Package ‘robmixglm’

July 5, 2021

Type Package
Title Robust Generalized Linear Models (GLM) using Mixtures
Version 1.2-2
Date 2021-07-01
Maintainer Ken Beath <ken.beath@mq.edu.au>
Contact Ken Beath <ken.beath@mq.edu.au>
Author Ken Beath [aut, cre]
Description Robust generalized linear models (GLM) using a mixture method, as described in Beath (2018) <doi:10.1080/02664763.2017.1414164>. This assumes that the data are a mixture of standard observations, being a generalised linear model, and outlier observations from an overdispersed generalized linear model. The overdispersed linear model is obtained by including a normally distributed random effect in the linear predictor of the generalized linear model.
Depends R(>= 3.2.0)
Suggests R.rsp, robustbase, lattice, forward
VignetteBuilder R.rsp
Imports fastGHQuad, stats, bbmle, VGAM, actuar, Rcpp (>= 0.12.15), methods, boot, numDeriv, parallel, doParallel, foreach, doRNG, MASS
LazyLoad yes
LazyData yes
NeedsCompilation yes
License GPL (>= 2)
LinkingTo Rcpp
Repository CRAN
Date/Publication 2021-07-05 06:10:02 UTC
robinxglm-package

R topics documented:

robinxglm-package .. 2
AIC ... 4
BIC ... 5
coe ... 6
diabdata .. 6
extractAIC ... 7
fitted.robinxglm .. 8
hospcosts .. 9
logLik .. 10
outlierProbs ... 11
outlierTest .. 12
plot.outlierProbs ... 13
predict.robinxglm ... 13
print.outlierTest ... 14
residuals.robinxglm ... 15
robinxglm .. 16
summary.robinxglm .. 18

Index 19

robinxglm-package Fits random effects meta-analysis models including robust models

Description

The robinxglm function

This is the main function that allows fitting the models. The robinxglm objects may be tested for outliers using outlierTest. The results of test.outliers may also be plotted.

Author(s)

Ken Beath <ken.beath@mq.edu.au>

References

Examples

for the following cores is set to 1 to satisfy the CRAN testing requirements
removing will reduce the time taken depending on number of cores available
animal brain vs body weight
library(MASS)
data(Animals)
Animals$logbrain <- log(Animals$brain)
Animals$logbody <- log(Animals$body)
lm1 <- lm(logbrain ~ logbody, data = Animals)
rm2 <- robmixglm(logbrain ~ logbody, data = Animals, cores = 1)
plot(Animals$logbody, Animals$logbrain)
abline(lm1, col = "red")
abline(lm2, col = "green")
plot(outlierProbs(lm2))
outlierTest(lm2, cores = 1)

Forbes data on relationship between atmospheric pressure and boiling point of water
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(100*log10(pres) ~ bp, data = MASS::forbes, cores = 1)
summary(forbes.robustmix)
plot(outlierProbs(forbes.robustmix))
outlierTest(forbes.robustmix, cores = 1)

diabetes
diabdata.robustmix <- robmixglm(glyhb ~ age + gender + bmi + waisthip + frame,
data = diabdata, cores = 1)
summary(diabdata.robustmix)
this will take about 5-10 minutes
diabdata.step <- step(diabdata.robustmix, glyhb ~ age + gender + bmi + waisthip + frame)
summary(diabdata.step)
plot(outlierProbs(diabdata.step))
outlierTest(diabdata.step, cores = 1)

Hawkins' data
library(forward)
data(hawkins)
hawkins.robustmix <- robmixglm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,
 data = hawkins, cores = 1)
summary(hawkins.robustmix)
plot(outlierProbs(hawkins.robustmix))
outlierTest(hawkins.robustmix, cores = 1)

carrot damage
library(robustbase)
data(carrots)
carrots.robustmix <- robmixglm(cbind(success, total-success) ~ logdose + factor(block),
 family = "binomial", data = carrots, cores = 1)
summary(carrots.robustmix)
plot(outlierProbs(carrots.robustmix))
outlierTest(carrots.robustmix, cores = 1)
train derailment
library(forward)
data(derailme)
derailme$cYear <- derailme$Year-mean(derailme$Year)
derailme$TrainKm100 <- derailme$TrainKm*100.0
derailme.robustmix <- robmixglm(y~cYear+factor(Type), offset = log(TrainKm100),
 family = "truncpoisson", quadpoints = 51, data = derailme, cores = 1)
summary(derailme.robustmix)
plot(outlierProbs(derailme.robustmix))
outlierTest(derailme.robustmix, cores = 1)

hospital costs
hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma",
 data = hospcosts, cores = 1)
summary(hospcosts.robustmix)
plot(outlierProbs(hospcosts.robustmix))
outlierTest(hospcosts.robustmix, cores = 1)

AIC

| AIC for `robmixglm` object |

Description

Returns AIC for a `robmixglm` object.

Usage

```r
## S3 method for class 'robmixglm'
AIC(object, ..., k = 2)
```

Arguments

- `object` : `robmixglm` object
- `...` : additional argument; currently none is used.
- `k` : penalty per parameter

Value

AIC

Author(s)

Ken Beath
BIC

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
AIC(forbes.robustmix)

BIC

BIC for robmixglm object

Description

Returns BIC for a robmixglm object.

Usage

S3 method for class 'robmixglm'
BIC(object, ...)

Arguments

object
 robmixglm object

...
 additional argument; currently none is used.

Value

BIC

Author(s)

Ken Beath

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
Description

Returns coefficients for a robmixglm object. Only the coefficients for the linear part of the model are returned. Additional coefficients may be obtained using summary().

Usage

```r
## S3 method for class 'robmixglm'
coef(object, ...)
```

Arguments

- `object`: robmixglm object
- `...`: additional argument; currently none is used.

Value

coeff

Author(s)

Ken Beath

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
coef(forbes.robustmix)
```

diabdata

Diabetes data

Description

Data from Heritier et al (2009), originally from Harrell (2001, p379). This data was from a study of the prevalence of cardiovascular risk factors such as obesity and diabetes for African Americans. (Willems et al, 19997) Data was available for 403 subjects screened for diabetes, reduced to 372 after removal of cases with missing data.

Usage

diabdata
Format

A data frame with 372 observations on the following 8 variables.

- **glyhb**: Glycosated haemoglobin (values above 7.0 are usually taken as a positive diagnosis of diabetes)
- **age**: age in years
- **gender**: male or female
- **bmi**: body mass index in kg/m^2
- **waisthip**: ratio of waist to hip measurement
- **frame**: body frame, small, medium or large
- **stab.gluc**: glucose
- **location**: location, Buckingham or Louisa

Source

Heritier et al (2009)

References

Examples

```r
diabdata.robustmix <- robmixglm(glyhb ~ age + gender + bmi + waisthip + frame + location, data = diabdata, cores = 1)
summary(diabdata.robustmix)

diabdata.step <- step(diabdata.robustmix, glyhb ~ age + gender + bmi + waisthip + frame + location, cores = 1)
summary(diabdata.step)
```

extractAIC

Extract AIC from a Fitted Model

Description

Computes the (generalized) AIC for a fitted `robmixglm` model. Used in `step`, otherwise use `AIC`.
Usage

```r
## S3 method for class 'robmixglm'
extractAIC(fit, scale, k = 2, ...)
```

Arguments

- `fit`: fitted `robmixglm` model.
- `scale`: ignored.
- `k`: numeric specifying the ‘weight’ of the *equivalent degrees of freedom* (≡ edf) part in the AIC formula.
- `...`: further arguments (currently unused).

Author(s)

Ken Beath

See Also

`extractAIC`, `step`

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = MASS::forbes, cores = 1)
extractAIC(forbes.robustmix)
```

fitted.robmixglm

Fitted values.

Description

Calculates the fitted values.

Usage

```r
## S3 method for class 'robmixglm'
fitted(object, ...)
```

Arguments

- `object`: A `robmixglm` object with a mixture (robust) random effects distribution.
- `...`: Other parameters. (not used)

Value

A vector of the fitted values.
hospcosts

Author(s)
Ken Beath <ken.beath@mq.edu.au>

Examples

```
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
plot(fitted(forbes.robustmix), residuals(forbes.robustmix))
```

hospcosts

|hospcosts | Hospital Costs data |

Description

Data for the analysis in Beath (2018), previously analysed in Marazzi and Yohai (2004), Cantoni and Ronchetti (2006) and Heritier et al (2009). The data is for 100 patients hospitalised at the Centre Hospitalier Universitaire Vaudois in Lausanne, Switzerland for "medical back problems" (APDRG 243).

Usage

hospcosts

Format

A data frame with 100 observations on the following 9 variables.

- **id** patient id
- **costs** cost of stay in Swiss francs
- **los** length of stay in days
- **adm** admission type, 0 = planned, 1 = emergency
- **ins** insurance type, 0 = regular, 1 = private
- **age** age in years
- **sex** sex, 0 = female, 1 = male
- **dest** discharge destination, 0 = another health institution, 1 = home
- **loglos** log of length of stay

Source

Heritier et al (2009)
logLik

References

Examples

hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma", data = hospcosts, cores = 1)
summary(hospcosts.robustmix)

logLik

log Likelihood for robmixglm object

Description
Returns log Likelihood for a robmixglm object.

Usage
S3 method for class 'robmixglm'
logLik(object, ...)

Arguments
object robmixglm object
... additional argument; currently none is used.

Value
The loglikelihood.

Author(s)
Ken Beath

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp-pres, data = forbes, cores = 1)
logLik(forbes.robustmix)
Calculate outlier probabilities for each observation.

Description

For the normal mixture random effect calculates the probability that each observation is an outlier based on the posterior probability of it being an outlier.

Usage

outlierProbs(object)

Arguments

object A metaplus object with a mixture (robust) random effects distribution.

Details

The outlier probabilities are obtained as the posterior probabilities of each observation being an outlier based on the fitted mixture model.

Value

outlier.prob Posterior probability that each observation is an outlier

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
outlierProbs(forbes.robustmix)
outlierTest

Test for the presence of outliers.

Description

Uses the parametric bootstrap to test for the presence of outliers.

Usage

outlierTest(object, R = 999, cores = max(detectCores() %/% 2, 1))

Arguments

- **object**: A robmixglm object with a mixture (robust) random effects distribution.
- **R**: number of bootstrap replications
- **cores**: Number of cores to be used in parallel. Default is one less than available.

Details

Performs a parametric bootstrap to compare models with and without outliers.

Value

An outlierTest object which is the object of class “boot” returned by the call to boot.

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma", data = hospcosts, cores = 1)

summary(hospcosts.robustmix)
summary(outlierTest(hospcosts.robustmix, cores = 1))
plot.outlierProbs

Plot outlier probabilities.

Description

Plots the outlier probability for each observation, from an outlierProbs object.

Usage

```r
## S3 method for class 'outlierProbs'
plot(x, ...)  
```

Arguments

- `x`
 outlierProbs object to be plotted
- `...`
 additional parameters to plot

Value

Plot

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

```r
library(MASS)  
data(forbes)  
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)  
plot(outlierProbs(forbes.robustmix))
```

predict.robmixglm

Predict Method for robmixglm

Description

Obtains predictions from a fitted robust mixture generalized linear model object.

Usage

```r
## S3 method for class 'robmixglm'
predict(object, newdata = NULL,  
         type = c("link", "response"), ...)  
```
print.outlierTest

Arguments

 object a fitted object of class inheriting from robmixglm.
 newdata optionally, a data frame in which to look for variables with which to predict. If
 omitted, the fitted linear predictors are used.
 type the type of prediction required. The default link is on the scale of the linear
 predictors, while the alternative response is on the scale of the response vari-
 able.
 ... Other parameters. (not used)

Details

 If newdata is omitted the predictions are based on the data used for the fit. In that case how
 cases with missing values in the original fit is determined by the na.action argument of that fit.
 If na.action = na.omit omitted cases will not appear in the residuals, whereas if na.action =
 na.exclude they will appear (in predictions and standard errors), with residual value NA. See also
 napredict.

Value

 A vector predicted linear predictors or response. For binomial the response is the predicted propor-

Examples

 library(MASS)
 data(forbes)
 forbes.robustmix <- robmixglm(100*log10(pres)~bp, data = forbes, cores = 1)
 plot(forbes$bp, forbes$pres)
 preddata <- data.frame(bp = seq(from = min(forbes$bp), to = max(forbes$bp), by = 0.01))
 # convert to original scale
 preddata$predpres <-10^(predict(forbes.robustmix, newdata = preddata)/100)
 lines(preddata$bp, preddata$predpres, col = "red")

print.outlierTest Print an outlierTest object

Description

 Print an outlierTest object.

Usage

 ## S3 method for class 'outlierTest'
 print(x, ...)
residuals.robmixglm

Arguments

- `x` outlierTest object
- `...` further arguments (not currently used)

Author(s)

Ken Beath

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
summary(forbes.robustmix)
print(outlierTest(forbes.robustmix, cores = 1))
```

residuals.robmixglm Extract Model Residuals

Description

Extracts model residuals from objects returned by modeling functions.

Usage

```r
## S3 method for class 'robmixglm'
residuals(object, type = c("deviance", "pearson"), ...)
```

Arguments

- `object` an object for which the extraction of model residuals is meaningful.
- `type` Type of residual where valid types are deviance and pearson.
- `...` other arguments.

Value

Residuals extracted from the object `object`.

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
plot(fitted(forbes.robustmix), residuals(forbes.robustmix))
```
Fits a Robust Generalized Linear Model and Variants

Description

Fits robust generalized linear models and variants described in Beath (2018).

Usage

```r
robmixglm(formula, family = c("gaussian", "binomial", "poisson", "gamma", "truncpoisson", "nbinom"), data, offset = NULL, quadpoints = 21, notrials = 50, EMTol = 1.0e-4, cores = max(detectCores() %/% 2, 1), verbose = FALSE)
```

Arguments

- **formula**: Model formula
- **family**: Distribution of response
- **data**: Data frame from which variables are obtained
- **offset**: Offset to be incorporated in the linear predictor.
- **quadpoints**: Number of quadrature points used in the Gauss-Hermite integration.
- **notrials**: Number of random starting values to be used for EM
- **EMTol**: Relative change in likelihood for completion of EM algorithm before switching to quasi-Newton
- **cores**: Number of cores to be used for parallel evaluation of starting values
- **verbose**: Print out diagnostic information? This includes the likelihood and parameter estimates for each EM run.

Details

Fits robust generalized models assuming that data is a mixture of standard observations and outlier observations, which belong to an overdispersed model (Beath, 2018). For binomial, Poisson, truncated Poisson and gamma, the overdispersed component achieved through including a random effect as part of the linear predictor, as described by Aitkin (1996). For gaussian and negative binomial data the outlier component is also a gaussian and negative binomial model, respectively but with a higher dispersion. For gaussian this corresponds to a higher value of σ^2 but for negative binomial this is a lower value of θ.

The method used is a generalised EM. Random starting values are determined by randomly allocating observations to either the standard or outlier class for the first iteration of the EM. The EM is then run to completion for all sets of starting values. The best set of starting values is then used to obtain the final results using a quasi-Newton method. Where the overdispersed data is obtained using a random effect, the likelihood is obtained by integrating out the random effect using Gauss-Hermite quadrature.
Value

robmixglm object. This contains

- **fit**: Final model fit from quasi-Newton
- **prop**: Posterior probability of observation in each class
- **logLik**: final log likelihood
- **np**: Number of parameters
- **nobs**: Number of observations
- **coef.names**: Coefficient names
- **call**: Call to function
- **family**: Family of model to be fitted
- **model**: model
- **terms**: terms
- **xlevels**: Levels for factors.
- **quadpoints**: Number of quadrature points used in the Gauss-Hermite integration.
- **notrials**: Number of random starting values to be used for EM
- **EMTol**: Relative change in likelihood for completion of EM algorithm before switching to quasi-Newton
- **verbose**: Was verbose output requested?

Author(s)

Ken Beath

References

Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  library(MASS)
  data(forbes)
  forbes.robustmix <- robmixglm(100*log10(pres)-bp, data = forbes, cores = 1)
}
```
summary.robmixglm

Describes

Returns summary for a robmixglm object.

Usage

S3 method for class 'robmixglm'
summary(object, ...)

Arguments

object robmixglm object
... additional argument; currently none is used.

Value

summary

Author(s)

Ken Beath

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
summary(forbes.robustmix)
Index

* datasets
 diabdata, 6
 hospcosts, 9

* methods
 AIC, 4
 BIC, 5
 coef, 6
 logLik, 10
 print.outlierTest, 14
 summary.robmixglm, 18

* method
 fitted.robmixglm, 8
 outlierProbs, 11
 outlierTest, 12
 plot.outlierProbs, 13

* models
 extractAIC, 7
 predict.robmixglm, 13
 residuals.robmixglm, 15

* multivariate
 robmixglm, 16

AIC, 4
BIC, 5
coef, 6
diabdata, 6
extractAIC, 7, 8
fitted.robmixglm, 8
hospcosts, 9
logLik, 10
napredict, 14
outlierProbs, 11
outlierTest, 12
plot.outlierProbs, 13
predict.robmixglm, 13
print.outlierTest, 14
print.summary.outlierTest
 (print.outlierTest), 14
residuals.robmixglm, 15
robmixglm, 16
robmixglm-package, 2
step, 8
summary.outlierTest
 (print.outlierTest), 14
summary.robmixglm, 18