>%
stomic_to("triple_omic")

tomic_table <- brauer_augmented$samples
plot_bivariate(tomic_table, "PC1", "PC2", "nutrient")
plot_bivariate(tomic_table, "PC1", "PC2", NULL)
plot_bivariate(tomic_table, "nutrient", "PC2", "nutrient")
```

plot_heatmap

Plot Heatmap

Description

Generate a heatmap visualization of a features x samples matrix of measurements.

Usage

```r
plot_heatmap(
  tomic,
  feature_var = NULL,
  sample_var = NULL,
  value_var = NULL,
  cluster_dim = "both",
  distance_measure = "dist",
  hclust_method = "ward.D2",
  change_threshold = Inf,
  plot_type = "grob"
)
```

Arguments

- **tomic** Either a tidy_omic or triple_omic object
- **feature_var** variable from "features" to use as a unique feature label.
- **sample_var** variable from "samples" to use as a unique sample label.
- **value_var** which variable in "measurements" to use for quantification.
- **cluster_dim** rows, columns, or both
- **distance_measure** variable to use for computing dis-similarity
 - **corr** pearson correlation
 - **dist** euclidean distance
- **hclust_method** method from stats::hclust to use for clustering
plot_univariate

Description
Create a histogram from a tomic dataset.

Usage
plot_univariate(tomic_table, x_var, color_var = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tomic_table</td>
<td>A table taken from a tidy (i.e., augmented measurements) or triple omic dataset</td>
</tr>
<tr>
<td>x_var</td>
<td>x-axis variable</td>
</tr>
<tr>
<td>color_var</td>
<td>coloring variable (NULL to suppress coloring)</td>
</tr>
</tbody>
</table>
Value

A ggplot2 grob

Examples

```r
library(dplyr)

brauer_augmented <- brauer_2008_tidy %>%
  add_pca_loadings(npcs = 5) %>%
  tomic_to("triple_omic")

plot_univariate(brauer_augmented$samples, "PC1", "nutrient")
plot_univariate(brauer_augmented$measurements, "expression", NULL)
```

prepare_example_datasets

Prepare Example Datasets

Description

Format example datasets and add them to the package.

Usage

```r
prepare_example_datasets(seed = 1234)
```

Arguments

- **seed**
 - a seed value used to reproducibly sample random genes.

Value

None; used for side-effects.

reconcile_triple_omic

Reconcile Triple Omic

Description

If some samples, feature or measurements have been dropped; update other tables.

Usage

```r
reconcile_triple_omic(triple_omic)
```
Arguments

- triple_omic: an object of class triple_omic produced by `create_triple_omic`.

Value

- a triple_omic object

Description

Account for missing values by dropping features, samples or using imputation.

Usage

```r
remove_missing_values(
  tomic,
  value_var = NULL,
  missing_val_method = "drop_samples"
)
```

Arguments

- tomic: Either a tidy_omic or triple_omic object.
- value_var: An abundance value to use with hclust.
- missing_val_method: Approach to remove missing values:
 - drop_features: Drop features with missing values.
 - drop_samples: Drop samples which are missing all features, then drop features.
 - impute: Impute missing values.

Value

- A tomic object where missing values have been accounted for.

Examples

```r
remove_missing_values(brauer_2008_triple)
```
Description

'romic' represents high-dimensional data as tables of features, samples and measurements, and a design list for tracking the meaning of individual variables. Using this format, filtering, normalization, and other transformations of a dataset can be carried out in a flexible manner. 'romic' takes advantage of these transformations to create interactive shiny apps for exploratory data analysis such as an interactive heatmap.

Shiny Filter Test

Description

Tests the shiny filter module as a stand-alone application.

Usage

shiny_filter_test(tidy_omic, filter_table = "features")

Arguments

- tidy_omic: an object of class tidy_omic produced by create_tidy_omic
- filter_table: table to filter

Value

A shiny app

Examples

if (interactive()) {
 shiny_filter_test(brauer_2008_tidy)
}
shiny_ggbiv_test Shiny ggBivariate Test

Description

Test the shiny ggBivariate module as a stand-alone application.

Usage

`shiny_ggbiv_test(tomic, plot_table = "samples")`

Arguments

- `tomic` Either a `tidy_omic` or `triple_omic` object
- `plot_table` table containing the data to be plotted

Value

a shiny app

Examples

```r
if (interactive()) {
  shiny_ggbiv_test(
    add_pca_loadings(brauer_2008_triple, npcs = 5),
    plot_table = "samples"
  )
  shiny_ggbiv_test(
    brauer_2008_triple,
    plot_table = "measurements"
  )
}
```

shiny_ggplot_test Shiny ggplot Test

Description

Test the shiny ggplot module as a stand-alone application.

Usage

`shiny_ggplot_test(tomic)`
shiny_gguniv_test

Arguments

tomic Either a tidy_omic or triple_omic object

Value

A shiny app

Examples

if (interactive()) {
 shiny_ggplot_test(add_pca_loadings(brauer_2008_triple, npcs = 5))
 shiny_ggplot_test(brauer_2008_triple)
}

shiny_gguniv_test Shiny ggUnivariate Test

Description

Test the shiny ggUnivariate module as a stand-alone application.

Usage

shiny_gguniv_test(tomic, plot_table = "samples")

Arguments

tomic Either a tidy_omic or triple_omic object
plot_table table containing the data to be plotted

Value

A shiny app

Examples

if (interactive()) {
 shiny_gguniv_test(
 add_pca_loadings(brauer_2008_triple, npcs = 5),
 plot_table = "samples"
)
 shiny_gguniv_test(brauer_2008_triple, plot_table = "measurements")
 shiny_gguniv_test(brauer_2008_triple, plot_table = "features")
}
shiny_lasso_test

Shiny Lasso Test

Description
Tests the shiny lasso module as a stand-alone application.

Usage
```
shiny_lasso_test(tomic, tomic_table)
```

Arguments
- **tomic**: Either a `tidy_omic` or `triple_omic` object
- **tomic_table**: A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value
A shiny app

Examples
```
if (interactive()) {
  tomic <- brauer_2008_triple
  tomic_table <- tomic[["samples"]]%>%dplyr::filter(nutrient == "G")
  shiny_lasso_test(tomic, tomic_table)
}
```

shiny_lasso_test_reactval

Shiny Lasso Test w/ Reactive Values

Description
Tests the shiny lasso module as a stand-alone application when the `tomic` is a `reactiveVal`.

Usage
```
shiny_lasso_test_reactval(tomic, tomic_table)
```

Arguments
- **tomic**: Either a `tidy_omic` or `triple_omic` object
- **tomic_table**: A table taken from a tidy (i.e., augmented measurements) or triple omic dataset
shiny_organize_test

Value
A shiny app

Examples
if (interactive()) {
 tomic <- brauer_2008_triple
 tomic_table <- tomic[["samples"]]%>%plyr::filter(nutrient == "G")
 shiny_lasso_test_reactval(tomic, tomic_table)
 tomic_table <- tomic[["measurements"]]%>%plyr::filter(expression < -3)
 shiny_lasso_test_reactval(tomic, tomic_table)
}

shiny_organize_test Shiny Organize Test

Description
Tests the shiny organization module as stand-alone application.

Usage
shiny_organize_test(tidy_omic, feature_vars, sample_vars, value_var)

Arguments
 tidy_omic an object of class tidy_omic produced by create_tidy_omic
 feature_vars variables available for arranging features
 sample_vars variables available for arrange samples
 value_var An abundance value to use with hclust

Value
a shiny app

Examples
if (interactive()) {
 shiny_organize_test(
 brauer_2008_tidy,
 feature_vars = c("BP", "MF"),
 sample_vars = c("sample", "nutrient", "DR"),
 value_var = "expression"
)
}

shiny_plotsaver_test
Shiny Plot Saver Test

Description
Test the shiny plotsaver module as a stand-alone application.

Usage
```
shiny_plotsaver_test()
```

Value
a shiny app

Examples
```
if (interactive()) {
  shiny_plotsaver_test()
}
```

shiny_sort_test
Shiny Sort Test

Description
Test the shiny sorting module as a stand-alone app.

Usage
```
shiny_sort_test(triple_omic, valid_sort_vars, value_var)
```

Arguments
- `triple_omic` an object of class `triple_omic` produced by `create_triple_omic`
- `valid_sort_vars` variables available for categorical arranging
- `value_var` An abundance value to use with `hclust`

Value
a shiny app
sortInput

Examples

```r
if (interactive()) {
  shiny_sort_test(brauer_2008_triple,
                  valid_sort_vars = c("sample", "nutrient", "DR"),
                  value_var = "expression"
  )
}
```

sortInput Sort Input

Description

UI components for the sort module.

Usage

```r
sortInput(id, sort_table)
```

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.
- **sort_table**: table to sort

Value

A shiny UI

sortServer Sort Server

Description

Server components for the sort module.

Usage

```r
sortServer(id, tomic, sort_table, valid_sort_vars = NULL, value_var = NULL)
```

Arguments

- **id**: An ID string that corresponds with the ID used to call the module’s UI function.
- **tomic**: Either a tidy_omic or triple_omic object
- **sort_table**: samples or features
- **valid_sort_vars**: variables available for categorical arranging
- **value_var**: An abundance value to use with hclust
Value

A sorted `tomic` object.

Description

Sort a dataset’s features or samples

Usage

```r
sort_tomic(
  tomic,  # Either a tidy_omic or triple_omic object
  sort_type,  
  sort_table,  
  sort_variables = NULL,  
  value_var = NULL
)
```

Arguments

- `tomic`: Either a `tidy_omic` or `triple_omic` object
- `sort_type`: `hclust` Arrange samples by hierarchical clustering of a provided `value_var`
- `arrange`: Arrange samples by the factor or alphanumeric ordering of a set of `sort_variables`
- `sort_table`: samples or features
- `sort_variables`: A set of attributes in `sort_table` to sort with in `arrange`.
- `value_var`: An abundance value to use with `hclust`

Details

`sort_tomic` supports the reordering of features or samples using either hierarchical clustering or based on the levels of other variables. Sorting occurs by turning either the feature or sample primary key into a factor whose levels reflect the sort.

Value

A `tomic` object where feature or sample primary keys have been turned into a factor reflecting how they are sorted.
Examples

library(dplyr)

sort_tomic(brauer_2008_triple,
 sort_type = "arrange", sort_table = "samples",
 sort_variables = c("nutrient", "DR")
)%>%
sort_tomic(
 sort_type = "hclust",
 sort_table = "features",
 value_var = "expression"
)

sort_triple_arrange Sort Triple Arrange

Description

Sort a triple_omic object based on the values of one or more variables.

Usage

sort_triple_arrange(triple_omic, sort_table, sort_variables)

Arguments

 triple_omic an object of class triple_omic produced by create_triple_omic
 sort_table samples or features
 sort_variables A set of attributes in sort_table to sort with in arrange.

Value

 A triple_omic with sorted features or samples.

sort_triple_hclust Sort Triple Hclust

Description

Sort a triple_omic object using hierarchical clustering

Usage

sort_triple_hclust(triple_omic, sort_table, value_var)
tidy_to_triple

Arguments

- **triple_omic** an object of class triple_omic produced by `create_triple_omic`
- **sort_table** samples or features
- **value_var** An abundance value to use with hclust

Value

A triple_omic with clustered features or samples.

Description

Convert a tidy_omic object into a triple_omic object.

Usage

`tidy_to_triple(tidy_omic)`

Arguments

- **tidy_omic** an object of class tidy_omic produced by `create_tidy_omic`

Details

The data table will be converted into features, samples, and measurements tables using the design to determine which variables belong in each table. The design will be preserved as-is.

Value

A triple_omic object as created by `create_triple_omic`

Examples

`tidy_to_triple(brauer_2008_tidy)`
tomic_sort_status

T* Omic Sort Status

Description
Determine whether features &/or samples have been sorted and stored as ordered_featureId and ordered_sampleId.

Usage
tomic_sort_status(tomic)

Arguments
tomic
Either a tidy_omic or triple_omic object

Value
length 1 character string indicating whether the tomic is sorted.

Examples
tomic_sort_status(brauer_2008_tidy)

tomic_to

T* Omic To

Description
Takes in any romic representation of a dataset and returns a specific representation.

Usage
tomic_to(tomic, to_class)

Arguments
tomic
Either a tidy_omic or triple_omic object

to_class
The class to return, either tidy_omic or triple_omic

Value
tomic transformed to to_class class (or un-transformed if it started that way).

Examples
tomic_to(brauer_2008_tidy, "triple_omic")
triple_to_tidy
Triple Omic to Tidy Omic

Description
Convert a triple_omic object into a tidy_omic object.

Usage
triple_to_tidy(triple_omic)

Arguments
triple_omic an object of class triple_omic produced by create_triple_omic

Details
Features, samples and measurements will be merged into a single data table, and the design will be preserved as-is.

Value
A tidy_omic object as created by create_tidy_omic.

Examples
library(dplyr)
measurement_df <- tidyr::expand_grid(
 feature_id = 1:10,
 sample_id = LETTERS[1:5]
) %>%
 dplyr::mutate(value = rnorm(n()))

feature_df <- tibble(
 feature_id = 1:10,
 feature_group = rep(c("a", "b"), each = 5)
)

sample_df <- tibble(
 sample_id = LETTERS[1:5],
 sample_group = c("a", "a", "b", "b", "b")
)

triple_omic <- create_triple_omic(
 measurement_df, feature_df, sample_df,
 "feature_id", "sample_id"
)
triple_to_tidy(triple_omic)
try_brushedPoints Try brushedPoints

Description
This function wraps brushedPoints in a try statement to catch cases where the brushing is out-of-sync with the df that is selected.

Usage
try_brushedPoints(...)

Arguments
... args to pass to brushedPoints

Value
a df of brushed points

update_tidy_omic Update Tidy Omic

Description
Update a Tidy `Omics data and schema to reflect newly added fields.

Usage
update_tidy_omic(tidy_omic, updated_tidy_data, new_variable_tables = c())

Arguments
tidy_omic an object of class tidy_omic produced by create_tidy_omic
updated_tidy_data a tibble of data to use to update tidy_omic.
new_variable_tables a named character vector of newly added variables in updated_tidy_data (names) and the table features, samples, measurements they apply to (values).

Value
a tidy_omic object with an updated schema and/or data.
Examples

```r
library(dplyr)

tidy_omic <- brauer_2008_tidy
updated_tidy_data <- tidy_omic$data %>%
    mutate(new_sample_var = "foo") %>%
    select(-DR)
new_variable_tables <- c("new_sample_var" = "samples")
```

update_tomic
Update T* Omic

Description

Provide an updated features, samples or measurements table to a `tomic`.

Usage

```r
update_tomic(tomic, tomic_table)
```

Arguments

- `tomic`: Either a `tidy_omic` or `triple_omic` object
- `tomic_table`: A table taken from a tidy (i.e., augmented measurements) or triple omic dataset

Value

A `tomic` object with updated features, samples or measurements.

Examples

```r
library(dplyr)
updated_features <- brauer_2008_triple$features %>%
    dplyr::filter(BP == "biological process unknown") %>%
    dplyr::mutate(chromosome = purrr::map_int(systematic_name, function(x) {
        which(LETTERS == stringr::str_match(x, "Y([A-Z])"))[2])
    }))

update_tomic(brauer_2008_triple, updated_features)
```
Index

* datasets
 brauer_2008, 6
 add_pca_loadings, 3
 app_flow, 4
 app_heatmap, 4
 app_pcs, 5
 brauer_2008, 6
 brauer_2008_tidy(brauer_2008), 6
 brauer_2008_triple(brauer_2008), 6
 brushedPoints, 43
 center_tomic, 7
 check_tidy_omic, 7
 check_tomic, 8
 check_triple_omic, 8
 convert_wide_to_tidy_omic, 9
 create_tidy_omic, 7, 10, 16, 25, 31, 35, 40, 42, 43
 create_triple_omic, 8, 11, 30, 36, 39, 40, 42
 export_tomic_as_tidy, 13
 export_tomic_as_triple, 14
 export_tomic_as_wide, 14
 filter_tomic, 16
 filterInput, 15
 filterServer, 16
 format_names_for_plotting, 18
 get_design_tbl, 18
 ggBivOutput, 19
 ggBivServer, 19
 ggplotOutput, 20
 ggplotServer, 20
 ggUnivOutput, 21
 ggUnivServer, 21
 hclust_order, 22
 infer_tomic_table_type, 23
 lassoInput, 23
 lassoServer, 24
 organizeInput, 24
 organizeServer, 25
 plot_bivariate, 26
 plot_heatmap, 27
 plot_univariate, 28
 plotsaverInput, 25
 plotsaverServer, 26
 prepare_example_datasets, 29
 reconcile_triple_omic, 29
 remove_missing_values, 30
 romic, 31
 shiny_filter_test, 31
 shiny_ggbiv_test, 32
 shiny_ggplot_test, 32
 shiny_gguniv_test, 33
 shiny_lasso_test, 34
 shiny_lasso_test_reactval, 34
 shiny_organize_test, 35
 shiny_plotsaver_test, 36
 shiny_sort_test, 36
 sort_tomic, 38
 sort_triple_arrange, 39
 sort_triple_hclust, 39
 sortInput, 37
 sortServer, 37
 tidy_to_triple, 40
 tomic_sort_status, 41
 tomic_to, 41
 triple_to_tidy, 42
 try_brushedPoints, 43
 update_tomic_omic, 43
 update_tomic, 44