robustmeta: Robust Inference for Meta-Analysis with Influential Outlying Studies

Robust inference methods for fixed-effect and random-effects models of meta-analysis are implementable. The robust methods are developed using the density power divergence that is a robust estimating criterion developed in machine learning theory, and can effectively circumvent biases and misleading results caused by influential outliers. The density power divergence is originally introduced by Basu et al. (1998) <doi:10.1093/biomet/85.3.549>, and the meta-analysis methods are developed by Noma et al. (2022) <forthcoming>.

Version: 1.1-1
Depends: R (≥ 3.5.0)
Imports: stats, metafor
Published: 2022-07-21
Author: Hisashi Noma [aut, cre], Shonosuke Sugasawa [aut], Toshi A. Furukawa [aut]
Maintainer: Hisashi Noma <noma at>
License: GPL-3
NeedsCompilation: no
Materials: NEWS
In views: MetaAnalysis
CRAN checks: robustmeta results


Reference manual: robustmeta.pdf


Package source: robustmeta_1.1-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): robustmeta_1.1-1.tgz, r-oldrel (arm64): robustmeta_1.1-1.tgz, r-release (x86_64): robustmeta_1.1-1.tgz, r-oldrel (x86_64): robustmeta_1.1-1.tgz


Please use the canonical form to link to this page.