Package ‘rnrfa’

February 1, 2020

Title UK National River Flow Archive Data from R

Version 2.0.2

Maintainer Claudia Vitolo <cvitolodev@gmail.com>

URL http://cvitolo.github.io/rnrfa/

BugReports https://github.com/cvitolo/rnrfa/issues

Description Utility functions to retrieve data from the UK National River Flow Archive (<http://nrfa.ceh.ac.uk/>, terms and conditions: <http://nrfa.ceh.ac.uk/costs-terms-and-conditions>). The package contains R wrappers to the UK NRFA data temporary-API. There are functions to retrieve stations falling in a bounding box, to generate a map and extracting time series and general information.

Depends R (>= 3.0.2)

Imports rgdal, dplyr, curl, jsonlite, lubridate, graphics, stats, httr, zoo, ggmap, ggplot2, sp, parallel, tibble

Suggests testthat, knitr, covr, lintr, rmarkdown

LazyData true

Encoding UTF-8

License GPL-3

Repository CRAN

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Claudia Vitolo [aut, cre] (<https://orcid.org/0000-0002-4252-1176>), Matthew Fry [ctb] (Matthew supervised the unofficial API integration.), Wouter Buytaert [ctb] (This package is part of Claudia Vitolo's PhD work and Wouter is the supervisor.), Michael Spencer [ctb] (Michael updated the function osg_parse to work with grid references of different lengths.), Tobias Gauster [ctb] (Tobias improved the function osg_parse introducing vectorisation), Ilaria Prosdocimi [ctb] (Ilaria contributed to the adaptation of the package to the 2019 API)
R topics documented:

- rnrfa-package ... 2
- catalogue ... 2
- cmr ... 4
- convert_flow ... 5
- gdf ... 5
- get_ts ... 6
- osg_parse .. 8
- plot_rain_flow .. 9
- plot_trend .. 9
- seasonal_averages .. 10
- station_ids ... 11

Index 12

catalogue

List of stations from UK NRFA

Description

This function pulls the list of stations (and related metadata), falling within a given bounding box, from the CEH National River Flow Archive website.

Usage

catalogue(bbox = NULL, column_name = NULL, column_value = NULL, min_rec = NULL, all = TRUE)
Arguments

bbox this is a geographical bounding box (e.g. list(lon_min = -3.82, lon_max = -3.63, lat_min = 52.43, lat_max = 52.52))
column_name name of column to filter
column_value string to search in column_name
min_rec minimum number of recording years
all if TRUE it returns all the available metadata. If FALSE, it returns only the following columns: id, name, river, hydrometricArea, operator, haName, catchmentArea, altitude, lat, lon.

Details

coordinates of bounding box are required in WGS84 (EPSG: 4326). If BB coordinates are missing, the function returns the list corresponding to the maximum extent of the network.

Value

tibble table containing the list of stations and related metadata

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
# Retrieve all the stations in the network
x <- catalogue()

# Define a bounding box:
bbox <- list(lon_min=-3.82, lon_max=-3.63, lat_min=52.43, lat_max=52.52)
# Get stations within the bounding box
x <- catalogue(bbox)

# Get stations based on minimum catchment area
x <- catalogue(column_name = "catchment-area", column_value = 2000)

# Get stations based on minimum number of recording years
x <- catalogue(min_rec=30)
## End(Not run)
```
Description

Given the station ID number(s), this function retrieves data (time series in zoo format with accompanying metadata) from the WaterML2 service on the NRFA database. Catchment Mean Rainfall is measured in mm/month.

Usage

cmr(id, metadata = FALSE, cl = NULL, verbose = FALSE)

Arguments

id station ID number(s), each number should be in the range [3002,236051].
metadata Logical, FALSE by default. If metadata = TRUE means that the result for a single station is a list with two elements: data (the time series) and meta (metadata).
cl (optional) This is a cluster object, created by the parallel package. This is set to NULL by default, which sends sequential calls to the server.
verbose (FALSE by default). If set to TRUE prints GET request on the console.

Value

list composed of as many objects as in the list of station ID numbers. Each object can be accessed using their names or index (e.g. x[[1]], x[[2]], and so forth). Each object contains a zoo time series.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
cmr(18019)
cmr(c(54022,54090,54091))
## End(Not run)
```
convert_flow

Convert flow from cumecs to mm/d

Description

This function converts flow time series from cumecs (m3/s) to mm/d by dividing the flow by the catchment area and converting it to mm/day.

Usage

`convert_flow(flow_cumecs, catchment_area)`

Arguments

- `flow_cumecs`: This is the flow time series in cumecs (m3/s)
- `catchment_area`: This is the catchment area in Km2.

Value

Flow time series in mm/d

Examples

```r
## Not run:  
convert_flow(30, 2)
## End(Not run)
```

gdf

This function retrieves Gauged Daily Flow (gdf).

Description

Given the station ID number(s), this function retrieves data (time series in zoo format with accompanying metadata) from the WaterML2 service on the NRFA database. Gauged Daily Flow is measured in mm/day.

Usage

`gdf(id, metadata = FALSE, cl = NULL, verbose = FALSE)`
get_ts

Arguments

id station ID number(s), each number should be in the range \([3002,236051]\).

metadata Logical, FALSE by default. If metadata = TRUE means that the result for a single station is a list with two elements: data (the time series) and meta (metadata).

c1 (optional) This is a cluster object, created by the parallel package. This is set to NULL by default, which sends sequential calls to the server.

verbose (FALSE by default). If set to TRUE prints GET request on the console.

Value

list composed of as many objects as in the list of station ID numbers. Each object can be accessed using their names or index (e.g. \(x[[1]]\), \(x[[2]]\), and so forth). Each object contains a zoo time series.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
gdf(18019)
gdf(c(54022,54090,54091))
## End(Not run)
```

get_ts This function retrieves time series data.

Description

Given the station identification number(s), this function retrieves data (time series in zoo format with accompanying metadata) from the WaterML2 service on the NRFA database. The time series can be of two types: cmr (catchment mean rainfall, monthly) or gdf (gauged daily flows, daily).

Usage

```r
get_ts(id, type, metadata = FALSE, c1 = NULL, verbose = FALSE, full_info = FALSE)
```
get_ts

Arguments

- **id**: station identification number(s), each number should be in the range [3002,236051].
- **type**: The following data-types are available:
 - `gdf` = Gauged daily flows
 - `gmf` = Gauged monthly flows
 - `ndf` = Naturalised daily flows
 - `nmf` = Naturalised monthly flows
 - `cdr` = Catchment daily rainfall
 - `cdr-d` = Catchment daily rainfall distance to rain gauge
 - `cmr` = Catchment monthly rainfall
 - `pot-stage` = Peaks over threshold stage
 - `pot-flow` = Peaks over threshold flow
 - `gauging-stage` = Gauging stage
 - `gauging-flow` = Gauging flow
 - `amax-stage` = Annual maxima stage
 - `amax-flow` = Annual maxima flow

- **metadata**: Logical, FALSE by default. If metadata = TRUE means that the result for a single station is a list with two elements: data (the time series) and meta (metadata).
- **cl**: (optional) This is a cluster object, created by the parallel package. This is set to NULL by default, which sends sequential calls to the server.
- **verbose**: (FALSE by default). If set to TRUE prints GET request on the console.
- **full_info**: Logical, FALSE by default. If full_info = TRUE, the function will retrieve info on rejected periods and return a data frame rather than a time series.

Value

list composed of as many objects as in the list of station identification numbers. Each object can be accessed using their names or indexes (e.g. `x[[1]]`, `x[[2]]`, and so forth). Each object contains a time series of class `zoo/xts`.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
get_ts(18019, type = "cmr")
get_ts(c(54022,54090,54091), type = "cmr")
get_ts(18019, type = "gdf")
get_ts(c(54022,54090,54091), type = "gdf")
plot(get_ts(id = 23001, type = "ndf"))
plot(get_ts(id = 23001, type = "nmf"))

## End(Not run)
```
osg_parse

Converts OS Grid Reference to BNG/WGS coordinates.

Description

This function converts an Ordnance Survey (OS) grid reference to easting/northing or latitude/longitude coordinates.

Usage

```
osg_parse(grid_refs, coord_system = c("BNG", "WGS84"))
```

Arguments

- `grid_refs`: This is a string (or a character vector) that contains the OS grid Reference.
- `coord_system`: By default, this is "BNG" which stands for British National Grids. The other option is to set `coord_system = "WGS84"`, which returns latitude/longitude coordinates (more info can be found here: https://www.epsg-registry.org/).

Value

vector made of two elements: the easting and northing (by default) or latitude and longitude coordinates.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
# single entry
osg_parse(grid_refs = "TQ722213")

# multiple entries
osg_parse(grid_refs = c("SN831869","SN829838"))

## End(Not run)
```
plot_rain_flow

Plot rainfall and flow for a given station

Description

This function retrieves rainfall and flow time series for a given catchment, divides the flow by the
catchment area and converts it to mm/day to that it can be comparable with the rainfall (mm/month).
Finally it generates a plots combining rainfall and flow information.

Usage

plot_rain_flow(id = NULL, rain = NULL, flow = NULL, area = NULL,
title = "")

Arguments

id Station identification number
rain Rainfall time series, measured in mm/month
flow Flow time series, measured in m^3/s
area Catchment area in Km2
title (optional) Plot title

Value

Plot rainfall and flow for a given station

Examples

Not run:
 plot_rain_flow(id = 54090)
End(Not run)

plot_trend

Plot trend

Description

This function plots a previously calculated trend.

Usage

plot_trend(df, column_name)
Arguments

- **df**: Data frame containing at least 4 columns: lat (latitude), lon (longitude), slope and an additional user-defined column `column_name`.
- **column_name**: Name of the column to use for grouping the results.

Value

Two plots, side-by-side, the first showing the distribution of the trend over a map, based on the slope of the linear model that describes the trend. The second plot shows a boxplot of the slope grouped based on the column `Region`. Region and slope can be user-defined.

Examples

```r
## Not run:
plot_trend(df, Region)
## End(Not run)
```

seasonal_averages

Calculate seasonal averages

Description

This calculates the seasonal averages from a time series.

Usage

```r
seasonal_averages(timeseries, season = "Spring")
```

Arguments

- **timeseries**: Time series (zoo class).
- **season**: Name of the season, which corresponds to a quarter: Winter (Q1), Spring (Q2), Summer (Q3), Autumn (Q4)

Value

A vector containing the seasonal average and significance level (p-value) for each time series.

Examples

```r
## Not run:
seasonal_averages(timeseries = cmr(18019), season = "Spring")
seasonal_averages(list(cmr(18019), cmr(18019)), season = "Spring")
## End(Not run)
```
station_ids

List of stations identification numbers from UK NRFA

Description

This function pulls the list of station identification numbers.

Usage

```r
station_ids()
```

Value

vector integer identification numbers (one for each station)

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
# Retrieve all the stations ids
x <- station_ids()

## End(Not run)
```
Index

catalogue, 2
cmr, 4
convert_flow, 5

gdf, 5
get_ts, 6

osg_parse, 8

plot_rain_flow, 9
plot_trend, 9

rnrfapackage, 2

seasonal_averages, 10
station_ids, 11