Package ‘robustMVMR’

July 14, 2021

Title Perform the Robust Multivariable Mendelian Randomization Analysis

Version 0.3.1

Date 2021-07-13

Author Zhao Yang

Maintainer Zhao Yang <yangz98@connect.hku.hk>

Depends R (>= 3.5.0)

Imports lmtest (>= 0.9-37), robustbase (>= 0.93-5), ggplot2 (>= 3.2.1), stats (>= 3.6.2)

License GPL-2 | GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-14 07:30:02 UTC

R topics documented:

IL1_LUSC ... 2
robustMVMR .. 2

Index 6
robustMVMR

IL1_LUSC

IL-1 and squamous cell lung cancer

Description

Data from two genome-wide association studies for proteomics and the internal lung cancer consortium study. The outcome is the squamous cell lung cancer, and the exposures are interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist.

Usage

data(IL1_LUSC)

Format

An matrix contains the genetic associations of the exposures and the outcome.

References

robustMVMR

Perform the robust multivariable Mendelian randomization analysis

Description

The robustMVMR perform the robust multivariable Mendelian randomization ('robustMVMR') analysis in the two-sample MR setting based on the MM-estimator. The conventional multivariable Mendelian randomization (MVMR) estimate the causal effect by employing the weighted least square estimators, in which the inverse variance of the SNPs-outcome association is arbitrarily selected as the weights with an additional assumption about the heteroskedastic error. When all the instrument assumptions of MVMR are satisfied; that is,

• the variant is associated with at least 1 of the risk factor;
• the variant is not associated with a confounder of any of the risk-outcome associations;
• the variant is conditionally independent of the outcome given the risk factors and confounders;
• the variants are required to be independent;
• the heteroskedastic error;
• the linearity and homogeneity of all associations.
Violation of any one of the aforementioned assumptions can cause severe bias in MVMR. The robustMVMR produces the robust causal effect and robust standard errors based on the MM-estimates, which has been demonstrated to protect against the heteroskedasticity, autocorrelation, and the presence of outliers. The interested reader is referred to Yohai (1987) paper and Crousx et al (2004) paper. In MR setting, outliers of the multi-instruments may indicate the horizontal pleiotropic effect, which has been comprehensively discussed in Verbnck et al (2018) [www.nature.com/articles/s41588-018-0099-7] in univariable MR setting.

Notable, the assumption of heteroskedastic error in MVMR setting has a key role in estimating the causal effect and its standard error. However, recent advances suggest that the estimated effect derived from the conventional MVMR may be biased, especially when the exposures are highly correlated and the correlation matrix of these exposures is unknown. And, such scenarios often happen in the MVMR setting, especially when the multiple independent instruments are clumped by using the 1000 Genome Project as the reference. Furthermore, the function of these selected variants are not fully understood; that is, the horizontal pleiotropy (or outliers) may also arise. The results from Verbank et al (2018) paper reported that almost half (around 48%) of significant causal relationship in MR suffered from the horizontal pleiotropy. The effect of the horizontal pleiotropy on the "true" causal estimates ranged from -131% to 201%, with a false-positive rate of 10%. In such a case, the robustMVMR would provide better estimates and standard errors of the causal effect than those in the conventional MVMR.

Furthermore, the overall conditional F-statistic for testing conditional weak instrument bias and the modified Q-statistic for testing the instrument validity in the multivariable Mendelian randomization proposed by Sanderson et al. (2020) are also provided in robustMVMR. Along with the overall conditional F-statistic, a pairwise conditional F-statistic matrix is also provided to identify the possible source of conditional weak instrument bias.

Lastly, the data-driven result about the correlation matrix of exposure is also reported in robustMVMR. Such a matrix is derived from the standard error of each exposure under the heteroskedasticity assumption. The further using of this matrix should be cautious.

Usage

```r
robustMVMR(
  betaGY, 
  sebetaGY, 
  pvalbetaGY, 
  betaGX, 
  sebetaGX, 
  pvalbetaGX, 
  pval_threshold = 1e-05, 
  plot = FALSE 
)
```
Arguments

betaGY A numeric vector of the beta-coefficient for the SNPs-outcome associations. For the binary outcome, the log-odds ratio estimates from the logistic regression analysis are strongly recommended.

sebetaGY The numeric vector of the standard errors for the SNPs-outcome associations.
pvalbetaGY The numeric vector of P values for the SNPs-outcome associations.

betaGX A matrix of the beta-coefficient for the SNPs-exposures associations.

sebetaGX The matrix of the standard error for the SNPs-exposure associations.
pvalbetaGX The matrix of P values for the SNPs-exposure associations.
pval_threshold The threshold of the P value for selecting the genetic variants for exposures. By default, pval_threshold = 1e-05.

plot The option for return the scatter plot with the marginal effect of each exposure. By default, plot = FALSE.

Value

A list contains nine components, including

Breusch_Pagen_test The Breusch Pagen test for the heteroskedasticity assumption. Rejecting the NULL hypothesis indicate the violation of the heteroskedastic error.

mvMRResult_homo_robust The results from the robust multivariable Mendelian randomization with the weights being 1.

mvMRResult_heter_burgess The results from the conventional MVMR analysis with the weights being 1/sebetaGY^2.

mvMRResult_heter_robust The results from the robust multivariable Mendelian randomization with the weights being 1/sebetaGY^2. Of these, the conditional F-statistic is also reported.

marginalEffect The results from the robust univariable Mendelian randomization based on the validity instruments with the weights being 1/sebetaGY^2.

Conditional_F_statistic_matrix The pair-wise conditional F-statistics of exposures included in the robust MVMR analysis.

Q_pleiotropy_test The modified Q-statistic for testing the instrument validity used in the robust MVMR analysis.

rho_Exposures The correlation matrix of exposures included in the robust MVMR analysis. It is worth noting that this is a data-driven result.

plots The scatter plot of the marginal effect of each exposure on the outcome.

References

See Also

`bptest` and `lmrob`

Examples

data(IL1_LUSC)
-- SNP-outcome data
betaGY <- IL1_LUSC[,"beta.LUSC"]
sebetaGY <- IL1_LUSC[,"sebeta.LUSC"]
pvalbetaGY <- IL1_LUSC[,"pval.LUSC"]
-- SNP-exposure data
betaGX <- IL1_LUSC[,c("beta.IL1A_Sun", "beta.IL1B_Ahola", "beta.IL1RA_Ahola")]
sebetaGX <- IL1_LUSC[,c("se.IL1A_Sun", "se.IL1B_Ahola", "se.IL1RA_Ahola")]
pvalbetaGX <- IL1_LUSC[,c("pval.IL1A_Sun", "pval.IL1B_Ahola", "pval.IL1RA_Ahola")]
-- Robust MVMR
fit <- robustMVMR(betaGY = betaGY, sebetaGY = sebetaGY, pvalbetaGY = pvalbetaGY,
 betaGX = betaGX, sebetaGX = sebetaGX, pvalbetaGX = pvalbetaGX,
 pval_threshold = 1e-05, plot = FALSE)
-- Main results of the robust MVMR
fit$mvMRResult_heter_robust
-- The modified Q-statistic for testing instrument validity
fit$Q_pleiotropy_test
-- The pair-wise conditional F-statistic matrix
fit$Conditional_F_statistic_matrix
-- The correlation matrix of the exposures
fit$rho_Exposures
Index

* datasets
 IL1_LUSC, 2

bptest, 5
IL1_LUSC, 2
lmrob, 5
robustMVMR, 2